Science & Technology

Ethan Hawke as the visionary Nikola Tesla. Photo from IFC Films

Reviewed By Jeffrey Sanzel

After dropping out of Harvard, writer-director-producer Michael Almereyda got a Hollywood agent based on a spec script about inventor and innovator Nikola Tesla. Tesla now arrives in theaters (and streaming) some three decades later. In the meantime, Almereyda has made over two dozen films, ranging from shorts to feature length to documentaries. He has worked with many of the same actors over the years — in this case reuniting with Ethan Hawke (who starred in Almereyda’s modern-dress Hamlet), Kyle MacLachlan, and Jim Gaffigan.

Kyle MacLachlan plays Thomas Edison, Tesla’s frenemy and rival in the film. Photo from IFC Films

The film is not a complete biopic but instead begins in 1884 when Tesla was unhappily working for Thomas Edison in his workshop. It quickly presents their incompatibility and Tesla’s subsequent embarkation on an independent path. The focus is on the battle between Edison’s direct current and Tesla’s alternate current. (Some of this material was covered in Alfonso Gomez-Rejon’s The Current War, which emphasized the business competition between Edison and George Westinghouse with Benedict Cumberbatch as the former, Michael Shannon as the latter, and Nicholas Hoult in the less prominent role of Tesla.)

The structure of Tesla is eclectic. It is narrated by Anne Morgan, daughter of mogul J.P. Morgan, who later bankrolls Tesla. Dressed in period garb, she talks to the camera, referencing her laptop, and siting Google searches. This sets the tone for what is going to be an unconventional structure. The visual elements are highly stylized, with scenes often played out against enlarged photos, painted backdrops, or stock footage.  Sometimes this is highly effective; other times it has the feel of the cheaply made educational films of the 60’s and 70’s.

There is nothing wrong with this strange, theatrical tactic. Often, the unexpected vision or rough approach bring the explored world into a different focus by not enslaving it to its period. The result can present old concepts in new lights. When this fails, works such as these can still succeed as a triumph of style over substance. Unfortunately, Tesla is no triumph. The scenes that are part of the historical narrative are meandering, with a lot of mumbling scientific jargon that is no doubt well-researched and accurate, but make for very slow going.

Tesla should not be a history report: It should engage on some visceral level. The surrounding structure is uniquely artistic and unpredictable; the content plays as pedestrian. The result is like a pie with an amazing and complex crust but a bland, tasteless filling.

There is a wonderful scene that ends in a small food fight between Edison and Tesla. This, like several other moments, are then corrected as only fantasy. The random appearance of a cellphone is a slyly introduced anachronism. This is where the film delights and surprises. The speculation, the what-if’s, and the flights of fancy engage us for a few moments but then we drift back into soporific stupor. There is great deal espoused about idealism versus capitalism and creation versus commerce. All are important concepts but they are not presented in any dramatic fashion.

When Tesla sets up his laboratory at Wardenclyffe in Shoreham, there are enough lightning flashes and electrical storms for half a dozen Frankenstein movies. It is stretches like these that seem to go on with little purpose.

Ethan Hawke makes Tesla a brooding genius, full of tics and OCD. As always, he fully commits to the role and delivers the best he can. But the problem is we never really learn who Tesla is. In many ways, he is a cipher at the center of his own story. Kyle MacLachlan’s Edison is an egotist of epic proportion but allows flashes of doubt to peek through. There are occasional sparks between them and the rivalry between these dysfunctional geniuses offer the strongest sequences. If only there were more.

Eve Hewson’s Anne Morgan is a fully-realized character, the underlying but never spoken love for Tesla a driving factor. She makes the  marveling at his genius and exasperation with his inability to communicate completely natural. Jim Gaffigan is a blowsy and sincere George Westinghouse and loses himself in the character. J.P. Morgan, as played by Donnie Keshawarz, enters late and is a borderline melodrama villain.

Rebecca Dayan as the grand dame of the theatre, Sarah Bernhardt, steers her away from the dangers of caricature, and her fascination with Tesla is intriguing if not fully explored. The rest of the cast are given one note each to play, and they struggle along with the weightier sections of exposition.

There are at least half a dozen electrical references that could be made to cleverly sum-up Tesla — comments about random sparks or broken circuits. But, ultimately, it is much simpler than that: The film just doesn’t work.

Tesla is rated PG-13 for some thematic material and some nudity.

James Misewich Photo from BNL

By Daniel Dunaief

Even as the pandemic continues to cast a pall over the prospects for the economy, the federal government is finding ways to support science. Recently, as a part of a $625 billion award to a host of institutions, the Department of Energy earmarked $115 million over five years for a part of a project led by Brookhaven National Laboratory.

The science, called quantum information systems, could have applications in a wide range of industries, from health care to defense to communications, enabling higher levels of artificial intelligence than the current binary system computers have used for decades. By benefiting from the range of options between the 0s and 1s that typically dictate computer codes, researchers can speed up and enhance the development of programs that use artificial intelligence.

The investment “underscores the confidence the federal government has with respect to how important this technology is,” said James Misewich, the Associate Laboratory Director for Energy and Photon Sciences at BNL. “Despite the challenges of the time, this was a priority.”

Local leaders hailed the effort for its scientific potential and for the future benefit to the Long Island economy.

“I have seen strong support inside of Congress and the administration for funding requests coming out of the Department of Energy for ideas on how to move the DOE’s mission forward,” said U.S. Rep. Lee Zeldin (R-NY-1). “I have also seen a very high level of appreciation and respect for BNL, its leadership, its staff, its mission and its potential.”

Zeldin said the average American spends more time than ever engaging with technologies and other discoveries that were made possible by the first quantum revolution. “Here we are on the verge of a second quantum revolution and BNL is at the forefront of it,” Zeldin said.

Zeldin sees limitless possibilities for quantum information science, as researchers believe these efforts will lead to advancements in health care, financial services, national security and other aspects of everyday life. “This next round of quantum advancements seeks to overcome some of the vulnerabilities that were identified and the imperfections in the first wave,” he said.

State Senator James Gaughran (D-Northport) expects quantum science to provide a significant benefit to the region. “We believe this is going to be a major part of our economic future,” he said. “It is a huge victory for Long Island.”

The return on investment for the state and the federal government will also materialize in jobs growth. This is “going to employ a lot of people,” Gaughran said. “It will help to rebuild the type of economy we need on Long Island. The fact that we are on the front lines of that will lead to all sorts of private sector development.”

While the technology has enormous potential, it is still in early enough stages that research groups need to work out challenges before they can fully exploit quantum technology. BNL, specifically, will make quantum error correction a major part of their effort.

As quantum computers start working, they run into a limitation called a noisy intermediate scale quantum problem, or NISQ. These problems come from errors that lower the confidence of getting the right answer. The noise is a current limitation for the best quantum computers. “They can only go so far before you end up with an error that is fatal” to the computing process, Misewich said.

By using the co-design center for quantum advantage, Misewich and his partners hope to use the materials that “beat the NISQ error by having the combination of folks with a great team that are all talking to one another.”

The efforts will use a combination of classical computing and theory to determine the next steps in the process of building a reliable quantum information system-driven computer.

Misewich’s group is also focusing on communication. The BNL scientists hope to provide a network that enables distributed computing. In classical computing, this occurs regularly, as computer scientists distribute a problem over multiple computers.

Similarly, with quantum computing, scientists plan to distribute the problem across computers that need to talk to each other.

Misewich is pleased with the combination of centers that will collaborate through this effort. “The federal government picked these centers because they are somewhat complementary,” he said. The BNL-led team has 24 partners, which include IBM, Stony Brook University, SUNY Polytechnic Institute, Yale University, Princeton University, the Massachusetts Institute of Technology, Harvard University, Columbia University and Howard University, among others.

“We had to identify the best team and bring in the right people to fill the gaps,” Misewich explained.

Using a combination of federal funds and money from New York State, BNL plans to build a new beamline at the National Synchrotron Lightsource II, which will operate at very low temperatures, allowing scientists to study the way these materials work under real word conditions.

BNL would like the work they are doing to have an application in calculations in three areas: the theory of the nucleus, quantum chemistry, which explores ways to design better materials, and catalysis.

A quantum computer could help make inroads in some challenging calculations related to electron-electron interactions in superconducting materials, Misewich said, adding that the entire team feels a “tremendous sense of excitement” about the work they are doing.”

Indeed, the group has been working together for close to two years, which includes putting the team in place, identifying the problems they want to tackle and developing a compelling strategy for the research to make a difference.

The group is expecting to produce a considerable amount of research and will likely develop various patents that will “hopefully transfer the technology so companies can start to build next generation devices,” Misewich said.

Along with local leaders, Misewich hopes these research efforts will enable the transfer of this technology to a future economy for New York State.

This effort will also train a numerous graduate and post doctoral students, who will be the “future leaders that are going to drive that economy,” Misewich said.

The research will explore multiple levels of improvement in the design of quantum computers which they hope will all work at the same time to provide an exponential improvement in the ability of the computer to help solve problems and analyze data.

METRO photo

By Elof Axel Carlson

Elof Axel Carlson

Science is a way of enlarging our knowledge about the  universe. It is not the only way to do so.  We can experience the universe through our travels, our observation of the changing seasons, our feelings of awe at a glorious sunset, or the joy of seeing a rainbow form after a passing rain shower. 

We can also experience a feeling that many call spiritual, through meditation, prayers, or reverential feelings. All societies experience these different ways of encountering the diversity of the universe and how to classify the world we experience around us. What sets science apart is its use of reason and tools to explore the universe.

Experimental science was formalized during the renaissance especially in Italy where Galileo and his students did experiments to work out the first laws of physics using inclined planes and quantitative relations to show a mathematical measure of speed and acceleration. Galileo also added the use of the telescope to explore the heavenly bodies and showed Venus had phases like the moon, the moon had craters and mountain ranges, Jupiter had 4 moons whose orbits he and his students worked out, and the sun had sunspots whose migrations allowed him to show the sun rotates on an axis.

That is not knowledge one gets from revelation or looking for bible codes in the Old Testament verses. It led to a dualism with Descartes and other philosophers seeing the universe as containing two realms – the material universe accessible to science through reason and experimentation and the spiritual or supernatural world that was accessible by revelation and scriptural interpretations of theologians. The Renaissance was also contentious, and Protestants and Catholics fought over who should interpret the Bible.

The relation between the world interpreted by science and the world interpreted by the supernatural has been an uneasy one ever since the Renaissance. Many people have no problem balancing the two ways to experience their lives. Other feel uncomfortable with the supernatural or uncomfortable with the scientific outlook expressed as atheism agnosticism, humanism, or scientism.

I am a scientist, and in that role I avoid explanations invoking the supernatural. I describe what is accessible through observation, experimentation, and the tools of science to investigate what is complex and render it interpretable through my studies. But I am also a human being who enjoys listening to music, going to museums to see great artworks and reading wonderful books of fiction and human imagination.

Science enlarged the universe I can live in and made possible the long life I have lived.  Some people, however, have a more ambivalent relation to science. They see it as destructive to their spiritual beliefs. They see it as destroyer of their children’s faith. They see it as sterile of emotions and human feelings. They see it as a rival that deprives them of the total freedom of the will to do what they want when they want. 

We see this in the  responses to the  advice offered by the nation’s epidemiologists and microbiologists who have studied infectious disease. Germs have no ideology. They have hosts. Those hosts can include you or me.

My response to a contagious disease is to follow what science recommends. I get a flu shot each year. I was immunized in my youth against smallpox, polio, and whooping cough. I had the measles and got an autoimmunity from that as was the case for mumps during the Depression years I grew up.

I am puzzled that adults can take offense at being told to  wear a facial mask to prevent spraying their germs in the streets and rooms they occupy as well as serving as a protection from those germs exhaled from our mouths and noses.

I am puzzled that people belittle scientists who measure the oceans’ temperatures and the study of the melting of glaciers around the polar regions and who keep careful records showing increases of carbon dioxide in the atmosphere and a rising temperature of the atmosphere and a rising sea level and more numerous and severe climate changes around the world. The evidence is overwhelming that it is caused by a fossil fuel carbon-based civilization and that it needs regulation through international treaties.

But those who ignore or reject science do not offer an alternative to changing our habits of how we live. What is it besides “wishful thinking” or denial that they offer in response? I am not advocating that science always has good outcomes. Science, like all human activity, has to be monitored, assessed and regulated. Pollution of the land, air and waters that are essential  for our lives needs regulation. Science often lends its help to the construction of weapons of mass destruction which is just rationalized murder of the innocent who are embedded in the guilty we designate as the enemy.

In a democracy it is our obligation to debate the uses and abuses of science as well as the uses and abuses of cultural beliefs and political ideologies. It is false to believe that society and nature are always self-correcting without human involvement in how we respond to the  threats often of our own making.

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

Anže Slosar. Photo from BNL

By Daniel Dunaief

Ever since Ancient Romans and Greeks looked to the stars at night, humans have turned those pinpricks of light that interrupt the darkness into mythological stories.

Two years from now, using a state-of-the-art telescope located in Cerro Pachón ridge in Northern Chile, scientists may take light from 12 billion light years away and turn it into a factual understanding of the forces operating on distant galaxies, causing the universe to expand and the patterns of movement for those pinpricks of light.

While they are awaiting the commissioning of the Vera C. Rubin Observatory, researchers including Brookhaven National Laboratory Physicist Anže Slosar are preparing for a deluge of daily data — enough to fill 15 laptops each night.

An analysis coordinator of the Large Synoptic Survey Telescope’s dark energy science collaboration, Slosar and other researchers from around the world will have a unique map with catalogs spanning billions of galaxies.

Anže Slosar

“For the past five years, we have been getting ready for the data without having any data,” said Slosar. Once the telescope starts producing information, the information will come out at a tremendous rate.

“Analyzing it will be a major undertaking,” Slosar explained in an email. “We are getting ready and hope that we’ll be ready in time, but the proof is in the pudding.”

The Vera C. Rubin Observatory is named for the late astronomer who blazed a trail for women in the field from the time she earned her Bachelor’s Degree from Vassar until she made an indelible mark studying the rotation of stars.

Slosar called Rubin a “true giant of astronomy” whose work was “instrumental in the discovery of dark matter.”

Originally called the Large Synoptic Survey Telescope (LSST), the Rubin Observatory has several missions, including understanding dark matter and dark energy, monitoring hazardous asteroids and the remote solar system, observing the transient optical sky and understanding the formation and structure of the Milky Way.

The study of the movement of distant galaxies, as well as the way objects interfere with the light they send into space, helps cosmologists such as Slosar understand the forces that affect the universe as well as current and ancient history since the Big Bang.

According to Slosar, the observatory will address some of its goals by collecting data in five realms including examining large structures, which are clustered in the sky. By studying the statistical properties of the galaxies as a function of their distance, scientists can learn about the forces operating on them.

Another area of study involves weak lensing. A largely statistical measure, weak lensing allows researchers to explore how images become distorted when their light source passes near a gravitational force. The lensing causes the image to appear as if it were printed on a cloth and stretched out so that it becomes visually distorted.

In strong lensing, a single image can appear as two sources of light when it passes through a dense object. Albert Einstein worked out the mathematical framework that allows researchers to make these predictions. The first of thousands of strong lensing effects was discovered in 1979. Slosar likens this process to the way light behind a wine glass bends and appears to be coming from two directions as it passes around and through the glass.

The fourth effect, called a supernova, occurs when an exploding star reaches critical mass and collapses under its own weight, releasing enough light to make a distant star brighter than an entire galaxy. A supernova in the immediate vicinity of Earth would be so bright, “it would obliterate all life on Earth.”

With the observatory scanning the entire sky, scientists might see these supernova every day. Using the brightness of the supernova, scientists can determine the distance to the object.

Scientists hope they will be lucky enough to see a supernova in a strongly lensed galaxy. Strong lensing amplifies the light and would allow scientists to see the supernova that are otherwise too distant for the telescope to observe.

Finally, the observatory can explore galaxy clusters, which are a rare collection of galaxies. The distribution of these galaxies in these clusters and how they are distributed relative to each other can indicate the forces operating within and between them.

The BNL scientist, who is originally from Slovenia, is a group leader for the BNL team, which has seven researchers, including post docs. As the analysis coordinator of the dark energy science collaboration, he also coordinates 300 people. Their efforts, he said, involve a blend of independent work following their particular interests and a collective effort to prepare for the influx of data.

Slosar said his responsibility is to have a big-picture overview of all the pieces the project needs. He is thrilled that this project, which was so long in the planning and development stage, is now moving closer to becoming a reality. He said he has spent five years on the project, while some people at BNL have spent closer to 20 years, as LSST was conceived as a dark matter telescope in 1996.

Scientists hope the observatory will produce new information that informs current understanding and forms the basis of future theories.

As a national laboratory, BNL was involved in numerous phases of development for the observatory, which had several different leaders. The SLAC National Accelerator in Stanford led the development of the camera that will be integrated into the telescope. BNL will also continue to play a role in the data analysis and interpretation.

“Fundamentally, I just want to understand how the universe operates and why it is like this and not different,” said Slosar.

COVID-era Human Language Analysis Lab Meeting in July, top row from left, MZ Zamani, Matthew Matero, Nikita Soni ; bottom row from left, Adithya Ganesan, Oscjar Kjell, Linh Pham and H. Andrew Schwartz in the middle. Photos taken July, 2020

By Daniel Dunaief

Computers might not be able to tell you how they are doing, unless they run a diagnostic test, but they might be able to tell you how you are doing.

Using artificial intelligence, a team of scientists at Stony Brook University recently received a $2.5 million grant from the National Institutes of Health to study how social media posts and mobile phone data may be able to predict excess drinking among restaurant workers.

By using data from texting, social media and mobile phone apps, these researchers, led by Andrew Schwartz, an Assistant Professor in the Department of Computer Science, are hoping to use artificial intelligence to predict excessive drinking.

According to the National Institute of Alcohol Abuse and Alcoholism, unhealthy drinking involves seven drinks a week for women and 14 for men.

Schwartz said the study hopes to be able to address whether the researchers, including Richard Rosenthal, the Director of Addiction Psychiatry at Stony Brook Medicine and Christine DeLorenzo, Associate Professor in the Departments of Biomedical Engineering and Psychiatry, could “say what the mood predicts how much participants will be drinking in the future.”

By analyzing the content of texts and social media posts, Schwartz and a team that also involves scientists from the University of Pennsylvania will explore whether an increase in stress is more likely to happen before an increase in drinking.

The researchers will study the effect of empathy, which can be health promoting and health threatening. “We believe AI-behavior-based measures will work better than questionnaires for detecting an unhealthy style of empathy,” Schwartz explained in an email. The AI will search for non-obvious patterns of social media posts and texts to determine which type of empathy a person might demonstrate and whether that empathy could lead to a drinking spiral.

Empathy theoretically may add to stress for bartenders and restaurant workers as they often listen to customers who share their tale of woe with food service professionals and are also in a social job.

Indeed, amid the pandemic, where levels of stress are higher during periods of uncertainty about public health and in which restaurant workers might be more likely concerned about their employment, this study could provide a way to understand how increases in alcohol consumption develop potentially to inform new ways to interrupt a negative spiral. “The extra stress of job security is heightened right now” for restaurant workers, among others, Schwartz said.

By validating AI against accepted tools, the researchers hope to gauge the AI-decoded link between emotion and unhealthy drinking behavior by aligning what an individual is expressing in social media with indicators of their emotional state and drinking.

Participants in the study are filling out brief surveys several times a day.

In the long run, the scientists hope this kind of understanding will allow future public health professionals to offer support services to people without the cost of having to administer numerous questionnaires.

The researchers had received word that their proposal had received the kind of score from the NIH that suggested they would likely get funded last July. They could have received positive funding news any time from November through May, which was when they learned that they had secured the financial support to pursue their research.

The topic of study is “extremely relevant,” he added, amid the current uncertainty and the potential for a second wave in the fall or winter.

“We’re interested in studying how unhealthy drinking develops and how it plays out in people’s daily lives,” Schwartz said.

Social media provides a window into the emotional state of the participants in the research.

To be sure, the researchers aren’t looking at how people post about drinking, per se, online. Instead, the scientists are looking at how people in the study answer questions about their drinking in the regular questionnaires.

The researchers came together for this effort through the World Well Being Project, which is a research consortium in collaboration with scientists at the University of Pennsylvania, Stony Brook University and Stanford.

The project involves groups of computer scientists, psychologists and statisticians to develop new ways to measure psychological and medical well-being based on language in social media, according to the group’s web site, which describes “Authentic Happiness.”

In a recent study, 75,000 people voluntarily completed a personality questionnaire through Facebook and made their status updates available. Using these posts, the researchers were able to predict a user’s gender 92 percent of the time just by studying the language of their status updates.

Researchers in substance use approached the World Well Being Project, which Schwartz is a part of, about the topic of unhealthy alcohol use.

The Artificial Intelligence methods Schwartz is developing and that the scientists are testing through this grant are aimed at understanding how a person is changing their language over time through their digital footprint.

In the future, Schwartz believes this approach could contribute to personalized medicine.

“When someone is most at risk, apps that are validated [may be able to] detect these sorts of patterns,” he said. While this study doesn’t provide a personalized patient app, it should provide the tools for it, he explained.

Optimizing this work for false positive and false negatives is a part of this study. The researchers need to create the tools that can make predictions with minimal false positives and false negatives first and then hope it will be used to interact with patients.

In this type of artificial-intelligence driven work, researchers typically need about 500 words to come up with a conclusion about a person’s emotional state. A goal of this work is to get that number even lower.

Fotis Sotiropoulos, the Dean of the College of Engineering and Applied Sciences, offered his enthusiastic support for this effort.

Schwartz is blazing a trail in advancing AI tools for tackling major health challenges,” Sotiropoulos said in a statement. “His work is an ingenious approach using data-science tools, smart-phones and social media postings to identify early signs of alcohol abuse and alcoholism and guide interventions.”

Ivar Strand Photo courtesy of BNL

By Daniel Dunaief

Ivar Strand had to put on a suit at home to interview virtually for a new job.

In the midst of the pandemic, Brookhaven National Laboratory was looking for a Manager of Research Partnerships in the Strategic Partnership Program and, despite the fact that the lab was limiting the people who were on site, was moving forward to fill a job opening.

“It was a strange situation,” Strand said, but the job piqued his interest, particularly because he’d be working with Martin Schoonen, the leader of BNL’s Strategic Partnership Programs office and an associate laboratory director for environment, biology, nonproliferation and national security. Schoonen and Strand, who worked together at Stony Brook in the late 1990’s, have known each other for over 25 years.

While Strand worked at Stony Brook as an Assistant Vice President of Sponsored Programs, he had a visiting appointment at BNL for five years, from 2005 to 2010. Several of the staff at BNL “remembered who I was, which made the transition a little bit easier,” he said.

Strand most recently worked at Long Island University, where he was the Executive Director in the Office of Sponsored Projects.

Schoonen was pleased to welcome Strand to the BNL fold. “[He is] taking on a pivotal role to develop contractual arrangements with potential partners and assist with growing and diversifying the labs funding sources,” Schoonen said in a statement.

In effect, Strand is facilitating collaborations among institutions. He will facilitate not only the connections and collaborations, but also encourage broadening and deepening professional connections to create either project specific or ongoing strategic partnerships

Strand will work to increase the awareness of the capabilities BNL can provide to researchers, entrepreneurs, and investors. The main drawback in a job he started on May 26 has been that he hasn’t been able to “build face-to-face relationships,” he said. Speaking with people for the first time through web-based platforms is not the same as running into someone who is walking across the site.

Building the relationship with the Department of Energy also represents a new challenge for Strand, who has previously worked with educational institutions as well as with Northwell Health.

“I spent my whole career building partnerships at various research institutions,” he said. After facilitating those collaborations, Strand has entered into agreements and then moved one. At BNL, he has the added dynamic of “making sure it satisfies the requirements of the DOE.” The scope of his work comprises all the research funding coming into the lab outside of the direct money that comes from the DOE, which represents about 90 percent of the funds for research at the lab.

Some of these other initiatives are collaborative, which involve DOE funds that also have a requirement to find a company to contribute financially, such as the Technology Commercialization Fund.

Working with finance and departmental business managers, Strand oversees the non-direct DOE money that comes in. When educational institutions and companies participate, particularly to supply funding, Strand and the strategic partnership team become a part of the conversation.

BNL often competes against the other national labs for major projects. Once the government selects a winner, as it did for the construction of the Electron Ion Collider, the DOE often asks the lead on the project to tap into the expertise and talents of the other institutions. When BNL recently won the EIC contract over Jefferson Laboratory in Virginia, the DOE asked BNL to partner with Jefferson to build the facility. New York State originally agreed to contribute $100 million to the construction of the EIC. Strand said the lab is hopeful that the commitment would come through.

In addition to the scientific discoveries that the EIC will bring, it is also a construction project that will provide the state with jobs. “I’m involved in some of the discussions in order to provide information about the project,” Strand said.

The transition to a government lab will require Strand to maneuver through structured agreements from the DOE, which is a bit of a challenge. The DOE uses structured agreements, while educational institutions also do but often are willing to use the agreements the sponsors propose.

Strand is pleased that BNL recently received approval to participate in the Atom Consortium, which was started by Glaxo and the University of California at San Francisco. The negotiation had been going on for several years. “It allows us to enhance our big data computing capabilities and expertise,” he explained.

Strand is excited about rejoining BNL. “I’ve always wanted to work in the lab and understand how best to build collaborations under the government umbrella,” he said.

Strand hoped his unconventional approach to some of the partnership challenges will work in the context of the structured environment of a national laboratory.

Indeed, in 2007, when he was working at Stony Brook, the university received the funds to buy a supercomputer. The two institutions, however, had decided to house the supercomputer at BNL, which made it a “challenging transaction” for all parties. He and others had to help Stony Brook become an enlisted partner, which allowed BNL to house the supercomputer on site.

In the bigger picture, Strand said he and Schoonen are reviewing where the lab will be from a strategic perspective in five years. In addition to industry, they are looking to collaborate with other federal sponsors with whom they haven’t traditionally partnered. They have to make sure that these efforts conform with DOE’s growth agenda.

A first-generation American whose parents were born in Norway, Strand said his parents met in the United States. A resident of South Setauket, Strand lives with his wife Maritza, who is an implementation specialist for ADT payroll. A tennis player and golfer, Strand alternates visiting and hosting his brother, who lives in Norway and is a veterinarian.

Strand is looking forward to his ongoing collaborations with Schoonen. “Having worked with him in the past, I have a lot of respect” for Schoonen, Strand said. “I jumped at the chance to be reunited with him. He’s an unbelievably great guy to work for.”

Photo from Vanderbilt Museum

Have you ever gazed at the night sky and wanted to know more about what you see? If you are intrigued by astronomy, and have a beginner or novice-level understanding of it, the Charles and Helen Reichert Planetarium & Observatory at the Suffolk County Vanderbilt Museum in Centerport invites you to take its Astronomy Education Series of six virtual mini-courses.

Dave Bush, director of the Planetarium, said each course builds upon the prior one in the sequence, while it also provides flexibility for students to gauge their own level of interest. Students may enroll in as many, or as few, courses as they choose, he said. It is recommended, however, that Course 1 be taken as a prerequisite for any of the other five. Course 1 begins September 15. Courses 2 to 6 are offered from mid-October through late April 2021.

“During the COVID-19 shutdown, this series will be taught remotely via Zoom,” Bush said. “Once the Planetarium reopens, the courses will be taught at the Planetarium in a classroom setting.  If we are permitted to move to a classroom setting, those classes will also will be livestreamed for those students who prefer, or are required, to attend remotely.”

The instructor is Bob Unger, who has pursued a lifelong interest in astronomy. He taught in the Planetarium’s outreach program Discovering the Universe: Mobile Classroom, has participated in projects for the National Oceanic and Atmospheric Administration, and is one of the command-console operators of the Planetarium’s projection system. Occasional guest speakers may be invited.

Courses are designed for beginning to novice-level amateur astronomers – and for anyone who wishes to expand their knowledge of astronomy and the night sky.  “The Astronomy Education Series provides a more formal education than is typically provided at planetarium shows and exhibits, or from media outlets,” said Unger.

Designed for adult learners (age 16 years and up), the courses explore astronomy, astrophysics, cosmology, and the night sky. The textbook is free in electronic form as a PDF document. The fee for each course is $70, $60 members. To register, visit www.vanderbiltmuseum.org. For further information, call 631-988-3510.

Joel Hurowitz before the PIXL launch at the end of July. Photo by Tanya Hurowitz

By Daniel Dunaief

For six years, Joel Hurowitz worked as Deputy Principal Investigator on a team to build an instrument they would send to another planet.

Joel Hurowitz

An Assistant Professor of Geosciences at Stony Brook University, Hurowitz and the team led by Abigail Allwood at the NASA Jet Propulsion Laboratory created an instrument that would search for evidence of life that is likely long ago extinct on Mars.

The team designed a 10-pound machine (which will weigh less than four pounds in Mars’s lower gravity environment) that is about the size of a square lunchbox and houses x-ray equipment that can search along the surface of rocks for life that may have existed as long as three to four billion years ago.

Mars’s surface environment became less hospitable to life starting around three billion years ago, when the planet lost most of its atmosphere, causing the surface to dry out and become extremely cold. Surface life at this point likely became extinct.

Called the Planetary Instrument for X-ray Lithochemistry, or PIXL, the instrument was one of seven that lifted off at the end of July as part of a Mars 2020 mission. The Perseverance rover will land at the Jezero Crater on the Red Planet on February 18th, 2021.

After all that work, Hurowitz had planned to watch the launch with his family in Florida, but the pandemic derailed that plan.

“I got to watch the launch with my family,” Hurowitz said. He was on two zoom conferences, one with the Mars 2020 team and the other with members of the Department of Geosciences at Stony Brook. “It was a really special experience” and was the “best teleconference of the last six months,” he said.

As the rocket makes its 35.8 million mile journey to Mars, the JPL team will turn on the PIXL to monitor it, run health checks and do routine heating of the components to make sure it is operating. After the rocket lands, the rover will go through a commissioning period. Numerous subsystems need to be checked out, explained Hurowitz.

The first test for the PIXL will be to analyze a calibration target the researchers sent to Mars, to make sure the measurements coincide with the same data they collected numerous times on Earth. This ensures that the instrument is “working the way we want it to. That’ll happen in the first 40 sols.”

A sol is a day on Mars, which is slightly longer by about 40 minutes than a day on Earth.

Once it passes its calibration test, the PIXL can start collecting data. Hurowitz described the instrument as “incredibly autonomous.” It sits at the end of the rover’s arm. When the scientists find a rock they want to explore, the PIXL moves an inch away from the surface of the rock and opens its dust cover. The scientists take pictures with a camera and a set of laser beams. These beams help determine whether the PIXL is an optimal distance from the rock. If it isn’t, the instrument manipulates itself, using struts that allow it to extend or retract away from the rock.

Once PIXL gets in the right position, it fires an X-ray beam into the rock. The beam is about the diameter of a human hair. The x-ray that hits the rock is like wind going through chimes. Rather than make a familiar sound, the elements in the rock emit a specific x-ray signal as the atoms return to their ground state. Putting together the signals from the rock enables Hurowitz and the PIXL crew to determine its chemistry.

Even though the rocks are likely a combination of numerous elements, they “separate themselves cleanly in our spectra,” Hurowitz said. The SBU Geosciences expert expects the elements in the rocks to have different proportions than on Earth. Mars, for example, has more iron than sodium. A granite rock on Earth would likely have considerable sodium and some potassium, with a little iron.

Hurowitz and the PIXL team will be looking for rocks that may have evidence of prokaryotic organisms that are Mars’s versions of similar species found in undisturbed areas of Western Australia, where researchers discovered ancient fossilized life.

The rocks in Australia contain the oldest accepted fossilized forms of life, which are about 3.5 billion years old and are considered the best analogues for what the PIXL team might find on Mars.

In Australia, which is where Allwood grew up, scientists discovered microbial mats, which are single-celled organisms that build up, one layer after another, into a colony. These mats worked together to build up towards the sunlight, which fuels their metabolism. They use raw chemicals in the environment like dissolved sulfur, iron and manganese.

The Martian mats, if they find them, likely had to adapt to considerably different conditions than on Earth. The Martian environment may not have had large oceans or river systems and craters filled with lakes.

The scientists won’t be able to look for an individual microbe, but rather for indirect signals, such as laminated structures that formed in ways that are unique to microbial communities.

Hurowitz, Allwood and the PIXL team are looking for clues from an unusual lamination in the rock that they would likely associate with a microbial mat. By looking closely at the lamination, they may be able to develop hypotheses about whether a mat was taking chemicals out and depositing it to make a mineralized home for itself.

If they find rocks of interest, the rover’s drill will collect a sample and hermetically seal it in a tube.

A future mission to Mars, planned for 2026, could retrieve some of these samples, which, when they return, could confirm the presence of life on Mars. PIXL will continue to operate as long as the filament in the x-ray tube lasts, which should be between 1,300 and 1,400 uses.

Allwood, who shared an office with Hurowitz when they worked together at the Jet Propulsion Laboratory, said she approached him when she started assembling a team.

Finding life on Mars would answer a question that has intrigued those on Earth for thousands of years, Allwood said. Such Martian life would indicate that “we’re not alone. There was life and it was next door,” she said.

DNALC Assistant Director Amanda McBrien teaches a live session. Photo by Chun-hua Yang, DNALC

By Daniel Dunaief

Two letters defined the DNA Learning Center at Cold Spring Harbor Laboratory over the last several months: re, as in rethink, reimagine, reinvent, recreate, and redevelop. They also start the word reagent, which are chemicals involved in experiments.

The 32-year-old Learning Center, which teaches students from fifth grade through undergraduates, as well as teachers from elementary school to college faculty, shared lessons and information from a distance.

At the Learning Center, students typically benefit from equipment they may not have in their schools. That has also extended to summer camps. “Our camps are built on this experiential learning,” said Amanda McBrien, an Assistant Director at the Learning Center.

DNALC Educator Dr. Cristina Fernandez-Marco, teaches a Genome Science Virtual Class. Photo by Sue Lauter, DNALC

While that part of the teaching experience is missing, the center adapted to the remote model, shifting to a video based lessons and demonstrations. Indeed, campers this year could choose between a live-streamed and an on-demand versions.

Dave Micklos, the founder of the Learning Center, was pleased with his staff’s all-out response to the crisis.

“The volume of new videos that we posted on YouTube was more than any other science center or natural history museum that we looked up,” Micklos said. “It takes a lot of effort to post content if you’re doing it in a rigorous way.” During the first few months of the lockdown, the Learning Center was posting about three or four new videos each day, with most of them produced from staff members’ homes.

As for the camps, the Learning Center sent reagents, which are safe and easy to use, to the homes of students, who performed labs alongside instructors. In some camps, students isolated DNA from their own cells, plant or animal cells and returned the genetic samples to the lab. They can watch the processing use the DNA data for explorations of biodiversity, ancestry and detecting genetically modified organisms.

The Learning Center has been running six different labs this summer.

The virtual camps allowed the Learning Center to find a “silver lining from a bad situation” in which students couldn’t come to the site, McBrien said. The Learning Center developed hands-on programs that they sent throughout the country.

McBrien said the instructors watched each other’s live videos, often providing support and positive feedback. Some people even watched from much greater distances. “We had a few regulars who were hysterical,” McBrien said. “One guy from Germany, his name is Frank, he was in all the chats. He loved everything we did” and encouraged the teachers to add more scientific lessons for adults.

McBrien praised the team who helped “redevelop a few protocols” so high-level camps could enable students to interact with instructors from home.

A DNA Barcoding Virtual Camp featuring DNA Learning Center Educator Dr. Sharon Pepenella, with her virtual class. Over Pepenella’s shoulder is a picture of Nobel Prize winners Francis Crick and James Watson. Photo by Sue Lauter, DNALC.

Using the right camera angles and the equipment at the lab, the instructors could demonstrate techniques and explain concepts in the same way they would in a live classroom setting. To keep the interest of the campers, instructors added polls, quizzes and contests. Some classes included leader boards, in which students could see who answered the most questions correctly.

This summer, Micklos and Bruce Nash, who is an Assistant Director at the Learning Center, are running a citizen science project, in which teams from around the country are trying to identify ants genetically throughout the United States.

Using a small kit, one reagent and no additional equipment, contributing members of the public, whom the Learning Center dubs “Citizen Scientists,” are isolating DNA from about 500 of the 800 to 900 species of ants.

In one of the higher level classes called metabarcoding or environmental DNA research, teachers collected microbes in a sample swabbed from their nose, their knees, tap water, and water collected from lakes.

The Learning Center supports this effort for high school research through Barcode Long Island, which is a partnership with the Hudson River Park to study fish in the Hudson. High school interns and the public help with sampling and molecular biology.

“Much like barcoding, we aim to democratize metabarcoding,” Nash explained in an email. A metabarcoding workshop that ended recently had participants in Nigeria, Canada, Antigua and distant parts of the United States, with applicants from Asia.

After teaching college faculty on bar coding, Micklos surveyed the teachers to gauge their preference for future courses, assuming in-person meetings will be possible before too long.

When asked if they would like in-person instruction only, a hybrid model, or classes that are exclusively virtual, none of the teachers preferred to have the course exclusively in person. “People are beginning to realize it is more time efficient to do things virtually,” Micklos said.

Nash added that the preference for remote learning predated the pandemic.

Micklos appreciates the Learning Center’s educational contribution. “To pull these things off with basically people talking to each other via computer, to me, is pretty amazing,” he said.

Around four out of 10 students who enter college who have an interest in pursuing careers in science continue on their scientific path. That number, however, increases to six out of 10, when the students have a compelling lab class during their freshman year, Micklos said.

Lab efforts such as at the Learning Center may help steady those numbers, particularly during the disruption caused by the pandemic.

The longer-term goal at the Learning Center, Micklos said, is to democratize molecular biology with educational programs that can be done in the Congo, the Amazon or in other areas.

As for the fall, the leadership at the center plans to remain nimble.

The Learning Center is planning Virtual Lab field trips and will also continue to offer “Endless Summer” camp programs for kids and parents looking for science enrichment.

The Center also hopes to send instructors for in-person demonstrations at schools, where they can host small groups of student on site.

“We are supporting as many people as possible through our grant-funded programs and our (virtual) versions of camps and field trips,” Nash said. “These will be adapted to support schools and others to progressively improve them through the fall, with the hope of reaching all those we would normally reach.”

Kahille Dorsinvil. Photo courtesy of BNL

By Daniel Dunaief

The show must go on, even in science.

After 70 years of bringing residents into their high tech facility to see some of the cutting-edge technology for themselves and to interact with the scientists from around the world who ask questions about the nature of matter, the universe, energy, weather and myriad other questions, Brookhaven National Laboratory plans to continue the tradition of Summer Sundays, albeit virtually.

Starting this Sunday, Aug. 16, with a virtual explanation video and question and answer session with several scientists, the Department of Energy laboratory will welcome those curious about their labs back, albeit virtually. The first session will begin with a video about the National Synchrotron Lightsource II, a facility that cost close to $1 billion to construct and that has numerous beamlines that enable researchers to see everything from the molecules of a battery in action to cutting edge interactions in biochemistry.

This week’s session, which will run from 3:30 to 5 p.m. will be available on BNL’s YouTube channel. Participants who would like to ask questions during the session can submit them in writing through the lab’s social media accounts or by sending an email to [email protected] A moderator will direct questions to a panel. The other programs are on August 23rd for the Center for Functional Nanomaterials and August 30th for the Relativistic Heavy Ion Collider.

“Summer Sundays are a large public event and clearly that’s not something anyone is doing right now,” said Kahille Dorsinvil, Principal Stakeholder Relations Specialist and Summer Sundays Coordinator at BNL, who has been working at BNL for 14 years. “People probably thought they’d see us in 2021, [but] we’re still doing science and we’re still trying to share what we’re doing.”

The virtual event has the advantage of allowing the lab to serve as a host for a much larger group of people, who aren’t limited by seats or by social distancing rules. “We tried to make it so there was no limit to who could watch or participate with us online,” explained Dorsinvil.

Participants will watch a short video tour and will then have an opportunity to interact with panelists. The videos will include footage shot from numerous angles.

The participants during a typical in-person Summer Sundays event range across the age spectrum, as BNL promotes the effort as a family event.

Summer Sundays appeal to residents who have already attended similar events in prior years. Indeed, when the lab asks visitors if this is their first time, about half have been to the site before. “Some are our best friends come every year,” Dorsinvil said.

Dorsinvil grew up on Long Island, visiting the lab when she was in ninth grade at Newfield High School in Selden. Through the program, and apprenticeship program, which currently exists as STEM prep for rising tenth graders, she focused on a different science topic each week, including basic chemistry and the environment.

Dorsinvil was already interested in science, but visiting BNL “made a difference in how I continued” in the field, she said.