Science & Technology

Student Giancarlos Llanos Romero will be joining the SBU team on a trip to Kenya this summer. Photo by Phoebe Fornof

By Daniel Dunaief

In a region known for the study of fossils left behind millions of years ago, a team of students from Stony Brook University’s College of Engineering and Applied Sciences is planning to travel to Kenya this summer to learn about and try to solve the challenges of today.

The university will send eight undergraduates to the Turkana Basin Institute for the engineering department’s first program in Kenya, which will run for over four weeks. In addition to classroom study, the students will seek opportunities to offer solutions to problems ranging from refrigeration, to energy production, to water purification.

The students learned about the opportunity in the spring, only a few months before they would travel to a country where the climate and standard of living for Kenyans present new challenges. “We were skeptical about how many students we would be able to get,” said Fotis Sotiropoulos, the dean of the College of Engineering and Applied Sciences, who “didn’t start marketing this” until after he took a trip to Kenya and the Turkana Basin Institute, which Stony Brook created at the direction of world-renowned anthropologist Richard Leakey.

Giancarlos Llanos Romero, who is interested in robotics and nanotechnology and is finishing his junior year, had originally planned to spend the summer seeking an internship in the Netherlands or Germany. When he learned about this opportunity, he immediately changed his focus. “I need to do this,” Romero said. “This is much more important than anything I could do in an internship.”

On first blush, the trip is anything but ideal for Romero, whose skin is sensitive to extreme heat, which he can expect to encounter in the sub-Saharan African country. He didn’t want that, however, to stop him and is planning to travel with seven other people he met for the first time last week. Romero said his immediate family, which is originally from Colombia, supported the trip.

Sotiropoulos, who is in his first year as dean, embraced the notion of connecting the engineering department with the Turkana Basin Institute. “Before I came here” said Sotiropoulos, “I felt very passionately about making sure that engineering students became familiar with the rest of the world” and that they understood global challenges, including issues like poverty and water scarcity.

Sotiropoulos met with TBI Director Lawrence Martin during one of his interviews prior to his arrival at SBU. Martin invited Sotiropoulos to visit with Richard Leakey, the founder of TBI whose family has been making scientific discoveries in Kenya for three generations.

Women and children in Kenya searching for, and drinking from, water found beneath the dry riverbed. Photo by Lynn Spinnato

This program quickly came together after those meetings. The two courses will teach students about design thinking, said Robert Kukta, the associate dean for undergraduate programs in the College of Engineering and Applied Sciences. Stony Brook would like to help students develop “the ability to think broadly about solutions and boil it down to the essence of the problem,” Kukta said. This, he said, will all occur in the context of a different culture and local resources.

Students will start their summer experience in Nairobi and then they will travel to Princeton University’s Mpala Research Centre, Martin said. “The journey through Kenyan towns opens visitors’ eyes tremendously to how different peoples’ lives are in different parts of the world,” Martin explained by email. “The goal is not so much to contribute immediately but to understand the challenges that people face, the resources available locally and then to improve their ability to think through possible solutions.”

Once students arrive at TBI, they will have an opportunity to see fossils from many time periods, including those from late Cretaceous dinosaurs. “Every visitor I have ever taken to TBI is amazed and in awe of the abundance of fossil evidence for past life on Earth,” Martin said.

A distinguished professor in the Department of Chemistry at SBU, Benjamin Hsiao, who traveled with Sotiropoulos to Kenya in the spring, is a co-founding director of Innovative Global Energy Solutions Center. Hsiao has been developing water filtration systems through IGESC, which brings together TBI with universities, industry, international governments and foundations. He is well acquainted with the challenges the first set of students will face.

“Once we bring technologies over to Kenya, [sometimes] they do not work for reasons we have not thought of,” which include dust or a broken part for which it’s difficult to find a replacement, he said. “Those failed experiments give us tremendous insight about how to design the next-generation systems which will be much more robust and sustainable and easier to operate by local people.”

Acacia Leakey, who grew up in Kenya and is Richard Leakey’s grandniece, recently completed her senior design project as an undergraduate at Stony Brook. Her work is intended to help farmers extend the life of their tomato plants when they bring them to market.

About 32 percent of the tomatoes go to waste from the extreme heat. Acacia and her team developed a vegetable cooler that employs solar panels to reduce the temperature from 32 degrees Celsius to 15 degrees Celsius, which should extend the life of the tomatoes. Her classmates were “surprisingly supportive” of her work, she said, as some of them hadn’t considered applying their skills in a developing country.

Leakey, who will train for her master’s degree at Stony Brook this fall, will continue to provide insights into Madagascar, another developing African nation where the university has an internationally acclaimed research center. This summer, she will produce a video that will record information from villages near Centre ValBio in Madagascar, which she will bring back to Stony Brook in the hopes of encouraging others to use that information to create their own design projects next year.

As for Romero, who is raising money for the trip through a GoFundMe page, he is prepared to discover opportunities amid the challenges of his upcoming trip and is eager “to be able to actually help a community and say I left a mark.”

Escobar-Hoyos, center, holds her recent award, with Kenneth Shroyer, the chairman of the Department of Pathology at Stony Brook on the left and Steven Leach, the director of the David M. Rubenstein Center for Pancreatic Cancer Research on the right. Photo by Cindy Leiton

By Daniel Dunaief

While winter storm Niko in February closed schools and businesses and brought considerable precipitation to the region, it also coincided with great news for Luisa Escobar-Hoyos, who earned her doctorate from Stony Brook University.

Escobar-Hoyos, who is a part-time research assistant professor in the Department of Pathology at Stony Brook University and a postdoctoral fellow at Memorial Sloan Kettering Cancer Center, received word that she was the sole researcher selected in the country to receive the prestigious $600,000 Pancreatic Cancer Action Network–American Association for Cancer Research Pathway to Leadership Award.

When she heard the news, Escobar-Hoyos said she was “filled with excitement.” After she spoke with her husband Nicolas Hernandez and her current mentor at MSKCC, Steven Leach, the director of the David M. Rubenstein Center for Pancreatic Cancer Research, she called her parents in her native Colombia.

Her mother, Luz Hoyos, understood her excitement not only as a parent but as a cancer researcher herself. “My interest in cancer research started because of my mom,” Escobar-Hoyos said. Observing her example and “the excitement and the impact she has on her students and young scientists working with her, I could see myself” following in her footsteps.

The researcher said her joy at winning the award has blended with “a sense of responsibility” to the growing community of patients and their families who have developed a deadly disease that is projected to become the second leading cause of cancer-related death by 2020, according to the Pancreatic Cancer Action Network, moving past colorectal cancer.

The Pancreatic Cancer Action Network has awarded $35 million in funding to 142 scientists across the country from 2003 to 2016, many of whom have continued to improve an understanding of this insidious form of cancer.

David Tuveson, the current director of the Cancer Center at Cold Spring Harbor Laboratory, received funds from PanCan to develop the first genetically engineered mouse model that mimics human disease. Jiyoung Ahn, the associate director of the NYU Cancer Institute, used the funds to discover that two species of oral bacteria are associated with an over 50 percent increased risk of pancreatic cancer.

Over the first decade since PanCan started awarding these grants, the recipients have been able to convert each dollar granted into $8.28 in further pancreatic cancer research funding.

In her research, Escobar-Hoyos suggests that alternative splicing, or splitting up messenger RNA at different locations to create different versions of the same protein, plays an important part in the start and progress of pancreatic cancer. “Her preliminary data suggest that alternative splicing could be associated with poorer survival and resistance to treatment,” Lynn Matrisian, the chief science officer at PanCan, explained in an email. “The completion of her project will enhance our understanding of this molecular modification and how it impacts pancreatic cancer cell growth, survival and the progression to more advanced stages of this disease.”

Escobar-Hoyos explained that she will evaluate how mutations in transcriptional regulators and mRNA splicing factors influence gene expression and alternative splicing of mRNAs to promote the disease and aggression of the most common form of pancreatic cancer. Later, she will evaluate how splicing regulators and alternatively spliced genes enriched in pancreatic ductal adenocarcinoma contribute to tumor maintenance and resistance to therapy.

Escobar-Hoyos will receive $75,000 in each of the first two years of the award to pay for a salary or a technician, during a mentored phase of the award. After those two years, she will receive $150,000 for three years, when PanCan expects her to be in an independent research position.

Escobar-Hoyos said her graduate research at Stony Brook focused on ways to understand the biological differences between patients diagnosed with the same cancer type. She helped discover the way a keratin protein called K17 entered the nucleus and brought another protein into the cytoplasm, making one type of tumor more aggressive.

While Escobar-Hoyos works full time at Memorial Sloan Kettering, she continues to play an active role in Kenneth Shroyer’s lab, where she conducted experiments for her doctorate. She is the co-director of the Pathology Translational Research Laboratory, leading studies that are focused on pancreatic cancer biomarkers. The chair in the Department of Pathology, Shroyer extended an offer for her to continue to address the research questions her work addressed after she started her postdoctoral fellowship.

“When you do research projects and you develop them from the beginning, they are like babies and you really want to see how they evolve,” Escobar-Hoyos said. Numerous projects are devoted to different aspects of K17, she said.

Shroyer said Escobar-Hoyos had already been the first author on two landmark studies related to the discovery and validation of K17 even before her work with pancreatic cancer. “She has also conducted highly significant new research” that she is currently developing “that I believe will transform the field of pancreatic cancer research,” Shroyer wrote in an email.

Shroyer hopes to recruit Escobar-Hoyos to return to Stony Brook when she completes her fellowship to a full-time position as a tenure track assistant professor. “Based on her achievements in basic research and her passion to translate her findings to improve the care of patients with pancreatic cancer, I have no doubt she is one of the most promising young pancreatic cancer research scientists of her generation,” he continued.

Yusuf Hannun, the director of the Stony Brook Cancer Center, said Escobar-Hoyos’s work provided a new and important angle with considerable promise in understanding pancreatic cancer. “She is a tremendous example of success for junior investigators,” Hannun wrote in an email.

Escobar-Hoyos said she is hoping, a year or two from now, to transition to becoming an independent scientist and principal investigator, ideally at an academic institution. “Because of my strong ties with Stony Brook and all the effort the institution is investing in pancreatic research” SBU is currently her first choice.

Escobar-Hoyos is pleased that she was able to give back to the Pancreatic Cancer Action Network when she and a team of other friends and family helped raise about $4,000 as a part of a PurpleStride 5K walk in Prospect Park earlier this month.“I was paying forward what this foundation has done for me in my career,” she said.

Matrisian said dedicated scientists offer hope to patients and their families. “Researchers like Escobar-Hoyos spark scientific breakthroughs that may create treatments and ultimately, improve the lives of patients,” she suggested.

James Riordan posing by a display of the Lunar Excursion Module used in Apollo 13. Photo from Jessica Frisina

By Rita J. Egan

When James Riordan, 82, died in 2016 after battling lung cancer, many would think his greatest contribution to the world was his involvement with the Apollo 13 space mission. But to his relatives, it was his sense of family and kindness that touched others most.

Inheriting his sense of generosity, the former Stony Brook resident’s family participated in the American Lung Association Fight for Air Climb April 1 for the second straight time, raising $1,512 for the cause in his memory. This year’s event included 600 participants climbing the 55 flights of stairs at One Penn Plaza, a New York City skyscraper, the equivalent of 1,210 steps.

Granddaughter Jessica Frisina, of Rocky Point, organized Team Apollo in honor of her fond memories of the aerospace engineer with the Northrop Grumman Corporation.

Jessica Frisina, on right, with her aunt Kathy Bern, stepfather Bob Riordan and stepbrother Matt, who started Team Apollo to raise funds for the American Lung Association in the memory of her grandfather James Riordan. Photo from the American Lung Association

“He was completely humble,” she said. “He was so willing to help anybody and everybody. He just wanted to lend a helping hand to anyone that was willing to take it — just a generous and kind person. He didn’t have a mean bone in his body.”

Riordan, who lived in Stony Brook with his wife Ruth since 1964, was an integral member of the Apollo 13 mission. Due to his work helping to direct the team on the construction of the Lunar Excursion Module and its safe return, he received the Presidential Medal of Freedom from President Richard Nixon in 1970 along with his fellow members of the Apollo 13 Mission Operations Team.

His son Bob Riordan, Frisina’s stepfather, said while growing up he and his siblings didn’t realize just how important their father’s job was. It wasn’t until they were going through their father’s books, or hearing from friends who worked at Grumman, that they realized just how much he had accomplished.

He said they were amazed that their father was in the control room during the Apollo 13 mission and treasure the book “Race to the Moon,” where James Riordan is pictured in a control room with astronaut Neil Armstrong.

“We can’t believe we had a father who did this for a living,” Bob Riordan said.

The son said he isn’t surprised his father didn’t talk much about his work though, because of his modesty.

“He never cared about keeping up with the Joneses,” he said. “All he ever cared about was his family.”

James Riordan suffered from chronic obstructive pulmonary disease, the early stages of emphysema, and about a year before his passing, he was diagnosed with stage 0 lung cancer. His son said his father smoked for decades, starting as a teenager.

Frisina said she got the idea to start the Fight for Air Climb team after her grandfather’s death, and Riordan said he wasn’t surprised.

“He was so willing to help anybody and everybody. He just wanted to lend a helping hand to anyone that was willing to take it — just a generous and kind person.”

—Jessica Frisina

“I was so proud of her for doing that, but that’s the kind of person Jessica is,” he said.

Frisina said while the Riordans are her stepfamily, she considers them family all the same. Riordan said his father and stepdaughter hit it off as soon as they met when she was 7 years old.

“They took a liking to each other the first day they met,” Riordan said. “I always felt kind of emotional when those two were together. He was the type of man that any children who came into his life just took to him — that’s just the type of guy he was.”

While joining the Fight for Air Climb was a last-minute decision in 2016, with only a few relatives being able to come out and cheer them on, this year she said almost a dozen family members came out to show support for her, Riordan, her stepbrother Matt Riordan and her aunt Kathy Bern, who traveled from North Carolina.

Frisina said she looks forward to participating in the event again next year and knows participation from the family will only continue to grow.

Her uncle Jim Riordan was on hand this year to show support. He said Frisina always had a great appreciation for his father.

“She is by every definition a grandchild in this family,” he said.

Bob Riordan said he was in better shape for this year’s event after finding out how difficult the climb was last year.

“The first time I did it, I thought I was going to join my father,” Riordan joked.

Frisina said climbing the 55 flights of stairs is supposed to simulate how it feels to have a lung ailment, and once you pass flight 10, it becomes more and more difficult to breathe.

“It initially feels amazing to complete something like that,” Frisina said. “But in reality, it makes you think as you’re doing it. [My grandfather] had to deal with this every day — feeling like this and overcoming walking and not being able to breathe. It makes you put yourself in somebody else’s shoes who’s dealing with it.”

By Elof Axel Carlson

On March 20, 1997, I was happy to see my first Life Lines column in the Arts and Lifestyles section of publisher Leah Dunaief’s North Shore newspapers. Since then more than 400 Life Line columns have appeared for which I am grateful.

It has been my good fortune, since I was a teenager, to be a storyteller. I learned that the best way to understand something is to tell it out loud like a story. It worked in high school and it has been an asset in my teaching whether at the graduate level or for courses on science for nonmajors.

This column has been my connection to a largely unknown audience. When I was teaching at Stony Brook University, I regularly ran into strangers at the supermarket who would give me feedback. I learned from Editor Heidi Sutton that the online version of the TBR newspaper site has a substantial number of readers of this column.

To celebrate this anniversary, I will share with you the story of the newest field of the life sciences, synthetic genomics. A team of scientists led by Jef Boeke at NYU published an article in Science describing their success in making synthetic chromosomes for yeast cells. Yeast has 16 chromosomes and 6,275 genes. Those 16 chromosomes also contain 12,156,677 base pairs that make up its DNA.

The DNA sequence was worked out in 1996 so that knowledge goes back to the time I was writing the first batch of articles for this column. The NYU study has synthesized five of the 16 chromosomes and tested them in yeast cells to show that they function. They removed nonfunctional genes and inserted components that do not play a role in gene function or metabolism.

They also have created a 17th chromosome that contains a set of genetic tools. These include genes that repair mutations, genes that shuffle genes more effectively to speed up new mutation production when a desired type is sought, and genes that make new products or boost their production. Different strains of yeast cells make bread, beer and wine.

Boeke’s team hopes to complete the remaining chromosomes this year. For their long-range plans they hope the synthetic yeasts they make will produce antibiotics, vitamins, painkillers, hormones and other biological products for the pharmaceutical industry. They hope their synthetic yeasts will have a wide range of uses in making breads fortified with vitamins and proteins.

Think of having synthetic yeast-made varieties of food on a space journey to Mars where opportunities to grow plants are limited for a journey that might take months or years. They are following federal regulations to make sure their yeast is safe and they do not plan on making new species or new forms of life. But all new inventions of science lead to new outlets; so I will not be surprised years from now to see artificial life-forms made to do useful things like digesting industrial wastes and degrading them to harmless components.

Imagine if you could engineer a yeast cell to concentrate the gold from ocean water. Imagine a synthetic yeast that could pull the carbon dioxide from the air and turn it into gasoline or coal so that carbon dioxide levels are actually lowered while carbon-based fuels are made without mining for them.

I have never been a practical person and such applications, while easy for me to imagine, are not as satisfying as the knowledge that synthetic genomics can provide. Synthesizing the 16 chromosomes from off-the-shelf chemicals and forcing yeast cell cytoplasm to accept an artificial nucleus is not the same to me as finding out what that cytoplasmic material does and how it works.

Is it, as one geneticist remarked, a “playground for the genes?” Or will it turn out to house something so new to our field of biology that we can’t even imagine its components and functions? Will this too be synthesized once it is successfully tackled by a future generation of scientists?

I am not worried about applications to germ warfare. Most military planners know that germ warfare is a risky way to wage it because it is not easy to immunize your own nation’s citizens before you manufacture and launch new germ warfare agents against an enemy. There is also the war crimes risk for those involved if they are on the losing side of the war.

I am also not worried about runaway contagions as unexpected consequences of scientific studies. I strongly believe government regulations are essential to protect the public’s health and the NYU team is rigidly following those guidelines.

I celebrate this accomplishment because it is opening up a new field of science and some of the persons learning about this might be among the first to apply that new scientific knowledge to medicine, industry and our ever-changing conception of life and our stewardship for fostering it.

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

Ride For Life presents CSHL with $300,000 for ALS research: from left, CSHL Director of Annual Giving and Donor Relations Karen Orzel, CSHL Assistant Professor Molly Hammell, Ride for Life Founder Chris Pendergast, Stony Brook Associate Professor Josh Dubnau and Ride for Life board member Frank Verdone. Photo by Jessa Giordano, Cold Spring Harbor Laboratory

By Daniel Dunaief

The past can come back to haunt us, even in the world of genetics. Over the course of millions of years, plants and animals have battled against viruses, some of which inserted their genes into the host. Through those genetic struggles, explained Molly Hammell, an assistant professor at Cold Spring Harbor Laboratory, cells develop “elaborate ways to fight back,” even as they continue to make copies of these pieces of DNA.

Sometimes, when our defenses break down, these retrotransposons, or jumping genes, can become active again. Indeed, that appears to be the case in a fly model of amyotrophic lateral sclerosis, also known as ALS or Lou Gehrig’s disease.

Working on a fruit fly model of ALS, Joshua Dubnau, an associate professor at Stony Brook University, Lisa Krug, who earned her doctorate at Cold Spring Harbor Laboratory and is now working at Kallyope in New York, and Hammell showed that these ancient genetic invaders play an important role in the disease amid activation by a protein often linked to ALS called TDP-43.

A recent study, published in PLOS Genetics, “really proves that retroviral reactivation (as a consequence of TDP-activity) is … central to either causing or accelerating neuronal cell death when TDP-43 inclusions are present,” explained Hammell in an email. If TDP-43 plays the same role for humans, this would suggest that targeting this protein or the jumping genes, it activates could lead to potential treatment for ALS.

These collaborators showed that an aggregation of this protein turned on jumping genes. These genes can make copies of themselves and insert themselves in other parts of the genetic code. In this case, TDP-43 expression disrupts the normal immune-like system that silences retrotransposons such as gypsy, which is a particular type of jumping gene in the fruit fly.

When gypsy was activated, the fruit fly exhibited many of the features of ALS, including protein pathology, problems with movement, shortened life span and cell death or glia and neurons in the brain. The scientists were also able to turn gypsy off, which improved the health and extended the life span of the fly.

Mimicking this protein results in broad activation of several retrotransposons. If this also occurs in people, the disease may activate a retrotransposon that is the human analog to gypsy, called HERV-K, as well as other retrotransposons. The study also suggests that DNA damage caused by retrotransposons may active a cell suicide mechanism. Finally, this effort showed a means by which the protein disrupts the normal immune surveillance that keeps retrotransposons quiet.

To be sure, Dubnau cautioned that animal models of a disease may not translate when returning to people. Researchers need to look at more patients at all the retrotransposons in the human genome to monitor its prevalence, Dubnau suggested. If the link between retrotransposon activation and the development of ALS is as evident in humans as it is in the fruit fly, scientists may take an approach similar to that which they took to battle the human immuno-deficiency virus, or HIV. Retrotransposons have an RNA genome that needs to be copied to DNA. This, Dubnau explained, is the step in the process where researchers attacked the virus.

In a small subset of HIV patients who have motor neuron symptoms that are similar to ALS, Avi Nath, a senior investigator at the National Institutes of Health discovered that treating patients with the typical HIV medication cocktail helped relieve their ALS symptoms as well.

“What is not known is whether, for some reason, this subset of patients had an ALS syndrome caused by HIV or they were curing them” by treating HIV, Dubnau said. Nath is currently involved in one of two clinical trials to see if HIV medications help ALS patients. The next step for Dubnau and Hammell is to screen the tissue of numerous ALS patients after their death to see if their retrotransposons were elevated.

In addition to NIH funding, the scientists received financial support from Ride for Life, which is a not-for-profit organization started in 1997 that raises funds for research to find a cure for ALS, supports patients and their families through patient services and raises awareness of ALS. Every May, Ride for Life conducts a 12-day, 100-mile patient wheelchair ride across Long Island. Dubnau and Hammell, who received a $300,000 grant from Ride for Life in 2015, said they have been inspired by Ride for Life founder Chris Pendergast.

Meeting Pendergast “has had a big impact,” Dubnau said. “He’s a force of nature. He’s an incredibly strong and intelligent person.” Receiving funds from Ride for Life created a sense of personal obligation to Pendergast and many other people who “had raised that money through sweat and effort.”

Without funding from the Ride for Life Foundation, “We would not have the resources to obtain these samples and do the sequencing experiments necessary to prove that this is a clinically relevant phenomenon in a large number of ALS patients,” Hammell said.

Through an email, Pendergast explained that Ride for Life chose to fund the work by Dubnau and Hammell because the research met several criteria, including that it might lead to new strategies to treat ALS and the research was on Long Island, which is a “powerful affirmation for our generous donors.”

Pendergast emphasized the importance of funding basic ALS research. “We need to know why it develops, how it progresses [and] how it can be diagnosed and monitored,” he urged.

A resident of Huntington, Dubnau and his wife Nicole Maher, who works at the Nature Conservancy as a climate scientist, have a nine-year-old daughter, Caitlin. Reflecting both of her parents’ professional interests, Caitlin is going to a statewide science fair, where she is presenting her work on how temperature affects the life span of insects.

As for his research, Dubnau hopes a further exploration of TDP-43 might reveal an important step in the progression of ALS. He hopes this discovery may suggest a strategy researchers and clinicians can take that might “stop the cascade of events” in ALS.

Percy Zahl. Photo courtesy of BNL

By Daniel Dunaief

When he was in high school in Negenborn, Germany, Percy Zahl built his own computer, with some help from one of his father’s friends. Nowadays, Zahl spends considerable time improving the computer capability of an open-source community drive software project that helps researchers see structures and interactions at a subatomic level.

Recently, Zahl, who is an associate scientist in the Proximal Probe Microscopy facility at the Center for Functional Nanomaterials at Brookhaven National Laboratory, completed an extensive upgrade to software called Gnome X Scanning Microscopy, or GXSM, that adds a whole suite of new features. Zahl re-coded about half of the original 300,000 lines of code during this project.

The software, which is used to operate any kind of scanning probe microscopy system which includes atomic force microscopy and scanning tunneling microscopy, has a wide range of applications, from understanding catalysts that facilitate chemical reactions, to capturing gases, to biomedical sensors.

Oliver Monti, a professor of chemistry and biochemistry and a professor of physics at the University of Arizona, has been working with Zahl for over four years and has been using this system to explore atomic and molecular-scale processes that determine efficiency in plastic solar cells and other next-generation low-energy-use technologies. He said he uses the GXSM for data analysis.

Zahl “often introduces modifications and upgrades as instantaneous response to some scientific need,” which has “helped us solve specific problems efficiently,” Monti explained in an email. A former student of Monti’s needed to analyze molecule-to-molecule interactions. The two came up with an algorithm to study that and, unprompted, Zahl “introduced a version of this algorithm to his software.”

Percy Zahl (front of line) during a Tour of Somerville race in 2011. Photo by Anthony Skorochod.

Monti said he is “very much aware of the most recent release,” which he considers a “major upgrade” and he is in the process of installing it. The new software allows the export of images in formats such as PDF and SVG, which are editable and resolution independent, Zahl explained. A PDF output of a graph has publication quality, while the images with high-resolution displays are enhanced and sharper than the previous bitmap PNG files.

The upgrade also includes making a remote control process for automating scanning and manipulation tasks “easy to use,” which is a “big plus for less experienced users,” Zahl explained. It can help automate complex or tedious repetitive jobs. As an example, Zahl said the need to scan an image that takes 10 minutes each for 20 different settings creates a laborious task. “I can either sit there and enter manually a new number every 10 minutes” or he can program a script that he made to use a list of bias voltages and hit execute in the new remote console, he explained, leaving him time to work on other projects for the next two hours and 20 minutes.

Recently, Zahl ran a spectra covering the area of a molecule, which is a task he can do reliably without worrying about user typos or errors. An additional noncontact atomic force microscopy simulation plug-in module provides researchers with a more efficient way to generate data. The new approach measures the force between atoms and molecules of the surface of a sample and a probe smaller than the diameter of an atom. Zahl has calculated and simulated forces between atoms, taking into account all atoms of a molecule and the probe atom and finds the equilibrium position of his probe. Using that three-dimensional force field, he can extract an image that he compares to the model.

Zahl spends about three quarters of his time working with users like Monti, while he dedicates the remaining time to his own projects. He appreciates the opportunity to work with many different systems and with people in a wide range of scientific disciplines.

“It’s really as diverse as it can get in this particular field of fundamental surface science — a specialty of solid state physics,” Zahl explained in an email. He has the experience to work with many different sample types while still continuing to learn “all the tricks on how to get the best images possible.”

Monti appreciates Zahl’s dedication to his work. “Data processing and analysis can be challenging,” he explained. His students often compare a trip to BNL to drinking from a firehose.

Zahl has been “essential in helping us figure out how to sift through the data and quickly focus on the most important observations,” Monti added. That appreciation extends well beyond Monti’s lab. “Whenever I meet colleagues across the world who had the pleasure to interact with [Zahl], they lavish praise on his scientific and technical expertise,” Monti said.

Bruce Koel, a professor in the Department of Chemical and Biological Engineering at Princeton University, appreciated Zahl’s contribution to his research on chemical reactions at surfaces. Zahl has “enabled us to do very high impact research,” Koel explained in an email. This work would “not have been possible without [Zahl’s] technical support and guidance about what experiments could be done.”

A resident of Rocky Point, Zahl rides the 20 miles to work as often as he can on one of several of his bicycles. An avid cyclist, Zahl has a high-end racing bike, a commuter bike and a mountain bike from those “beloved times” riding mountain trails in Switzerland.

In Chile, he reached a top speed of around 56 miles per hour descending the Osorno Volcano. In a YouTube video of his ride, he can be seen passing a car in a clearing along the windy road.

As for his work, Zahl remains committed to continuing to improve the software scientists use to enhance their visual understanding of the small surfaces of the substances they study. “I am pretty much always working on some new details or fixing this and that tiny issue,” he said. “No software is ever done. It’s evolving.”

At the first meeting of the HiTOP consortium. Kotov is in the center. Photo from HiTOP consortium.

By Daniel Dunaief

Instead of lamenting the shortcomings of a system they felt didn’t work as well as it should, Roman Kotov and a growing group of collaborators whose numbers now exceed 50 decided to do something about it. An associate professor of psychiatry at Stony Brook University, Kotov and his collaborators are building their own mental health tool, which, they hope, will offer specific diagnoses for everything from anxiety to schizophrenia.

Roman Kotov. Photo from SBU School of Medicine

The current resource psychologists and psychiatrists use is called the “Diagnostic and Statistical Manual of Mental Disorders 5,” which came out in 2013. The latest version of the DSM, as the manual that offers psychologists and psychiatrists a way to link a collection of symptoms to a diagnosis is called, “felt far too limited,” Kotov said. “Once we started discussing [an alternative], almost everyone was interested in the scientific community. They thought it was a good and necessary idea.”

Called the Hierarchical Taxonomy of Psychopathology, or HiTOP, the developing classification system uses scientific evidence, illness symptoms and impaired functioning in its diagnoses. Another HiTOP co-creator, David Watson, the Andrew J. McKenna Family professor of psychology at the University of Notre Dame, recognized Kotov’s important early work on the project.

Kotov “deserves sole credit for the idea of putting all of our data together to provide the basis for an alternative model,” Watson explained in an email. “He did some preliminary work along these lines, which convinced us that this was a great idea that was worth pursuing.” Watson, who served as Kotov’s graduate adviser at the University of Iowa, said that his former student leads meetings and conference calls for the HiTOP group.

The HiTOP system, which was recently described in the Journal of Abnormal Psychology, views mental disorders along a spectra, while also using empirical evidence to understand overlap among disorders and classify different symptoms within a given diagnosis. As an example, Kotov said that depression in the DSM is “treated as one thing. We know that depression is heterogeneous.”

Indeed, some people with depression may have lost their appetite and have trouble sleeping, while others may be eating and sleeping considerably more than they would if they weren’t depressed. “In some ways, these are opposite presentations, yet they get the same diagnosis” in the DSM, Kotov said.

HiTOP unpacks this variability into seven dimensions, which describe symptom types. That is helpful not only for a diagnosis but also for a treatment. HiTOP also goes beyond the binary description of the presence or absence of a particular symptom, offering clinicians a way of indicating the severity of a problem. At this point, HiTOP is a developing prototype and not a completed diagnostic tool. The scientists developing this tool have made inroads in four primary areas: anxiety and depression, substance use problems, personality problems and psychotic disorders.

“The HiTOP system currently is incomplete, as it primarily focuses on more common and widely studied forms of psychopathology,” Watson suggested, “but mental health professionals certainly could use it to assess/ diagnose a broad range of conditions.” Mental health professionals can view this new resource at the website https://medicine.stonybrookmedicine.edu/HITOP.

Kotov hopes this new paradigm will “focus on science and do everything we can to keep unpolitical, nonscientific considerations out of it,” he said. “We hope that it provides the most up-to-date alternative” to the DSM. The HiTOP approach, Kotov said, relies more heavily on scientific evidence, which can include genetic vulnerabilities, environmental risk factors and neurobiological abnormalities.

Kotov, who is working on several projects, said HiTOP takes about a quarter of his time. He is also involved with a long-term study of schizophrenia and bipolar disorders, which was started in the early 1990s, before he arrived at Stony Brook in 2006.

Kotov is following up on this cohort, looking at outcomes for treatment and analyzing risk factors and processes that determine the course of an illness. He is also leading a study on first responders to the 9-11 attack on the World Trade Center, which is exploring the physical and emotional consequences of participating in the response to the unprecedented attack.

Kotov and his collaborators are investigating the health of responders in their daily life using mobile technology. They are also studying how personalities affect their health, which may soon help guide personalized treatment.

Another project involves the study of children who are 14 to 17 years old and explores the emotional growth and personality development. This study includes reports, surveys and interviews. During those years, “much happens as far as personality development,” Kotov said.

Colleagues at Stony Brook praised Kotov’s scientific contributions. Kotov is a “rising star” and is “perhaps best known for his work on the role of personality in psychopathology and, increasingly, for work on classification of psychiatric disorders,” Daniel Klein, a distinguished professor in the Department of Psychology at Stony Brook, wrote in an email.

A resident of Port Jefferson, Kotov lives with his wife Tatiana, who is a controller for a small company in Manhattan. The couple has two young daughters. Kotov grew up in Russia in a small town near Moscow. He was always interested in science and developed a particular curiosity about psychology when a high school psychology teacher sparked his interest when he was 15.

As for the HiTOP effort, Kotov is convinced this endeavor will offer the mental health community a valuable tool. “We believe that describing patients more accurately, precisely and reliably will help provide better and more personalized care,” he said.

Jun Wang in her laboratory with a transmission x-ray microscope. Photo from BNL

By Daniel Dunaief

The first time is most definitely not the charm. That’s what Jun Wang and her colleagues at Brookhaven National Laboratory discovered about sodium ion batteries.

Wang, a physicist and lead scientist at the facility, looked deep into the inner workings of a sodium ion battery to determine what causes structural defects as the battery functions. As it turns out, the first time a sodium ion battery charges and discharges, it develops changes in the microstructure and chemical composition of iron sulfide. These changes, which degrade the performance of the battery, are irreversible during the first charging cycle.

“We found that the cracks happened during the first cycle, then, after that, the structure kind of reached equilibrium,” said Wang, who published her research in the journal Advanced Energy Materials. “All these changes happen during the first cycle.”

Collaborators from Brookhaven’s Photon Sciences and Sustainable Energy Technologies groups stand behind the new transmission x-ray microscope (TXM) at BNL’s National Synchrotron Light Source. From left: Yu-chen Karen Chen-Wiegart, Can Erdonmez, Jun Wang (team leader), and Christopher Eng. Photo from BNL

Sodium ion batteries are considered an alternative to lithium ion batteries, which are typically found in most consumer electronics. Like lithium, sodium is an alkali metal, which means that it is in the same group in the periodic table. Sodium, however, is more abundant and, as a result, considerably less expensive than lithium.

Using a synchrotron-based hard X-ray full-field microscope, Wang was able to see what happened when sodium ions moved into and out of an iron sulfide electrode through 10 cycles. “We can see this microstructure evolution,” she said.

Wang monitored the evolution as a function of time while the battery is charging and discharging. The results are the first time anyone has studied a sodium-metal sulfide battery with these tools, which provides information that isn’t available through other methods. “It is challenging to prepare a working sodium ion battery for the in operandi/in situ TXM study to correlate the microstructural evolution with its electrochemical performance,” she said.

Other researchers suggested that Wang has developed a following in the scientific community for her ground-breaking research. “She has a very good reputation in the area of X-ray nanotomography, applied to a wide range of different materials,” Scott Barnett, a professor of materials science and engineering at Northwestern University, explained in an email. “I am most familiar with her work on fuel cell and battery electrodes — I think it is fair to say that this work has been some of the best pioneering research in this area,” he said.

Barnett, who started collaborating with Wang in 2010 on measuring fuel cell and battery electrodes with X-ray tomography, suggested that Wang’s work on capacity loss “could certainly lead to new breakthroughs in improved batteries.”

In her most recent work with sodium ion batteries, Wang found that the defects start at the surface of the iron sulfide particles and move inward toward the core, Wang said. The microstructure changes during the first cycle and is more severe during sodiation. The particles don’t return to their original volume and shape. After the first cycle, the particles reach a structural equilibrium with no further significant morphological changes, she said.

In other cycles, the material does not show further significant morphological changes, reach a structural equilibrium and electrochemical reversibility. Wang and her colleagues confirmed these observations with X-ray nanotomography, which creates a three-dimensional image of the battery material while recording the change in volume.

Wang suggested that a way to reduce these structural defects could be to reduce the size of the iron sulfide particles to create a one-phase reaction. She will work with other collaborators on modeling and simulations that will enhance the design of future battery materials.

In addition to conducting research on batteries, Wang is an industrial program coordinator in the Photon Science Directorate at BNL. She works with industrial researchers and beamline staff to find and explore new opportunities in industrial applications using synchrotron radiation. She leads the industrial research program, interacting with user groups through consultation, collaboration and outreach.

To manage her research, which includes a lab of three other researchers, and to accomplish her mission as manager of an industrial research program, Wang jokes that she “spends 100 percent of her time” with each responsibility. “I try to do my best for the different things” she needs to do with her time, she said.

Jun Wang with her husband Qun Shen and their 11-year old son Sam in Waikiki last year. Photo from Jun Wang

A native of Wuhu, China, Wang earned her bachelor’s degree in physics from Anhui University in China and her doctorate in physics from the Chinese Academy of Sciences in Beijing. She worked at the Beijing Synchrotron Radiation Facility, which was the first synchrotron light source in China. During her doctoral training, she studied multilayer films using X-ray diffraction and scattering.

A resident of Poquott, Wang is married to Qun Shen, who is the deputy director for science at the NSLS-II. The couple has an 11-year-old son, Sam, who is a sixth-grade student at Setauket Elementary School. Shen and Wang met at an international X-ray crystallography conference in the early 1990s.

Shen trained in the United States after he graduated from Beijing University in 1980, when he went to Purdue University for his doctorate through the China-US Physica Examination and Application Program. The couple have worked together a few times over the years, including publishing a paper in Nature Communications. Wang is hoping that her work with battery research will lead to improvements in the manufacture and design of sodium ion batteries.

Members of the Rocky Point robotics team GearHeadz, Clayton Mackay, Rex Alex, Jade Pinkenburg, Julius Condemi and Jen Bradley with their first completed FRC robot at the North Shore Youth Council. Photo from Chris Pinkenburg

After building a robot for six weeks, all the GearHeadz wanted to do was sleep.

The Rocky Point-based robotics team had finished building its first machine used to compete in the FIRST Robotics Competition, and the teammates admit moving up from the FIRST Tech Challenge league was more work than even they imagined, but the team is ready for competition.

“Looking at the FTC robots we built compared to the FRC robot, it’s not even close to being the same,” said programmer Jade Pinkenburg, a junior at Rocky Point High School. “The only similarity is the aluminum plate base. Everything else we had to learn ourselves. It was complicated, but really enjoyable learning all the new elements.”

“It’s really professional-grade robotics. The control modules and modems — it’s not toys anymore.”

—Chris Pinkenburg

His father, Chris Pinkenburg, the team’s coach, said he’s thrilled to compete at Hofstra University March 31 after 42 days of hard work learning and building from 6 to 8 p.m. on weekdays and 3 to 7 p.m. on weekends — especially because the league change has been six years in the making.

“It’s been an interesting road so far,” he said. “We were a small team with a lot to do. It was six long weeks, but I’m really proud of the kids. They really pulled their weight and everybody contributed. It was a great experience, and the kids learned a lot.”

Upon receiving the kit with materials weeks ago from FIRST, or For Inspiration and Recognition of Science and Technology, an international robotics competition sanctioning body, the head coach said it was like Christmas, looking at all of the new material they were to use for their machine. But the team quickly realized that a lot of ingenuity and creativity was going to be needed to build a robot from all of the foreign parts it began to categorize.

The three challenges this year, with the theme of steamworks, are to collect fuel represented by green balls and use pressure to propel them to a target, retrieve and deliver gears to a rotor, and climb a rope.

The team prioritized their focus based on difficulty and point value.

“At first we thought we knew what we were doing, but it turns out we had no idea what we were doing,” Jade Pinkenburg said laughing. He explained how he and his teammates had to put in a lot of time teaching themselves a new code language and how to use the parts to design the robot to do what they wanted it to. “It was six weeks of day after day designing, building and coding, plus homework, so it was a lot of work, but we prioritized to get it done. I’m proud of what we’ve done as a team.”

He said he was also inspired by the challenges brought on by the new league.

Other members of the Rocky Point GearHeadz Alek Zahradka, Travis Ferrie and Julia Jacobellis. Photos from Chris Pinkenburg

“There’s more stuff to do and things that are interesting and applicable to the real world,” he said. “It builds on concepts we learn in school in physics and seeing how it works in the real world is interesting.”

Scoring a 1570 out of 1600 on the SATs and a perfect 36 on the ACTs, it’s no wonder he was able to combat the problems the team continued to face. But to the student, it’s all about staying interested and motivated.

“My quick learning helped, but it’s more about the motivation,” Pinkenburg said. “If you want to be successful, you can be.”

His teammate Jen Bradley, a sophomore, said the six weeks to build the 120-pound robot were intense, but a great experience.

“I think it’s good to have a general knowledge of simple machines, basic physics and mathematics and programming because in this day and age everything is becoming modernized,” she said. “Having this knowledge will help up, but it’s also just interesting and it’s fun for us.”

The GearHeadz continued to solve problem after problem. First, Rocky Point sophomore Alek Zahradka and junior Travis Ferrie got to work building the robot and its attachments. Unlike in the FIRST LEGO league, FLL, another league the team took part in last year, where you can only use parts made by Lego, in FRC you can use any part that’s available to the public as long as it’s not dangerous, which Bradley said made the process more exciting.

The team used rubber surgical tubes to sling around an axel and pull balls into the shooter. Two wheels accelerate the balls toward the target. It will be 10 feet high, and although Chris Pinkenburg said it is unclear if they can reach the mark, building the robot in a space in Yaphank and testing it inside the basement of the North Shore Public Library, he’s confident in his team’s capabilities.

“We can hit the ceiling in the library in the meantime,” he said, laughing.

“I say it’s the hardest fun you’ll ever have…We’re not engineers, but we built something.”

—Jade Pinkenburg

Rocky Point freshman Julius Condemi then worked on getting the gears moving. With 1 minute, 45 seconds to complete the tasks, Pinkenburg said he was impressed seeing his team member placing five or six gears on the peg.

“Julius must play a lot of video games, which helps,” he said. “He’s a great driver, and the robot is very agile. In the end we managed to hang the gears and climb the rope.”

The robot is now sealed in a bag inside Pinkenburg’s living room, but the GearHeadz are allowed to continue working on the attachments. The coach said it couldn’t have been made possible without the support of the community. Most team meetings were held at the North Shore Youth Council but also the Rocky Point VFW, Rocky Point Civic Association and local residents offered assistance. He said with the help and his team’s dedication, the rookie robot is comparable to many others in the league — even with eight members, compared to other teams like Longwood, that has 60 kids on the team. Rocky Point senior Clayton Mackay and freshmen Rex Alex and Julia Jacobellis round out the roster.

“The kids really focused, worked well under pressure and got the job done,” the coach said. “It’s really professional-grade robotics. The control modules and modems — it’s not toys anymore. This stuff is used in the industry to build robots. It’s on another level.”

His son said he can’t wait to show off what the GearHeadz have produced at the competition.

“It’s been an incredible experience unlike anything I’ve ever done before,” he said. “I say it’s the hardest fun you’ll ever have, and it’ll be cool to show what we’ve done in front of such a large audience. It’s crazy to see a bunch of teenagers with free time on the weekends building an inspiring and massive robot. We’re not engineers, but we built something.”

North Atlantic Industries in Bohemia and a Rookie grant from the Argosy Foundation made the team’s competition this season possible. For more information about the team, to join or to donate, visit the team’s website at www.rockypointroboticsclub.com.

'A trip to the American Museum of Natural History was my idea of being in heaven.' - Elof Carlson

By Elof Axel Carlson

The life sciences are vast in the number of specialties that exist for those pursuing a career as a biologist. A majority of college biology majors are premedical or seek some sort of health-related field. As much as possible they hope the biology they learn will find its way into the health field they seek to enter. Persons who want to be scholars in biology are often motivated by a desire to know as much about life as they can. I was one of those from early childhood when a trip to the American Museum of Natural History was my idea of being in heaven.

Elof Axel Carlson

I loved learning about evolution and the diversity of life. I knew I wanted to be a geneticist when I was in ninth grade and learned about Paul Müller’s Nobel Prize work on inducing mutations. Like a duckling, I felt imprinted and wanted to work with Müller someday.

Graduate work was different. As a teaching assistant I got to see about 90 different specimens each week for the various organ systems displayed by students. Unlike the textbook perfect illustrations, veins and arteries could be slightly off in the specimens I looked at. Their colors differed. Their texture differed.

I also learned how much we didn’t know about life. For my specialty of genetics (with Müller, as I had hoped) I felt steeped in experimental design, techniques and ways of thinking. Doing a Ph.D. allowed me to examine a gene using the tools of X-raying to produce mutations of a particular gene and subtle genetic design to combine pieces of a gene — taking it apart and combining pieces that were slightly different. It gave me an insight into that gene (dumpy, in fruit flies) that for a short time (until I published my work) I was the only person in the world that knew its structure.

In my career I have taught biology for majors, biology for nonscience majors, genetics, human genetics and the history of genetics. I have taught lower division and upper division courses, graduate courses and first-year medical classes. I learned that sharing new knowledge with students excited their imaginations. I learned that the human disorders I discussed led to office visits; and if I didn’t know the information they sought, I went with them to the medical library and we looked up articles in the Index Medicus and discussed their significance.

Often that student was married and had a child with a birth defect (born without a thyroid, having a family trait that might appear like cystic fibrosis). I would prepare a genetic pedigree and give it to the student to stick in a family bible for future generations to read. I also delighted in going to meetings to discuss genetics with colleagues whose work I had read.

I was pleased that I shared a body plan with other mammals. I liked comparative anatomy, which taught me how other body plans work (mollusks, arthropods, worms, coelenterates, echinoderms). As a graduate student taking a vertebrate biology course, I went into a cave and plucked hibernating bats from a ceiling.

The world under a microscope is very different. To see amoebas, ciliated protozoans, rotifers and other organisms invisible to the naked eye or as mere dust-like specks is a thrill. I can go back in time and imagine myself as a toddler, a newborn, an embryo in my mother’s uterus or an implanting blastocyst rolling out of her fallopian tube. I can imagine myself as a zygote, beginning my journey as a one-celled potential organism typing this article into a computer. I can go back in time to my prehistoric ancestors and trace my evolution back to the first cellular organism (bacteria-like) more than 3 billion years ago.

I learned, too, that I contain multitudes of ancestors who gave me one or more of their genes for the 20,000 I got from my father’s sperm and the matching 20,000 genes in my mother’s egg nucleus. I contain some 37 trillion (that is, 37,000,000,000,000) cells or 2 to the 45th power, which means some 45 mitotic cell divisions since I was a zygote. I know that the warmth of my body is largely a product of the mitochondrial organelles in my cells that using the oxygen from the air I breathe and converting small molecules of digested food to provide energy that runs the metabolism of my body and disposes carbon dioxide that eventually is expelled from my lungs. This knowledge makes me aware of my vulnerability at the cellular level, the chromosome level and the genetic level of my DNA to the agents around me that can lead to birth defects cancers, and a premature aging.

Knowing my biology allows me to know my risks as well as new ways to celebrate my life.

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.