Tags Posts tagged with "Daniel Dunaief"

Daniel Dunaief

Stony Brook University: Entrance sign

By Daniel Dunaief

In anticipation of a nor’easter on Tuesday, Feb, 13 that has triggered a National Weather Service Winter Storm Warning, Stony Brook University announced that it was canceling classes and events scheduled for Tuesday.

The canceled classes and events apply to the Stony Brook main campus, SB Southampton and SB Manhattan campuses and includes the School of Medicine, School of Nursing, School of Health Professions, School of Social Welfare, and the Dental School.

In a note from Jason Casale, Director of Emergency Management, Stony Brook urged students with clinical obligations to make every effort to attend rotations and contact their clinical coordinators with questions or concerns.

During emergencies, non-essential employees can request supervisory approval to charge their accruals when offices are open, according to the campus e-mail blast. Essential employees have to report to work according to their scheduled hours.

University Hospital and the Long Island State Veterans Home employees are considered “essential” and are expected to work according to their regular schedule.

Brookhaven National Laboratory is also closed to everyone but essential personnel from 6 a.m. Tuesday to 6 a.m. Wednesday.

Cold Spring Harbor Laboratory, meanwhile, announced it is closing on Tuesday until 5 pm.

As of Monday evening, the National Weather Service issued a winter storm warning, predicting Suffolk County could receive snow accumulations of 5 inches to 10 inches and wind gusts of 40 miles per hour.

Katie Engel submitted a video of her spinning on the ice to demonstrate the work of Emmy Noether.

*This article was updated  Feb. 13 to reflect a change in the Jocelyn Bell Burnell lecture from Feb. 13 to Feb. 14 due to the weather.

By Daniel Dunaief

And the winner is … women in science! 

While Stony Brook University’s Institute for Advanced Computational Science (IACS) announced the winners of its inaugural challenge to celebrate the scientific and engineering achievement of women on Feb. 7, the organizers and participants feel like they’ve already come out ahead.

The inaugural competition, which 195 students kindergarten through 12th grade in schools on Long Island entered by submitting a one-minute video, included prizes for the 13 finalists. The winner received $1,000 prize, the runner up got $750 and the third-place finisher collected $500.

Marivi Fernández-Serra

“The goal of it was to celebrate the International Day of Women and Girls in Science, while simultaneously promoting the important role that women had in science in the last century,” explained Marivi Fernández-Serra, Professor in the Physics and Astronomy Department and at the Institute for Advanced Computational Science.

In their videos, the students selected one of nine scientists that included experiments showcasing the work of these researchers by using computers or household products to demonstrate the search for dark matter, explore the laws of conservation, create homemade telescopes, simulate a volcano with lava and many more.

Fernández-Serra, who had helped with a similar effort at the Institute for Theoretical Physics in Madrid, Spain, brought the idea for the competition to Mónica Bugallo, Professor of Electrical and Computer Engineering, Vice Provost for Faculty Affairs and Diversity, Equity and Inclusion and affiliated member of the IACS  Faculty Director of the Women in Science and Engineering Honors Program, who immediately supported it.

Fernández-Serra thought the competition might attract 10 entrants in its inaugural year while Bugallo, who reached out to Long Island schools to showcase the competition, was confident local students would embrace the opportunity.

“Wait for a tsunami of participants,” Bugallo said she told Fernández-Serra, with whom she’s been a colleague and friend for years. “I was not surprised” by the contributions from the 103 teams, which included entrants from individual students and groups of as many as three students.

Bugallo, who recommended computer scientists Grace Hopper and mathematician and writer Ada Lovelace as important scientists for the competition, was impressed with the student effort.

“It was extremely tough to come up with the finalists,” said Bugallo.

Stony Brook plans to share the videos from the finalists after naming the winners.

Figure skating and conservation

One of the finalists, Katie Engel, a senior at Cold Spring Harbor High School, chose to demonstrate the work of Emmy Noether.

A German mathematician, Noether contributed to theoretical physics and abstract algebra. A theorem named after her, the Noether Theorem, explains that any continuous symmetry in a system has an associated conservation law. That helps explain how the speed of someone spinning in a chair changes depending on how far their arms re-extended.

Mónica Bugallo

An ice skater since she was six who is also interested in studying computer science or engineering, Engel had never heard of Noether but was intrigued with the physics and with the person who helped discover ways to characterize it.

In her entry, Engel explained the mathematical principals on a white board and then recorded a video of herself spinning on ice. When she learned about Noether’s life, Engel discovered that Noether was an important contributor to her field, despite some resistance to her work from men. “Reading about her stories is really inspiring,” said Engel.

Engel is stunned at the conclusions Noether reached with the tools at her disposal.

Currently working as an intern for Peter Koo at Cold Spring Harbor Laboratory, Engel suggested she is committed to pursuing her interest in science, technology, engineering and math fields during and after college.

Engel was also a member of the robotics team at Cold Spring Harbor High School that won the regional conference and went to the World Championships in Houston last year. In robotics, Engel said the number of girls on the team declined from 10th through 12th grades. 

She is, however, heartened to learn that 180 boys and 200 girls attended a recent research fair at her school.

New teaching tools

Fernández-Serra and Bugallo are hoping that teachers at all levels can use the videos to inspire students and help them connect with scientists whose contributions continue to resonate with current researchers. The purpose of activities like the competition is to “spark interest, so students want to investigate more,” said Bugallo.

Stony Brook plans to build on this experience in future years through either similar efforts or ongoing programs or initiatives. “Our intent was to have these challenges year after year if this was successful, and it obviously was,” said Bugallo.

In the immediate future, Fernández-Serra encourages students in the area to attend the upcoming talks given by University of Oxford astrophysicist Jocelyn Bell Burnell, who discovered the pulsar, as a part of the Della Pietra lecture series at the Simons Center for Geometry and Physics on Stony Brook University’s West Campus from February 13 through Feb. 15.

Bell Burnell is giving a general public lecture on Feb. 14 at 5 p.m., with a reception at 4:15 p.m. in the Simons Center Lobby. The lecture will also be livestreamed at scgp.stonybrook.edu/live.

Bell Burnell will also offer a special talk for high school students titled You Are Made of Star Stuff! on Feb. 15 at 11 a.m. that examines how and where elements in the human body were created in the cosmos. Both lectures will be held in the Della Pietra Family Auditorium (room 103).

A curiosity outside the classroom

For scientists, what they learn and study often stays with them long after they finish an assignment or submit or publish a paper.

Fernández-Serra, who studies the fundamental properties of liquid water using quantum mechanical simulations, thinks about how amazing water atoms are that are holding her when she swims.

As for Engel, thoughts of Noether will stay with her when she figure skates. “I probably can’t do a spin without thinking about her,” she said.

Heroes with staying power

For Fernández-Serra, Mildred Dresselhaus, one of the celebrated scientists of the past who was a part of the contest, was a “number one hero” in condensed matter physics.

Called the “Queen of Carbon,” Dresselhaus earned numerous awards, including the Presidential Medal of Freedom and the National Medal of Science and Engineering.

“She was a positive and brilliant scientist who never lost her enthusiasm and curiosity,” Fernández-Serra explained.

Stony Brook’s IACS team hopes this competition, the Bell Burnell lecture, and other efforts ignite such enthusiasm in the next generation of STEM students.

METRO photo

By Daniel Dunaief

Daniel Dunaief

My wife and I recently, chocolate, went out to celebrate our anniversary. We got married near Valentine’s Day, so we try to pick a date that’s, chocolate, a week or so before or after our anniversary, to avoid competing for a table. 

We picked one of the more romantic restaurants in the area, read the, chocolate, online menu, got dressed up for a romantic evening, and headed out. My digestion prefers an earlier dinner, especially when it’s a, chocolate, bigger meal, and my, chocolate, wife accommodated me, getting an early reservation for our celebratory dinner.

We chose a restaurant that’s further away than our usual search for, chocolate, food, while leaving the customary, chocolate, amount of time. Slightly concerned that the restaurant might give away our, chocolate, table if we were too late, we arrived at a nearby parking garage only about 10 minutes late.

Once on the street, we hurried down the block and entered the, chocolate, restaurant, where the hostess Jordan introduced herself and, in a silky smooth, soft voice that could also easily qualify her to work at a soothing spa, escorted us to a magnificent, chocolate, table filled with beautiful china, napkins held together in a fancy holder, and plush seats.

When she scanned the menu, my wife recognized that the fish dish we had picked when we checked out the, chocolate, restaurant wasn’t there.

“What are you going to eat?” she asked. Close to a quarter of a century of marriage together makes such, chocolate, shorthand possible.

I told her I’d find something. When we told the maître d’ about our food preference, she came back with alternatives that worked, but weren’t my, chocolate, preference.

“Let’s go,” my wife said, shrugging. “We can try somewhere else tomorrow night.”

My wife had put considerable effort into making this reservation and was excited about dinner in a quiet, romantic spot that didn’t have a single television blaring a sporting event and that had thick, lush drapes on the windows and picturesque framed, chocolate, scenery hanging on the wall.

“Are you sure?” I asked.

She told me we’d be fine. When we returned to the, chocolate, car, we ordered take out from a Thai restaurant and drove to the parking lot exit.

I pulled incredibly close to the machine to make it easier to insert the credit card. When I put the card in, the, chocolate, machine rejected it. I tried another one, with the same result. 

I reinserted the first card and, when I took it out, it came flying out of my hand, landing under the car. I could barely squeeze out the door to search for the card. At this point, the car behind us drove to another exit. Continuing her string of practical advice in an evening of curve balls, my, chocolate, wife suggested I try to get through the gate and walk back to retrieve the card.

I pushed the help button and put another card in. At this point, the gate lifted. I parked by the, chocolate, curb and grabbed my phone to use the light to find the card. The car beeped incessantly, annoyed that I took the keys while the engine was running.

Fortunately, no other cars were exiting and I found the, chocolate, card quickly.

I walked back to the car where my wife awaited with a quirky, half smile.

“Can you imagine if this was our first date?” she laughed.

We picked up our Thai food and returned home to our pets, who seemed surprised to see us so soon. Usually, when we wear our nice, chocolate, shoes, we disappear for several hours.

The next night, we had a much more successful dinner at a local, chocolate, Italian restaurant. As a reward for my wife’s support of her food-limited husband, one of the main dishes included four ingredients she loves, covered in her favorite sauce.

Oh, and if you’re wondering about all the chocolate references? About a week ago, I stopped eating chocolate because the caffeine was keeping me awake at night and increased my, chocolate, heart rate.

So far, chocolate, I’ve resisted and I barely, chocolate, think about it anymore. Well, maybe I haven’t conquered the cocoa bean yet, but I’m getting there.

The new species named, Booralana nickorum, may play a crucial role in maintaining the health of the ecosystem. Photo courtesy of OceanX

By Daniel Dunaief

Oliver Shipley recently shared one of the mysteries of the heavily photographed but lightly explored deep sea areas near the Bahamas’ Exuma Sound.

Oliver Shipley

A Research Assistant Professor at Stony Brook University, Shipley and his colleagues published a paper in the journal Zootaxa describing a new species of isopod they named Booralana nickorum.

A few inches long, this isopod, which was found at a depth of about 1,600 feet, sheds light on some of the mysteries in these waters, offering a glimpse into areas mostly too deep for sunlight to penetrate.

“The level of knowledge on deep sea biodiversity anywhere in the Caribbean is very poor,” said Shipley. The scientists were specifically studying the biomass housed areas around The Exuma Sound.

In the Bahamas, the researchers are interested in preserving species biodiversity and identifying links between the shallow and deep-sea ecosystems, which can inform management of marine resources and help conserve biodiversity.

Shipley suggested it was “exciting” and, perhaps, promising that this area has already produced two isopods that are new species, both of which he described with low-cost technologies deployed off small boats.

“We haven’t even genetically sequenced 95 percent of the creatures that we’ve captured” which includes fish and sharks, Shipley said.

Brendan Talwar, a co-author on the paper describing the isopod and a Postdoctoral Scholar at Scripps Institution of Oceanography at UC San Diego, added that “this discovery is representative of the lack of knowledge” in this area. “You can swim from one environment, where almost every species is known or has been studied, to a place where almost nothing is known and almost nothing is studied.”

Finding new species could have numerous benefits, including in the world of drug discovery. To be sure, such findings require “many years of work and analysis” he said.

Still, such a possibility for future benefits exist, particularly as researchers catalog and study these creatures.

In the meantime, understanding individual species and the ecosystems in which they live can reveal information about how, depending on the biomass of various species, different places affect the cycling of gases such as carbon dioxide.

“When you find high biomass of a new species, it could have potentially huge implications for mitigating climate change,” said Shipley. “We have a primitive understanding of the Caribbean deep sea ecosystem. We don’t know the full effects or benefits and services of organisms that live in the deep ocean environment.”

In addition to finding organisms that might provide various benefits, scientists are also hoping to understand the “food web dynamics of the eastern Bahamas,” said Talwar.

Long road to identification

Shipley first saw an individual of this isopod species in 2013. Over time, he has since identified numerous other individuals.

Dorsal views of the newly described Booralana nickorum on left and previously known Booralana tricarinata highlight distinguishing characteristics between the two species. Image courtesy of Oliver Shipley

The region in which Shipley identified this isopod has several potential food or energy sources. The deep sea area is in close proximity to shallower sea grass beds, which are closer to the surface and use light to generate food and energy through photosynthesis.

The tides and currents wash that sea grass into the deeper territory, sending food towards the deeper, darker ocean.

Energy also likely comes from coral reef productivity as reefs line the edge of the drop off.

Additionally, animals that traverse the shallower and deeper areas, whose poop and bodies sink, can provide food sources to the ecosystem below.

“There may be multiple sources of productivity which combines to promote a high level of biodiversity” in the ecosystem below, said Shipley.

The isopod Shipley and his collaborators identified lives in a pressure that is about 52 times the usual atmospheric pressure, which would be extremely problematic for organisms like humans. Isopods, however, have managed to live in most major ecosystems around the planet, including on mountains, in caves and in the deep sea.

“There’s something about that lineage that has supported their ability to adapt to a variety of environments,” said Shipley.

To bring the creatures back to the surface for study, researchers have used deep sea traps, including crustacean and eel traps, that are attached to a line. People working on boats then retrieve those traps, which can take one to two hours to pull to the surface. 

When they are brought to the surface, many animals suffer high mortality, which is a known sensitivity of deep-sea fisheries.

“We must gain as much knowledge as possible from each specimen,” Shipley explained

Scratching the surface, at depth

Talwar and Shipley have each ventured deep into the depths of The Exuma aboard a submersible.

The journey, which Talwar described as remarkably peaceful and calm and akin to an immersive aquarium experience, is “like a scavenger hunt,” he said.

When scientists or the sub pilot see a new species of sea cucumber, the pilot can move the sub closer to the organism and deploy the manipulator arm to store it in a collection box. Shipley and others hope to explore deep sea creatures under conditions akin to the ones in which they live in high pressure tanks on land.

Talwar described Shipley as “an extremely productive scientist” who works “incredibly hard.” Talwar also appreciates how Shipley will put collaborative projects at the top of his list, which is “fairly unique in a field where people are so busy with their own stuff.”

Shipley, who lives in Austin, Texas with his girlfriend Alyssa Ebinger, explained that researchers are pushing to support scientific leadership by Bahamians to conserve marine resources threatened by climate change.

Looking under rocks

As a child, Shipley, who grew up in York, England, spent about three years in Scotland, where they spent time at a beach called Trune.

“I remember looking in rock pools, picking up stuff and inspecting it,” he said. He was naturally inquisitive as a child.

While Shipley enjoys scuba diving and is a committed soccer fan — his favorite team is Leeds United — he appreciates the opportunity to build on his childhood enthusiasm to catalog the unknowns of the sea. He’s so inspired by the work and exploration that it “doesn’t feel like a job,” he said. He’s thrilled that he gets paid “to do all this exciting stuff.”

 

Image from Wikimedia Commons public domain

By Daniel Dunaief

Daniel Dunaief

I watch Jeopardy! and it’s a much more intellectual and challenging show than Family Feud, but, truth be told, I have watched several episodes of the Feud these days.

Perhaps it’s the simplicity of the show that entertains me or the fact that there just doesn’t seem to be much at stake. Sometimes, the questions seem ridiculous and, somewhere among the answers, is something about someone’s private parts, poop, or people’s mothers, almost as if I’m watching a game show version of an Adam Sandler movie.

Anyway, watching the show late at night, I have started imagining a farce, skit or just a show gone awry that I would enjoy watching, particularly when I’m in that time between mental focus and drifting off into an imaginary world where I am on skis and can jump over a mountain, land in a nearby ocean, communicate with dolphins and have dinner with a coed group of mermaids who particularly enjoy conversations about science, conservation and baseball.

In my imaginary episode, Steve Harvey starts with an apology, admitting that the word “theyself” isn’t a word. Then, as he meets the families, the first person in the family introduces their relatives.

“Hi Steve, I’m Joe and this is my wife whose favorite word late at night seems to be ‘no’ and who still hasn’t figured out how to bake chicken without burning it.”

Steve widens his eyes, takes a few steps back and lowers his jaw.

“And, next to her, is my sister-in-law Erica, who always knows better about everything and clearly thought my wife could do better when we got married. I have news for you, sis. Maybe she could have, but she chose me anyway, so get over yourself and show the world how smart you are.”

A little less shocked, Steve nods, looking past the mortified sister in law.

“Oh, that’s my brother-in-law Eric. If you were named Eric, would you date a woman named Erica? Eric and I share a beer once in a while, but he frequently has bad breath, so I wouldn’t get too close to him.”

Steve turns his head and makes a mental note.

“And, down at the end, that’s a neighbor of ours, Jessica, whom we’re passing off as a member of the family because no one else in our family could stand to be with us and because they didn’t believe we’d actually be on the Feud. So, hey, to the rest of the family, suck it!”

After an introduction from the other family, the two leaders come to the front of the podium for the obligatory hand shake. Joe refuses to shake hands and suggests that he has OCD and that he’ll tap feet instead.

Looking at the card, Steve shakes his head and says the top six answers are on the board.

“Name a time when you wish you were somewhere else,” he says.

Alex buzzes in first and Joe starts screaming that he’s sure he beat Alex and demands a replay review.

“We don’t do that here,” Steve says, frowning at Joe. “Have you ever watched the show?”

“But they do it in sports. Why not? It’s unfair. Don’t I get at least one challenge? I brought my own red flag,” Joe protests.

“I don’t care what you brought,” Steve says, forcing a smile on his bewildered face. “You don’t get a challenge. Let Alex answer.”

Steve turns to Alex.

“I was going to say ‘at the dentist’ but I’m changing my answer to ‘now.’”

Steve doubles over with laughter, holding the podium and shaking his head.

“Why is that funny?” Joe demands. “Besides, I have a better answer.”

“Let’s see where ‘now’ lands on the list,” Steve says, pointing to the board. It’s the third-most popular answer, which means Joe gets to speak. Steve turns to him, waiting for a reply.

“7:57 am on most mornings,” Joe says, smiling.

Steve doesn’t dare ask, repeating Joe’s answer, which gets the familiar red X.

“But it was a great answer,” Joe demands. “Can I challenge that?”

“No, you want to play or pass?” Steve asks, turning to Alex.

After Alex’s family clears all but one answer, Steve returns to Joe.

“Okay,” Steve says, treading carefully. “Name a time when you wish you were somewhere else?”

“When we first auditioned for the show?” Joe replies.

Steve laughs, pats him on the back and wishes him well.

METRO photo

By Daniel Dunaief

Daniel Dunaief

The number of Advanced Placement courses has expanded dramatically since parents were the age of their high school children.

Whereas we could have taken, say, four or five APs, the modern high school student can graduate with considerably more.

Current students can and sometimes do take as many as eight, nine, 10 or more AP classes, in the hopes of knocking the socks off college admissions counselors, guidance counselors and future prospective employers. All those AP classes can also give students enough college credits to help them graduate in under four years.

I’d like to propose my own list of AP classes for future generations.

— AP Listening. So many people love to talk, to hear their own voices, and to tell others how they’re wrong even before people can share a fully formed opinion. In this class, students would be required to listen to new ideas, to consider them and to react and interact with others. Speaking would be considerably less important than listening carefully.

— AP Conspiracy Theory. We all know that conspiracy theories are as ubiquitous as “Welcome” signs in corner stores. This AP class would look deeply at some of the most detailed conspiracy theories, giving students a chance to question everyone and everything, including those people who create and pass along conspiracies.

— AP Saying No. To borrow from former First Lady Nancy Reagan, saying “no” to drugs, among other things, is a healthy and important part of growing up and making the most of the college experience. The class could provide students with a wide range of situations in which students say “no” without damaging their ego or social status.

— AP Social Media Etiquette, or SME, for short. Some seniors get into colleges well before their colleagues. When they do, they post pictures of themselves on campus, their parents wearing gear from the school that admitted them, and the school emblem or insignia with confetti coming down from the top of the screen. Yes, you got into college, and yes, that’s wonderful, but other members of your class are still applying and don’t need to feel awful because they haven’t gotten in anywhere yet.

— AP It’s Not About Me (or, perhaps, INAM). Yes, this is a bit like a psychology class, but instead of studying theories and psychology legends, these students could explore real-life scenarios in which, say, Sue becomes angry with John. John may not have done anything in particular, but Sue may be reacting to someone else in her life, like her parents forcing her to take AP It’s Not About Me instead of going to soccer practice.

— AP Take Responsibility. When something goes wrong at school, work or in the house, it’s far too easy to point the finger at someone else. In this class, students can learn how to take responsibility, when it’s appropriate, and demonstrate courage, leadership, and initiative in accepting responsibility for their mistakes.

— AP Personal History. Each of us has our own story to tell. Colleges urge prospective students to find their authentic voice. That’s not always easy in a world filled with formulas and scripted and structured writing. In this personal history class, students could take a microscope to their own lives and to the lives of their extended family, understanding and exploring characteristics and life stories. Students might discover family patterns they wish to emulate or to avoid at all costs.

— AP Tail Wagging. While the world is filled with problems, students could explore modern and historical moments and ideas that inspire them and that give them reasons to celebrate. This class could blend a combination of historical triumphs with small daily reasons to celebrate or, if you prefer, to wag your tail.

— AP Get to Know Your Parents. High school students who are well ahead of their time emotionally and intellectually may come to the conclusion many others reach before their mid 20’s: that their parents are, big shock here, people! Yeah, we do ridiculous thing like send them in the wrong clothing to school, miss important dances, and embarrass them by kissing them in front of their friends. This course could help accelerate the process of seeing parents for the imperfect creatures who love them unconditionally.

Evan Musterman with lead SRX beamline scientist Andrew Kiss at the SRX beamline. Photo by Kevin Coughlin/Brookhaven National Laboratory

By Daniel Dunaief

When he took over to lead the sub micron resolution X-ray spectroscopy, or SRX, beamline at Brookhaven National Laboratory on January 1, 2020, Andrew Kiss expected to balance between improving the machinery and helping visiting scientists use it. The pandemic, however, altered that balance.

BNL received components for the beamline in December 2019, when the researchers were going to try to take a fraction of the available x-ray time to install and commission it, all while still running experiments. The pandemic, however, kept scientists from visiting the site. That meant Kiss and his colleagues could dedicate more time to technical enhancements.

“Since the pandemic shut down the user program, this gave us an opportunity to focus all of our time on the new equipment” that visiting researchers could tap into when they returned, he explained in an email.

The beamline, which postdoctoral researcher Evan Musterman is enhancing further with diffraction techniques to reveal information about strain (see related story here), is in high demand. During the current cycle, 324 researchers applied for beamline time, while 99 time slots were allocated.

Scientists have a range of ways of discovering which beamline might best suit their research needs, including word of mouth. Kiss has had conversations with researchers who describe how they read something in a research paper and have similar goals.

Scientists “usually have a good idea of what instrument/ facility to use and why it is good for their research so informal conversations at conferences and seminars can be very useful,” Kiss said.

Most of Kiss’s time is dedicated to ensuring the stability and reliability of the beamline, as well as extending its capabilities to scan larger regions with less overhead, he explained.

“All of this is to help the researchers that come to the beamline, but my hope is that with this baseline of reliable and fast data acquisition, I can focus more on scientific topics such as metal additive manufacturing,” Kiss wrote.

With the SRX, Kiss can explore applied questions related to corrosion effects or how a material is modified by exposure to different gases, liquids or other parameters.

Working at the beamline has given Kiss an unusual perspective outside the lab. A few years ago, he received a notification about a recall on baby food he purchased that could have elevated levels of something unhealthy in it. His second thought, after making sure he didn’t give any to the child, was to wonder how much was in the food and if he could measure it. Before he could bring it to the lab, the contaminated food was already taken away with the garbage.

Kiss enjoys his work and suggested that the field attracts a “certain type of person and, once you are there, it is tough to pull yourself away from the instrument and the community of researchers around you,” he explained.

In addition to making basic discoveries in fields such as materials science, Earth science and biological sciences, the SRX beamline has played an important role in studies that have affected public policy.

Indeed, a study in 2022 showed that veterans who worked in Iraq and Afghanistan near burn pits had oxidized particles of iron and titanium in their lungs. “This is not direct evidence it came from a burn pit, but these were not seen in healthy lungs,” Kiss said. Only a few places in the world had the kind of machinery with a bright enough source and high enough resolution to discover these particles.

Kiss and collaborators from other laboratories, universities and medical institutions appreciated the opportunity to have a “positive impact on these soldiers’ lives by providing the measurements to get them help,” he said. The discovery of these elements in the lungs of veterans who lived near burn pits and suffered health consequences, which the study at SRX and other facilities helped demonstrate, led to the Pact Act, which President Joe Biden signed into law in 2022 and which provides $280 billion in federal funding for the health effects veterans suffer after exposure to such toxins.

SRX has high spatial resolution and is highly sensitive to trace concentrations for elemental mapping and chemical composition. SRX is an x-ray fluorescence microscope with “high spatial resolution and highly sensitive to trace concentrations for elemental mapping and chemical composition,” Kiss said. “If that can be used to help people’s lives, that is a wonderful thing.”

Evan Musterman at the SRX beamline. Photo by Kevin Coughlin/Brookhaven National Laboratory

By Daniel Dunaief

It’s everywhere, from holding the water we drink to providing a cover over the Norman Rockwell painting of “The Three Umpires” to offering a translucent barrier between our frigid winter backyards and the warm living room.

While we can hold it in our hands and readily see through it, glass and its manufacture, which has been ongoing for about 4,000 years, has numerous mysteries.

Indeed, given enough temperature and time, glass crystallizes. Controlling the process has been used to increase strength and chemical durability, tailor thermal properties and more over the last several decades.

Evan Musterman, who studied the way lasers served as a localized heat source to induce single crystal formation in glass when he was a graduate student at Bethlehem, Pennsylvania-based Lehigh University, joined Brookhaven National Laboratory in September as a postdoctoral researcher.

Musterman, who received funding for nine months at the end of his PhD program through the Department of Energy’s Office of Science Graduate Student Research program when he was at Lehigh that enabled him to work at BNL, is adding scanning x-ray diffraction mapping as a more user-ready technique at the Submicron Resolution X-ray Spectroscopy beamline (or SRX) that he used as a graduate student. 

The beamline looks at x-ray fluorescence measurements, which provide information about the elemental distribution and chemical information, such as oxidation state and bond distances, in an experimental sample. The next component scientists are looking for is using diffraction to inform the crystal structure of the material and to gather information about strain, explained Andrew Kiss, the lead beamline scientist for the SRX.

Musterman hopes to build on the electron diffraction mapping he did during his PhD work when he studied the crystals he laser-fabricated in glass. X-rays, he explained, are more sensitive to atomic arrangements than electrons and are better at mapping strain.

Musterman’s “background in materials science and crystal structures made him an excellent candidate for a post-doc position,” Kiss said.

The SRX has applications in material science, geological science and biological imaging, among other disciplines. 

Glass questions

For his PhD research, Musterman worked to understand how glass is crystallizing, particularly as he applied a laser during the process. He explored how crystal growth in glass is unique compared with other methods, leading to new structures where the crystal lattice can rotate as it grows.

Musterman finds the crystallization of glass ‘fascinating.” Using diffraction, he was able to watch the dynamics of the earliest stages after a crystal has formed. In his PhD work, he used a spectroscopy method to understand the dynamics of glass structure before the crystal had formed.

Musterman started working at the SRX beamline in June of 2022. He was already familiar with the beamline operation, data collection and types of data he could acquire, which has given him a head start in terms of understanding the possibilities and limitations.

In his postdoctoral research, he is developing diffraction mapping and is also finishing up the experiments he conducted during his PhD.

Himanshu Jain, Musterman’s PhD advisor at Lehigh who is Professor of Materials Science and Engineering, was pleased with the work Musterman did during his five years in his lab. Jain sees potential future extensions and applications of those efforts.

Musterman’s research “forms a foundation for integrated photonics, which is expected to revolutionize communications, sensors, computation and other technologies the way integrated circuits and microelectronics did 50-60 years ago,” Jain explained in an email. The goal is to “construct optical circuits of single crystal waveguides in a glass platform.”

Musterman’s work “showed details of these optical elements made in glass by a laser,” he added.

Jain, who is an alumnus of BNL, indicated that his lab is continuing to pursue the research Musterman started, with his former graduate student as a collaborator and guide.

Musterman appreciates the opportunity to work with other scientists from different academic and geographic backgrounds. In addition to working with other scientists and helping to refine the functionality of the SRX beamline, he plans to continue glass and glass crystallization research and their interactions with lasers. As he refines techniques, he hopes to answer questions such as measuring strain.

As glass is heated, atoms form an ordered crystalline arrangement that begins to grow. The nucleation event and crystal growth occurs at the atomic scale, which makes it difficult to observe experimentally. Nucleation is also rare enough to make it difficult to simulate.

Most theories describe crystal nucleation and growth in aggregate, leaving several questions unanswered about these processes on single crystals, Musterman explained.

As they are for most material processing, temperature and time are the most important factors for glass formation and glass crystallization.

Historically, studies of glass structure started shortly after the discovery of x-ray diffraction in 1913. In the 1950’s, S. Donald Stookey at Corning discovered he could crystallize glass materials to improve properties such as fracture resistance, which led to a new field of studies. Laser induced single crystal formation is one of the more recent developments.

Musterman and his colleagues found that laser crystallization does not always produce the same phase as bulk crystallization, although this is an active area of research.

Musterman created videos of the earliest stages of crystal growth under laser irradiation by direct imaging and with electron and x-ray diffraction.

Kiss anticipates that Musterman, who is reporting to him, will build infrastructure and understanding of the detection system in the first year, which includes building scanning routines to ensure that they know how to collect and interpret the data.

Once Musterman demonstrates this proficiency, the beamline scientists believe this expanded technical ability will interest scientists in several fields, such as materials science, energy science, Earth and environmental science and art conservation.

Pitching in with former colleagues

While Musterman is not required to work with other beamline users, he has helped some of his former colleagues at Lehigh as they “try to get their best data,” he said. He has also spoken with a scientist at Stony Brook University who has been collecting diffraction data.

A native of Troy, Missouri, Musterman lives in an apartment in Coram. When he was younger, he said science appealed to him because he was “always curious about how things worked.” He said he frequently pestered his parents with questions.

His father John, who owns a metal fabrication and machining business, would take various ingredients from the kitchen and encourage his son to mix them to see what happened. 

As for the future, Musterman would like to work longer term in a lab like Brookhaven National Laboratory or in industrial research.

Jin Koda and Amanda Lee at the recent 243rd annual meeting of the American Astronomical Society in New Orleans. Photo by Jenny Zhang

By Daniel Dunaief

Hollywood is not the only place fascinated with the birth of stars. Indeed, researchers at Stony Brook University, among many other academic institutions, have focused considerable time, energy and effort into understanding the processes that lead to the creation of stars.

Astronomers had tried, unsuccessfully, to detect molecular clouds in the galaxy outskirts, which is how stars form in the inner part of galaxies.

About 18 years ago, a NASA satellite called GALEX discovered numerous newly formed stars at the edges of a spiral galaxy M83, which is 15 million light years from Earth. 

Leading an international team of scientists, Jin Koda, Professor in the Department of Physics and Astronomy at Stony Brook University, together with his former undergraduate student Amanda Lee, put together data and information from a host of sources to describe how these stars on the outer edge of the galaxy formed.

Their work demonstrated star-forming molecular clouds in this outer area for the first time.

“These molecular clouds at the galaxy edge are forming stars as much as the molecular clouds in normal parts of galaxies” such as molecular clouds around the sun, Koda explained.

Before their discovery, Koda said astronomers had considered that new-born stars at galaxy edges could have formed without molecular clouds.

Koda recently presented this work at the 243rd annual meeting of the American Astronomical Society in New Orleans.

Indeed, partnering with scientists from the United States, Japan, France and Chile, Koda, who is the Principal Investigator on the study, and Lee found evidence of 23 of these molecular clouds on the outskirts of the M83 galaxy.

Combining data from a host of telescopes for this research, Koda and Lee found “higher resolution than before,” Lee said. “We could see a peak of atomic hydrogen in that region, which we didn’t know before.”

While helium also exists in the molecular clouds in the galaxy edges as well as in the atomic gas and in stars, it does not emit light when it’s cold, which makes its signature harder to detect.

Scientists are interested in “why we weren’t able to detect these molecular clouds for such a long time,” Lee said. “We ended up using a different tracer than what is normally used.”

The group came up with a hypothesis for why the molecular clouds were difficult to find. Carbon monoxide, which typically helps in the search for such clouds, is dissociated in the large envelopes at the galaxy edges. Only the cores maintain and emit this gas.

A collaboration begins

When Lee, who grew up in Queens, started at Stony Brook University, she intended to major in physics. In her sophomore year, she took an astronomy class that Koda taught.

“I was very interested in studying galaxies and the evolution of galaxies,” Lee said.

After the course ended, she started working in Koda’s lab.

“Her tireless efforts made her stand out,” Koda explained in an email. Koda appreciates how speaking with students like Lee helps him think about his research results.

Lee is “particularly good at identifying and asking very fundamental questions,” he added.

At one point about two years before she graduated in 2022, Lee recalled how Koda shared a picture of M83 and described the mystery of star formation at the outskirts of galaxies.

Two years later, by delving into the data under Koda’s supervision, she helped solve that mystery.

“I didn’t know my work would end up contributing to this project,” Lee said. “It’s really exciting that I was able to contribute to the big picture of star formation” in distant galaxies.

Since graduating from Stony Brook, Lee has been a PhD student for the last year and a half at the University of Massachusetts at Amherst.

At this point, Lee is still working towards publishing a paper on some of the work she did in Koda’s lab that explores the formation of stars in the inner disk of M83.

“Broadly,” she said, the two research efforts are “all related to the same picture.”

For her part, Lee was pleased with the opportunity to work with such a geographically diverse team who are all contributing to the goal of understanding star formation.

Future focus

The area they observed is relatively small and they would like to see more regions in M83 and other galaxies, Koda explained.

Finding so many molecular clouds at once in the small region “encourages us to hypothesize that the process is universal,” although scientists need to verify this, Koda said.

The researchers also discovered more atomic gas than they would expect for the amount of molecular clouds. A compelling discovery, this observation raised questions about why this abundant atomic gas wasn’t becoming molecular clouds efficiently.

“We need to solve this mystery in future research,” Koda explained. He is pleased with the level of collaboration among the scientists. “It’s very interesting and stimulating to collaborate with the excellent people of the world,” he said.

A resident of Huntington, Koda grew up in Tokyo, where he earned his bachelor’s, master’s and PhD degrees. When he moved to the United States, Koda conducted post doctoral studies for six years at Cal Tech. 

About 15 years ago, he moved to Stony Brook, where he replaced Professor Phil Solomon, who was one of the pioneers of molecular cloud studies in the Milky Way galaxy.

Science appeals to Koda because he is “interested in how things work, especially how nature works,” he said.

In this work, Koda suggested that the molecular clouds have the same mass distribution as molecular clouds in the Milky Way, indicating that star formation is the same, or at least similar, between the Milky Way and galaxy edges.

Koda made the discovery of the molecular clouds and the hypothesis about the carbon monoxide deficient cloud envelope in 2022. Since then, he and his team have obtained new observations that confirmed that what they found were the “hearts of molecular clouds,” he said.

Pixabay photo

By Daniel Dunaief

Daniel Dunaief

Some historical phrases help shape and define the country the way landmarks like the Grand Canyon, Statue of Liberty, and Mt. Rushmore provide a distinct national identity.

One of those expressions, for me, is “rugged individualism.” The combination of the two words suggest independent thought, an ability to decide for ourselves, and a willingness to eschew tradition in favor of something more personal, practical and self-directed.

We don’t need kings and monarchs to tell us how to behave or to dictate from on high. We favor the stories of Americans whose humble origins offered hope to anyone born in a log cabin, a la Abraham Lincoln, or whose compassion inspired them to build houses for others, Jimmy Carter, perhaps, long after they were no longer the most powerful person on the planet.

We think for ourselves, we live with the view that we have unlimited potential and that we don’t need to have the right name or address to realize our dreams. Our self confidence allows us to imagine that we can become the next “Cinderella Man” or “Working Girl.”

And yet, we the people of the United States sometimes appear to be living lives that are filled with paint-by-the-numbers decisions and that involve following other people’s footprints in the snow.

Why? Have we and our children become so accustomed to group think that we don’t want to separate ourselves from the pack? Are we living in a world where we are desperate to conform?

Part of our collapse in independent thinking comes from corporate America. That faceless, nameless, profit churning machine, with its fake wooden boardrooms and its army of handlers and focus groups, has encouraged us to believe that buying their products, supporting their stores and following the trends is a way of asserting our independence.

It’s a clever ploy, my friends. They convince you that eating what everyone else eats, saying the same words everyone else says and wearing what everyone else wears helps you realize your potential.

The argument is an easy one to make, especially as you drive through Anytown USA. You see the same collection of franchised stores, with their predictable food and products and their well-oiled experiences, where it takes 5.6 minutes from the time you entered the store to get exactly the same soggy french fries in Dubuque, Iowa as it would in Setauket, New York.

We resist risk. Going into a restaurant with an unknown name means we might consume food that doesn’t taste familiar or good to us and that might give us indigestion as we move, like cattle, to the next predictable destination and engage in an echo of the same conversation we had last week, last month and last year.

I get it: it’s hard to decide to go to a unique store or restaurant in a town, particularly when the parking lot in the franchise chain next door is packed with people driving the same model and color cars we see on our roads back home.

Well, it’s 2024, and not 1984. We can and should make our own decisions. I would encourage you, your children and your friends to decide who you are and what that means. Yes, it’s hard and yes, people might hide behind the cloak of conformity to encourage you to do as they and everyone else does. They might even peck at you verbally, uncomfortable with differences and unsure of how to react to “the real you.”

If we fit in too well everywhere we go, we run the risk of disappearing. As Frank Sinatra suggests, it’s time to do things “My Way.” Yes, we might hate tuna fish with peanut butter, but at least we’ll be listening to our own voice and getting off a nonstop conveyor belt of conventional thought in which we follow the same roads, the same thoughts, and the same routines. Different? Different is good and, best of all, it’s up to you to decide what that means.