Tags Posts tagged with "Brookhaven National Laboratory"

Brookhaven National Laboratory

Stock photo

*Update* This post has been amended to reflect new cases of coronavirus in Suffolk County as well as new info from town and county sources.

In the same week the World Health Organization called the coronavirus outbreak a pandemic, Suffolk County recorded its first six positive tests for COVID-19.

The first four people to have the virus contracted it through community transmission, which means that none of them traveled to countries where infections are more prevalent. The patients include a Brookhaven Town man in his 20s who is in isolation at Stony Brook University Hospital, a Southold resident who is in her 20s and is under home isolation, a man in his 80s who is in isolation at St. Catherine’s Hospital and a man in his 40s who is in isolation Stony Brook Southampton Hospital. 

At the same time, eight people were under mandatory quarantine while the New York State Department of Health is monitoring 72 people under precautionary quarantine because of their travel abroad, according to officials from the Suffolk County Health Department.

Dr. Gregson Pigott, commissioner of the county Department of Health Services, said the patient is “getting better” and expected that he will “be fine.” 

Pigott said several area facilities have developed the ability to test for COVID-19, including LabCorp and Northwell Health Labs, which received state and federal approval to start manual testing for the virus. Northwell is seeking U.S. Food and Drug Administration approval to use semi-automated testing within the week, which could boost the number of tests to the hundreds per day and into the thousands in the near future, the health lab said.

Pigott said Suffolk County was “on top of” the virus “for now” but that the circumstances could change, which is why several facilities have taken steps to protect various populations.

Stony Brook University told students this week that it would transition to all online classes starting on March 23, according to a letter sent out to students. The online version of the classes will continue through the end of the spring semester. Stony Brook is one of several colleges throughout the country that is taking steps to protect students through online versions of their classes. Princeton University, Stanford University, Harvard College and the University of Washington, to name a few, are also teaching classes online. Hofstra University canceled classes this week as well.

On March 10, Stony Brook’s Staller Center canceled all events for March “out of an abundance of caution” due to the coronavirus, according to a release.

Meanwhile, the New York State Education Department and the State Department of Health issued updated guidance to school and community health officials, which includes requiring schools to close for 24 hours if a student or staff member attended school prior to being confirmed as a positive COVID-19 patient. Additionally, during that period the school is expected to disinfect the building or buildings where the person had contact prior to testing positive. The departments also urged schools to work with community feeding organizations to plan for distribution of food to students who rely on the two meals served at schools each day.

The local health department will notify schools if and when they are required to close because of the virus and when they can reopen. Schools are not expected to decide about closing or canceling events on their own.

Cold Spring Harbor Laboratory has canceled all public events, including lectures and on-site visits, through April 30.

Brookhaven National Laboratory, responding to guidance from the U.S. Department of Energy, has suspended all international business travel, with an exception for mission-essential international travel. Staff returning from China, Iran, South Korea and Italy are required to self-quarantine for 14 days. Staff will also have to self-quarantine if a household member traveled to those countries. All in-person visits of people from those countries are postponed.

Meanwhile, county Sheriff Errol Toulon Jr. (D) suspended all contact visits with prisoners. Noncontact visits can still be scheduled in advance, while visiting hours will be 7:30 a.m. to 8:30 p.m. and will be limited to 30-minute sessions.

To protect the most vulnerable population, the U.S. State Department also made recommendations to senior facilities. Following those guidelines, Affinity Skilled Living in Oakdale started screening staff and visitors earlier this week, which includes taking their temperature. The facility also has restricted visiting hours.

A view of Cold Spring Harbor Laboratory. File photo

With six cases of coronavirus Covid-19 in New York state confirmed as at March 4, state, local institutions are preparing for the potential spread of the virus.

New York lawmakers earlier this week passed a $40 million spending bill. The funds will allow the Department of Health to hire staff, purchase equipment and gather additional resources to address a virus for which a travel ban no longer seems sufficient to ensure containment.

A 50-year old Westchester man tested positive for the virus, even though he didn’t travel to areas of contamination, which include China, South Korea and Italy, and didn’t have known contact with anyone who has traveled to those areas. Through the so-called community spread of the virus, which has a mortality rate of more than 3 percent, can infect a wider range of people.

Northwell Health Labs said earlier this week it expects to begin testing for Covid-19 within a week. The health facility, which announced the future testing at a news conference March 2 with U.S. Sen. Chuck Schumer (D-NY), said manual testing could involve 75 to 100 tests each day. After it automates the tests, the facility could process hundreds and even thousands of tests on a daily basis. Mather Hospital in Port Jefferson is part of Northwell Health group.

Meanwhile, Brookhaven National Laboratory, Cold Spring Harbor Laboratory and Stony Brook University have made recommendations to staff who might travel to areas of infection.

BNL is following the recommendations of the Centers for Disease Control and the State Department regarding health notices and travel advisories. The U.S. State Department has a do-not-travel restriction on trips to China and Iran, along with specific areas of Italy and South Korea, while it also recommends reconsidering travel to Italy, South Korea and Mongolia.

Also, BNL is asking visiting scientists if they traveled to China or live with someone who visited China within 14 days. If the answer to either question is “yes,” these individuals have to complete a 14-day period away from China without symptoms before returning to the lab.

BNL canceled the International Forum on Detectors for Photon Science conference, which was scheduled for March 29 through April 1 at Danfords Hotel in Port Jefferson. The conference was expected to have 40 participants.

CSHL has canceled or postponed all upcoming conferences and courses bringing participants to campus through April 5th. The laboratory will reevaluate future offerings on a rolling basis.

Also, CSHL is cleaning common areas including bathrooms, counters and dining areas more frequently, is providing more hand sanitation stations, is enhancing the readiness of its Center for Health & Wellness and is providing secure transfer protocols for at-risk people with potential symptoms of the virus.

SBU discouraged school-related and personal travel to China, Italy, Iran and South Korea. The school also created a mandatory preapproval requirement for all publicly funded university-sponsored travel plans to China, Italy, Iran and South Korea. SBU has not canceled the Florence University of the Arts program, since the university is continuing classes as usual and the Tuscany region doesn’t have any reported cases of the virus.

On a national level, the Federal Reserve, in a move similar to decisions from other central banks, cut interest rates by half a percentage point, the biggest cut since the financial crisis of 2008. The cut was designed to stave off an economic slowdown caused by business disruptions from the coronavirus.

“The coronavirus poses evolving risks to economic activity,” the Federal Reserve said in a statement.

Updated March 5 to reflect most current CSHL procedures regarding conferences and courses.

Members of the team at Brookhaven Lab’s Accelerator Test Facility from left, Mark Palmer, Dejan Trbojevic, Stephen Brooks, George Mahler, Steven Trabocchi, Thomas Roser, and Mikhail Fedurin. Photo from BNL

By Daniel Dunaief

Scientists at Brookhaven National Laboratory and Cornell University have tested and developed a new “green” accelerator. Capturing and reusing the energy from electrons that are decelerating, the newly designed model, called CBETA, will have uses in everything from computer chip manufacture to medicine to missile defense to basic science.

Employing permanent magnets, which require no energy to operate, and superconducting material, these researchers brought to fruition an idea first formulated in 1965 by Maury Tigner, professor emeritus at Cornell University.

“It was talked about for many years,” said Thomas Roser, who just completed his 10th year as chairman of the Collider-Accelerator Department at Brookhaven National Laboratory. “To put everything together in an energy efficient way could have a significant impact for the future.”

Indeed, the new design could lower the energy needs of a future facility like the Electron Ion Collider, which BNL plans to complete in 2030.

“We all have a responsibility to contribute to the well-being” of the planet, including in efforts to reduce the energy consumption of devices used to unlock the mysteries of the universe and produce future technology, said Roser.

Schematic of the Cornell-BNL
ERL Test Accelerator.
Image courtesy of Cornell University

One of the many advantages of the new accelerator design, which was tested in the early morning hours of Dec. 24 at Cornell, is that it captures and reuses the energy in a multi-turn particle accelerator. The idea of the accelerator was to enable beams of different energy to travel through the same magnets on slightly different paths in an oblong structure. 

The design is akin to a relay race on a running track. Each lane has runners that move at their own speeds. When it is time for one of the runners to slow down and leave the track, she shares the energy from her sprint with an intermediary, which drives the next runner forward at a rapid pace, while she decelerates in a nearby loop.

In the case of the accelerator, the intermediary is a superconducting radio frequency cavity.

A key design feature is that multiple beams recirculate in these cavities four times. This cuts down on future construction costs and reduces the size of an accelerator from about a football field to a single experimental hall, according to information from Cornell.

A fresh electron beam allows researchers to get a better quality beam than in the traditional way of operating an accelerator, in a ring that would circulate continuously. 

“The beam is always refreshed, and what gets recirculated is the energy,” Roser said.

The high quality, bright beam creates bright lasers that companies may be able to use to manufacture new chips for computer or phone technology. These accelerators could also make infrared lasers that could melt objects. This type of application could help with defense department efforts to thwart an incoming missile. While BNL is taking steps to work on applications in other areas, the Department of Energy laboratory is not involved in such missile defense applications.

In the medical arena, this kind of accelerator could enable the construction of smaller, simpler and lighter devices for proton therapy to treat cancer. The multi-energy beam transport of CBETA would allow the building of more compact and less expensive gantries that deliver beams to the patient.

Using different energies at the same time, doctors could “treat cancers at different depths inside the body,” Roser said. “That’s an application for this unique transport.” Proton therapy could become cheaper and available in more hospitals with this approach, he asserted.

For Dejan Trbojevic, the principal investigator on the CBETA project and a senior physicist from BNL, the successful test of the concept was a validation of over 20 years of work.

“You can do a lot of simulations assuming realistic errors,” but the actual experiment demonstrating the concept “makes a big difference,” he explained in an email.

The BNL scientist was at Cornell in late December, where he and his colleagues celebrated the results with champagne.

Trbojevic, who had developed the concept of using a single beamline instead of multiple beamlines, hopes to use the new design to create a less expensive design to proton therapy treatment for cancer

“I’m trying to make this cheaper so more hospitals can have it,” Trbojevic said. He has already made contact with companies and a professor in Europe who hopes to use the design concept. He has also requested funding from the Department of Energy.

Beyond the excitement of the recent collaboration with Cornell on the new accelerator design, Roser reflected on his first decade as chairman of the Collider-Accelerator Department.

The BNL department is leading the world in many accelerator technologies and is collaborating closely with CERN, which was founded in Europe seven years after BNL.

Indeed, this year marks numerous celebrations for the department. The Relativistic Heavy Ion Collider, or RHIC, has been operating for 20 years and will become a part of the new Electron Ion Collider. At the same time, the Alternating Gradient Synchrotron, where research for three Nobel Prizes was conducted, marks its 60th year of generating scientific results.

And, to top off the historical trifecta, Ernest Courant, a former BNL Scientist who teamed up with Stanley Livingston and Hartland Snyder to create the strong focusing principle, turns 100 in March. Courant, who worked with Trbojevic on a paper describing the single beamline concept in 1999, helped provide a critical step for modern particle accelerators.

As it did 10 years ago, the department is rolling these three celebrations into one in June.

Courant can’t attend the event because he lives in a retirement home in Ann Arbor, Michigan near his son. BNL will likely show photos and video from Ernest’s birthday at the celebration.

As for the recently completed collaboration with Cornell, Roser believes the work is an important step.

“It’s a new concept and a new type” of accelerator, Roser said. “That doesn’t come around very often. There are cyclotrons and there are linear accelerators. This is a combination of a circular and linear accelerator put together in a new way.”

 

On Thursday, Jan. 30 and Friday, Jan. 31, the U.S. Department of Energy’s Brookhaven National Laboratory held two back-to-back installments of the Long Island Science Bowl, a regional branch of DOE’s 30th annual National Science Bowl®. In this fast-paced question-and-answer showdown, teams of students from across Long Island were tested on a range of science disciplines including biology, chemistry, Earth science, physics, energy and math.

On Thursday, Team One of Great Neck South Middle School garnered first place in the middle school competition, earning their school three years of consecutive wins. Team Three of Great Neck Middle School captured second place; Robert Cushman Murphy Jr. High School (team one) of Stony Brook won third place; and Commack Middle School (team one) placed fourth.

On Friday, top honors went to Great Neck South High School, who competed against 19 other teams in the high school competition. High school runners-up included Wheatley School in Old Westbury (second place); Ward Melville High School in E. Setauket (third place); and Comsewogue High School in Port Jefferson Station (fourth place). 

As first place winners, Great Neck South Middle School (team one) and Great Neck South High School have won all-expenses-paid trips to the National Finals near Washington, D.C., which will begin on April 30. They’ll be joined by the winners of all 112 regional competitions held across the country.

“The National Science Bowl® continues to be one of the premier academic competitions across the country, preparing America’s next-generation for future success in the ever-expanding fields of science, technology, and engineering,” said U.S. Secretary of Energy Dan Brouillette. “The Department of Energy is committed to fostering opportunities for our nation’s students, and we congratulate Great Neck South in advancing to the National Finals, where they will continue to showcase their talents as the top minds in math and science.”

All participating students received a Science Bowl T-shirt and winning teams also received trophies and medals, and the top four high school teams received cash awards. Prizes were courtesy of Teachers Federal Credit Union and Brookhaven Science Associates (BSA), the event’s sponsors. BSA is the company that manages and operates Brookhaven Lab for DOE.

For more information, visit https://energy.gov/science. 

Interns Nylette Lopez (rear) and Stephanie Taboada characterize catalysts as they attempt to convert carbon dioxide and methane into synthesis gas this past summer at Brookhaven National Laboratory. Photo from BNL.

By Daniel Dunaief

This article is part two in a two-part series.

Local medical and research institutions are aware of the challenges women face in science and are taking steps to ensure that women receive equal opportunities for success in science, technology, engineering and mathematics (or STEM). Times Beacon Record News Media reached out to members of each institution and received an overview of some initiatives.

Brookhaven National Laboratory 

The Department of Energy-funded research facility has created a number of opportunities for women, including Brookhaven Women in Science. This effort has been active for over four decades and its mission, according to Peter Genzer, a BNL spokesman, is to support the development of models, policies and practices that enhance the quality of life for BNL employees and emphasize the recruitment, hiring, promotion and retention of women.

BWIS offers annual awards, outreach events and various networking opportunities in the lab and community, while the lab’s Talent Management Group partners with BWIS to bring classes and speakers to discuss issues specific to women.

In October, the group hosted Kimberly Jackson, a vice chair and associate professor of chemistry and biochemistry at Spelman College, who gave a talk titled “Realigning the Crooked Room in STEM.”

The Leona Woods Distinguished Postdoctoral Lectureship Award at BNL, meanwhile, celebrates the scientific accomplishments of female physicists, physicists from under-represented minority groups and LGBTQ physicists and to promote diversity and inclusion. BNL awarded the lectureship this year to Kirsty Duffy, a fellow at Fermi National Accelerator Laboratory.

For the past five years, BNL has also partnered with a local chapter of Girls Inc., which helps to “encourage young women towards careers” in STEM, Genzer explained in an email.

BNL has also collaborated with the Girl Scouts of Suffolk County to organize a new patch program that encourages Girl Scouts to work in scientific fields. As of September, county Girl Scouts can earn three new Brookhaven Lab patches, and the lab hopes to extend the program nationwide across the Department of Energy complex.

BNL also provides six weeks of paid time off at 100 percent of base pay for a primary caregiver after birth or adoption and one week of full pay for a secondary caregiver. BNL is exploring plans to enhance support for primary and secondary caregivers, Genzer said.

Cold Spring Harbor Laboratory

Cold Spring Harbor Laboratory has taken several recent steps as part of an ongoing effort to encourage gender diversity.

In October, a group of four CSHL administrators traveled to the University of Wisconsin in Madison to discuss mentoring. The goal was to train them on how to design and deliver mentoring training regularly to the faculty, postdocs and graduate students on campus, said Charla Lambert, the diversity, equity and inclusion officer for research at CSHL. The first version of the training will occur next spring. The ultimate goal is to ensure the research environment at CSHL emphasizes good mentoring practices and is more inclusive for all mentees.

CSHL has also hosted a three-day workshop in leadership practices for postdoctoral researchers and junior faculty since 2011. The workshop, which is run through the Meetings & Courses Program, trains about 25 postdoctoral researchers and junior faculty each year and has about one per year from CSHL, addresses how to hire and motivate people, while providing constructive feedback.

Lambert said family-friendly policies were already a part of CSHL policies, which include a child care facility. Members of the faculty receive extra funding when they travel to conferences to provide additional child care.

Lambert, who is a program manager for extramural Meetings & Courses overseeing diversity initiatives, has worked to get the demographic data for participants centralized, analyzed and used in developing policies. She believes this kind of data centralization is an area for potential improvement in the research division, where she is working to ensure an equitable distribution of resources among CSHL scientists.

Throughout her nine-year career at CSHL, Lambert said she has worked with the meetings and courses division to make sure the 9,000 scientists who visit the facility each year include women as invited speakers. She also works to reach course applicants from a wide range of institutions, including outside of prestigious research schools.

Ultimately, Lambert is hoping to help change the culture of science among the researchers with whom she interacts from a wide range of institutions. She feels that those people who leave the STEM fields because something about the culture of science didn’t work for them represent a “huge loss” to the field and creates a “survivorship bias.”

Stony Brook University 

For Stony Brook, gender diversity is “very important,” said Latha Chandran, the vice dean for Academic and Faculty Affairs at the Stony Brook University Renaissance School of Medicine. 

Chandran said more men entered the field of medicine 14 years ago. That has completely changed, as women have outnumbered their male counterparts in medicine for the last three or four years.

Chandran cited a number of statistics to indicate changes at the medical school. For starters, women faculty constituted 38 percent of the total in 2011. This April, that number climbed to 48.1 percent. That puts Stony Brook in the top 79th percentile of medical schools in terms of female representation.

While the overall numbers are higher, women are still underrepresented in the top tiers of the medical school, as 18 percent of the department chairs are women. She hopes more women can lead departments and that they can serve as role models that others can aspire to follow.

As for harassment, Chandran said Stony Brook was above the national mean in 2011. For almost all categories, Stony Brook is now below the national mean.

In 2011, Stony Brook created We Smile, which stands for We can Eradicate Student Mistreatment in the Learning Environment. The goal of this program is to educate people about harassment and to ensure that any mistreatment is reported. Through this effort, Stony Brook medical students are aware of the policies and procedures surrounding reporting.

Stony Brook is also addressing any bias in admission procedures by prospective applicants, who receive a standardized scenario to address with an admissions officer. In 2025, admissions officers will not have any information about the qualifications of the individual and will evaluate his or her response during interviews only based on response to scenarios.

Stony Brook University has almost finalized its search for a chief diversity candidate. Chandran expects that the medical school will “continue to make progress.”

Viviana Cavaliere. Photo courtesy of BNL

By Daniel Dunaief

The United States has been the site of important life events for Italian-born Viviana Cavaliere. When she was in high school, she went to Montana, where she changed her mind about her life — she had wanted to become an architect — and decided that science was her calling.

Later, when she did a summer student program at Fermilab near Chicago, she met her future husband Angelo Di Canto, who is also a physicist.

While Cavaliere has been an assistant physicist at Brookhaven National Laboratory since 2017, she has been living in Switzerland, where she has been working at CERN. She is preparing for a move this month to Long Island, where she hopes to find new physics phenomena, including new particles, using the Atlas detector at the Large Hadron Collider at CERN.

Viviana Cavaliere during a trip to Bhutan. Photo by Angelo Di Canto

Cavaliere will return to the United States with a vote of confidence in her potential and some financial support. The Department of Energy recently announced that she was the recipient of $2.5 million over five years as a part of the Office of Science’s Early Career Research Program.

“I am very honored,” said Cavaliere, who will use the funds to support the research of postdoctoral scientists in her lab, to buy equipment and to travel to conferences and to CERN.

At the heart of her research is a desire to search for new particles and new phenomena that might build on the Standard Model of particle physics.

Cavaliere is coordinating a group of about 400 physicists who are looking for new particles. Her role is to analyze the data from the Large Hadron Collider.

Indeed, officials at the Department of Energy said that Cavaliere was one of only three recipients in the Energy Frontier Program from a pool of 23 applicants because of her role at CERN.

The award “requires those who have shown leadership capability,” said Abid Patwa, program manager for the Energy Frontier Program and special assistant for International Programs in the DOE Office of High Energy Physics. Cavaliere has “already been participating and leading” studies.

Michael Cooke, who is a program manager in the Office of High Energy Physics in the Department of Energy’s Office of Science, said Cavaliere’s work fits the description of a “high risk and high reward” proposal that could “steer the field in new directions.”

By using new software, Cavaliere will mine data produced in a microsecond, which is 10 to the negative sixth of a second, for ways to filter specific events.

Patwa suggested that his office urges principal investigators to be as “quantitative as possible” in their work, so that they can show how their efforts will be successful.

Viviana Cavaliere during a trip to Macchu Picchu. Photo by Angelo Di Canto

Cavaliere is not only conducting scientific research but is also part of the technological innovations.

“It helps a person’s career that they understand all aspects of what is involved in running these major experiments,” Patwa said.

Collaborators are encouraged to have balanced roles in research and hardware operations or upgrade activities, Patwa explained in an email.

Cavaliere was at CERN when the elusive Higgs boson particle was discovered in 2012. The particle, which is called the “God” particle, had been proposed 48 years earlier. The Higgs boson explains why particles have mass.

“It was a very exciting day, you could feel the joy in the corridors and I believe it was one of those days where nobody could concentrate on work waiting for the official release of the news,” Cavaliere recalled. “At the time, I thought it would be great if we had more days like those, with the excitement of the discovery.”

Cooke said that extending the work from the Higgs boson could offer promising new clues about physics. He described how Cavaliere is making high precision measurements of particle interactions involving the Higgs boson. Any discrepancy between what she finds and the predictions of the Standard Model could be a hint of new particles, he explained in an email.

“Not only will her analysis advance the field by improving the search for new physics, but the new tools she creates to capture the best data from the [Large Hadron Collider] will be applicable much more broadly,” Cooke said.

Patwa, who worked at BNL as a postdoctoral research associate and then as a staff scientist from 2002 to 2012, explained that he is “encouraged by the talented researchers joining BNL as well as other DOE national laboratories and universities.” He believes the award is a testament to her past accomplishments and to her current objectives.

When she was growing up in a town near Naples in southern Italy, Cavaliere had to choose whether to attend a classical high school or a school focused on math and physics. Particularly interested in history, she decided to study at a classical school.

During her senior year of high school, she traveled on an exchange program to Montana, where she did experiments in the lab with a “very, very good teacher. I started liking science and was undecided between chemistry and physics.”

The travel experience to the Big Sky state “opened my mind, not only about what you do in the future, but also gives you a taste of a different culture.”

When she attended the Sapienza University of Rome, she had to catch up to her colleagues, most of whom had learned more math and physics than she. It took a year and a half to reach the same point, but she graduated with her class.

When she did her postdoctoral work in Chicago, she met Di Canto, who grew up about 100 kilometers away from her in Italy as well. “My mom always makes fun of me,” Cavaliere said, because she “found her husband in the United States.”

As for work, she is inspired to use the funds and the recognition from the DOE to build on her developing career.

“There’s always some hope you’ll find something new,” she said.

In foreground, from left, senior scientist Paul O’Connor holding an electronic board, and Science Raft Subsystem manager Bill Wahl holding a mock raft assembly. Behind O’Connor, on the left, is Sean Robinson, a technical associate, who is working on a raft in the clean room, and to the left is mechanical engineer Connor Miraval, whose image is reflected on the focal plane. Photo from BNL

By Daniel Dunaief

What’s out there? It’s a question that occurs to everyone from parents sleeping at night who hear a noise in the front yard to tourists aboard a whale watching cruise off the coast of Montauk to anyone looking up at the night sky.

Scientists at Brookhaven National Laboratory recently took a milestone step in a long journey to understanding objects and forces deep in space when they completed shipment of the last of 21 rafts that will become a part of the Large Synoptic Survey Telescope, or LSST, in the Cerro Pachón ridge in north central Chile.

The rafts will serve as the film in a camera that will take images that cover 40 times the area of the moon in a single exposure.

The telescope, which will be the world’s largest digital camera for astronomy, will allow researchers and the general public to view asteroids at great distances. It will also provide information about dark energy and dark matter, changes in the night sky over the course of a decade of collecting data, and data that can build on knowledge about the formation and structure of the Milky Way.

Paul O’Connor, a senior scientist at BNL’s Instrumentation Division who has worked on the LSST for 17 years, expressed appreciation for the efforts of people ranging from area high schoolers to senior scientists on the project.

“It was just a joy to see the dedication from everyone to get what needed to be done,” he said in an email. “It takes a team like that to complete a project like this.”

The LSST, which is funded in part by the National Science Foundation and the Department of Energy, involves researchers from institutions all over the world who have each played a role in moving the unique telescope toward completion.

While the rafts that will function as the film for the 3.2-gigapixel sensor array are completed, O’Connor will continue to work on commissioning the telescope, which should occur gradually until it begins providing data in October of 2022.

O’Connor said the construction of the 21 raft modules containing a total of 200 16-megapixel sensors involved “moments of drama, both good and bad.”

The first time the team brought the system into its operating temperature range of about 100 degrees below zero Celsius, some of the cool-down behavior “differed from our predictions,” he explained.

That required quick thinking to make sure the equipment wasn’t damaged. This was especially important not only because the operation needed to stay on schedule but also because the rafts are expensive and the team was operating on a budget. “Each of these rafts has an enormous cash value” and involved considerable labor to build, O’Connor added.

Bill Wahl, the science raft subsystem manager of the LSST project since 2015, described how one of the challenges involved packing and shipping such sensitive electronic materials.

“We came up with a very elegant and somewhat low-cost approach,” he said, which involved shipping these rafts in a pressurized vessel that avoided damage during any shocks in transit.

The rafts, which each weighs about 25 pounds, had a shipping weight that included protective fixtures of over 100 pounds.

Additionally, the BNL team had to deal with cleanliness, as particulates can and did cause problems. Some of the rafts didn’t function the way they should have after shipping. The BNL team went through a complete refurbishing over six months, where they took all the rafts apart and cleaned them. They upgraded the design to limit the amount of particulates, Wahl said.

While BNL built the requisite rafts, it has an additional two rafts that can replace any of those in the telescope if necessary.

These extra rafts will be stored at the observatory.

Along with the challenges and some anxiety from building such sensitive equipment, the instrumentation unit also had several high points.

In January of 2017, BNL tested one of the rafts in the clean room. Scientists constructed an image projector and projected that onto the raft with enough detail to show that every pixel was functioning correctly. O’Connor made a printout of that image and taped it to his office door.

The day of the successful test was one that the team had been anticipating for “over 10 years. When the first image was delivered, it was very gratifying to see the system was working,” he said.

While O’Connor isn’t a cosmologist, he is particularly interested in the search for dark energy. “It has been puzzling the theorists and as experimentalists, we hope to take measurements that will one day lead to a resolution of this fundamental question,” he explained.

Several teams are working on the LSST in different locations. One of them is constructing the telescope in Chile, while another is assembling the camera in California.

At this point, technicians have installed about half the rafts into the main camera cryostat. Researchers will conduct a preliminary test before populating the rest of the focal plane with all the rafts later this year, O’Connor explained.

As the LSST catalogues four billion galaxies, it will “literally be impossible” to look at these areas item by item. Informatics tools will be necessary to extract all the information, O’Connor said.

Wahl suggested that the LSST could become an important educational tool for budding astronomers.

“I’m not an astronomer or physicist,” said Wahl, who will become the chief operating officer of an instrumentation group at BNL on Oct. 1, “but from my point of view, what I find absolutely amazing is that everyone relies heavily on Google Earth to look at where they are going. In a similar way, [people] are going to do that in the sky. It’s going to give them the opportunity to be junior astronomers unlike they’ve ever been able to do.”

Indeed, the LSST will help people figure out what’s out there.

Mircea Cotlet. Photo courtesy of BNL

By Daniel Dunaief

An innovative scientist in the world of nanostructures, Mircea Cotlet recently scored Inventor of the Year honors from Battelle.

A principal investigator and materials scientist in the Soft and Bio Nanomaterials Group at the Center for Functional Nanomaterials at Brookhaven National Laboratory, Cotlet has conducted a wide range of research over his dozen years on Long Island.

The distinction from Battelle, which manages BNL through Brookhaven Sciences Associates, honors researchers who have made significant scientific or engineering contributions that have societal or financial impacts.

“The award recognizes [Cotlet’s] ongoing contributions to materials science at BNL, specifically his work on low-dimensional semiconductors, 1-D nanowires, and tiny 0-D nanocrystals called quantum dots,” Katy Delaney, a Battelle spokesperson, explained in an email.

Researchers who have worked with Cotlet believe he deserves the honor.

Cotlet is an “extraordinary scientist” who “stands out” for his thorough work and creative approach” said Deep Jariwala, an assistant professor in the Department of Electrical and Systems Engineering at the University of Pennsylvania. Jariwala has known Cotlet for over two years and has collaborated with him over the last year.

Cotlet has “really laid the foundational ground in understanding the rules that govern charge and energy transfer across hybrid quantum confined materials systems that comprise quantum dots, organic molecules–two-dimensional materials as well as biologically photoactive materials,” Jariwala added.

The technologies will impact the science and technologies of sensing, displays and energy harvesting in the future, Jariwala predicted.

Eric Stach, a professor in the Department of Materials Science and Engineering at the University of Pennsylvania who had previously worked at the CFN, said Cotlet “tries to figure out ways of putting together disparate systems at the nanoscale.”

By combining these materials, Cotlet is able to “improve the overall performance” of systems, Stach continued. “He’s trying to tune the ability of a given material system to capture light and do something with it.”

Cotlet recently partnered self-assembled two-dimensional nanoparticles, such as the one-atom-thick graphene, with light-absorbing materials like organic compounds.

The result enhances their ability to detect light, which could be valuable in medical imaging, radiation detection and surveillance applications. The mini-partnership boosted the photoresponse of graphene by up to 600 percent by changing the structure of the polymer.

Indeed, a defense contractor has shown an interest in research they could use for low light level detection applications, Cotlet said.

Like other scientists at BNL, Cotlet not only conducts his own research, but he also helps other scientists who come to the Department of Energy facility to use the equipment at the CFN, to make basic and translational science discoveries.

Cotlet patented a self-assembly process before he published it.

He is continuing conversations with a big company that is exploring the benefits of this type of approach for one of its product, while he is also working with the technology transfer office at BNL to look at the development of photodetectors for low light applications.

“Having graphene and the conductor polymer would absorb light from ultraviolet to visible light,” Cotlet said.

The physics changes from bulk to nanoparticles to nanocrystals, Cotlet said, and he engineers the smaller materials for a given function.

“We basically like to play with the interface between different types of nanomaterials,” he said. “We like to control the light-simulated process.”

Working at an energy department site, he also has experience with solar panels and with light-emitting diodes.

Jariwala described the science as extending to interfaces that also occur in nature, such as in photosynthesis and bioluminescence. “By combining techniques and materials that we have developed and looked at, we hope to answer fundamental mechanistic questions and provide insights into long-standing questions about biological energy conversion processes,” he wrote.

As far as some of the current materials he uses, Cotlet works on graphene and the transition metal dichalcogenides and he explores their potential application as quantum materials. He tries to look for emerging properties coming out of nanomaterials for various applications, but most of his efforts are in basic science.

Jariwala explained that he and Cotlet are seeking to understand the efficient transduction of energy in quantum sized systems when they are brought close to one another in an orderly fashion.

After his upbringing in Romania, where he attended college, Cotlet appreciated the opportunity to learn from one of the pioneering groups in the world in single-molecule microscopy at the Katholieke Universiteit Leuven in Belgium, where he studied for his doctorate.

He also did a fellowship at Harvard, where he worked on unique microscopy, and then went on to conduct postdoctoral work at Los Alamos National Laboratory, where he worked on protein folding and on optimal imaging methods.

Cotlet arrived at the CFN just as the facility was going online.

“The CFN went beyond its original promise for cutting edge science,” he said. The center has been, and he continues to hope it will be, the best place he could dream of to conduct research.

The postdoctoral researchers who have come through his lab have all been successful, either leading their own projects or joining commercial teams.

Up until he was 18, Cotlet wasn’t focused on science, but, rather, anticipated becoming a fighter pilot. He discovered, however, that he had a vision defect.

“All my childhood, I was set up to become a fighter pilot,” but the discovery of a condition called chromatopsy changed his plans.

A resident of Rocky Point, Cotlet lives with his wife, Ana Popovici, who is an administrative assistant at BNL, and their middle school daughter.

As for his future work, he is interested in building on the research into quantum materials.

“I’m looking forward to trying to integrate my research” into this arena, he said.

Shoreham-Wading River, Hauppauge and Northport-East Northport schools take home honors

More than 440 science projects from 100 Suffolk County elementary schools filled the rooms of Brookhaven National Laboratory on May 4 for the research center’s 2019 Elementary School Science Fair. Sponsored by the U.S. Department of Energy’s Brookhaven National Laboratory and coordinated by the lab’s Office of Educational Programs, the projects were judged by Brookhaven scientists, engineers and technical staff, as well as teachers from local elementary schools. One student from each grade was selected as a finalist.

Connor Nugent, a kindergartner from Miller Avenue School in the Shoreham-Wading River school district, won first place for his project titled “Spaghetti Strength,” while first-grader Audrey Leo of Lincoln Avenue Elementary School in the Sayville school district beat out the competition with her project, “Knot Again.”

 Zachary Lister, a second-grader from Miller Avenue School, Shoreham-Wading River school district, wowed the judges and captured first place with “Slippery Sock Science,” while third-grader Matthew Pokorny of Norwood Avenue Elementary School in Northport-East Northport school district grabbed first in his grade for “Rock and Barrier Waves.”

Liam Dwyer, a fourth-grader from Norwood Avenue Elementary School in the Northport-East Northport school district garnered first for “Rip Rap Paddywhack,” and fifth-grader Pranav Vijayababu, from Bretton Woods Elementary School in the Hauppauge School District won for his project titled “Race to the Future Hydrogen Fuel Cell.”

James Bulger, a sixth-grader from Robert Moses Middle School in the North Babylon School District rounded out the top six with “Nano-Remediators: Using Nanotechnology to Remediate Oil Spills.” 

In addition to the first-place winners, selected students received honorable mention for projects that ranged from “Rubber Chicken Olympics” to “Voice Recordable Smoke Detectors.” 

Ella Henry, a fifth-grader from J.A. Edgar Intermediate School in the Rocky Point school district, said she did her project on acid rain because she loves plants and cares about the environment. “My project took me 14 days to do. I didn’t win today, but I had fun and I loved caring for the plants,” she said. “Science is my favorite subject and I hope to be a zookeeper when I grow up.”  

Ella’s brother, John, a kindergartner who attends Frank J. Carasiti Elementary School in the Rocky Point school district, also had a project in the lab’s science fair. “I used LEGOs to learn that earthquakes can knock over towers,” he said.

Lucas Renna, a fifth-grader from East Moriches Elementary School, was excited that he got to attend the lab’s science fair. “My project was about creating bioplastic spoons to help reduce waste pollution in our environment. I really care about the animals in the ocean, so I want to find a way to help reduce trash. I hope I can be a veterinarian when I grow up.”

While students and parents were waiting for the award ceremony to start, the lab held a science expo with hands-on science activities. 

“There is some ‘down’ time while the projects are being judged and we are waiting for the awards ceremony to start,” explained David Manning, director of the lab’s Stakeholder Relations Office.

“We thought this was a good opportunity to share the excitement of some of the science being done here … and encourage these young students to think about a career in science, technology, engineering, or math,” he said, adding, “We were happy that many of the students and their families participated in the expo. It was a great day at the lab.”

For more information, please visit www.science.energy.gov.

Members of the quantum materials team, from left, Gregory Doerk, Jerzy Sadowski, Kevin Yager, Young Jae Shin and Aaron Stein. Photo from BNL

By Daniel Dunaief

Henry Ford revolutionized the way people manufactured cars through automation, speeding up the process, reducing waste and cutting costs.

Similarly, at Brookhaven National Laboratory, researchers like the newly hired Young Jae Shin, who is a staff scientist at the Center for Functional Nanomaterials, hopes to improve the process of automating the handling of thin flakes of material used in a next generation technology called quantum information science, or QIS.

Working with scientists at Harvard University and the Massachusetts Institute of Technology, Shin is looking for ways to handle these flakes, which are one atom thick, of two-dimensional layers from different materials. Stacked together, these flakes can help create structures with specific electronic, magnetic or optical properties that can be used as sensors, in communication, or encryption.

Young Jae Shin at Harvard University, where he was a post doctoral researcher. Photo from Y. Shin

“Researchers are building these kinds of customized structures manually now,” explained Kevin Yager, leader of the CFN Electronic Nanomaterials Group, in an email. “QPress [Quantum Material Press] will allow us to automate this.” At this point, QPress is just starting, but, if it works, it will “absolutely allow us to accelerate the study of these materials, allowing researchers to find optimal materials quickly,” Yager continued.

Theoretically, quantum computers overcome the limitations of other systems, Shin explained.

The flakes come from the exfoliation of thin structures taken from a bulk material. This is akin to a collection of leaves that fall around trees. According to Yager, the structures scientists hope to make would be akin to a collection of leaves from different trees, put together to make a new structure or material with specific properties. “The idea is for the robot to sift through the flakes, and identify the ‘best’ ones and to stack these together into the right structure. The ‘stacking’ will involve combining flakes of different materials,” he said.

The less desirable flakes typically are the wrong size, have tears, ripples or other defects and have contaminants. Groups of scientists are predicting the kinds of layered designs that will have desired properties.

Shin suggested that the CFN supports the needs of the end user community, as CFN is a “user-based facility.”

Physicists at Harvard and MIT plan to use the QPress to study unusual forms of superconductivity. By tapping into materials that conduct electricity without losing energy at lower temperatures, researchers may make progress in quantum computing, which could exceed the ability of the current state-of-the-art supercomputers.

Stacking the flakes can create new materials whose properties not only depend on the individual layers, but also on the angle between the stacks. Scientists can change one of these new structures from having metallic to having insulating properties, just by altering the relative angle of the atoms. The challenge, however, is that putting these fine layers together by hand takes time and generates errors which, BNL hopes, an automated approach can help reduce.

“Ultimately, we would like to develop a robot that delivers a stacked structure based on the 2-D flake sequences and crystal orientations that scientists select through a web interface” to a machine, Charles Black, the head of the Center for Functional Nanomaterials at BNL, explained in a recent BNL feature. “If successful, the QPress would enable scientists to spend their time and energy studying materials, rather than making them.”

Barring unforeseen delays, scientists anticipate that they will be able to build a machine that creates these flakes, catalogs them, stacks them and characterizes their properties within three years. These functions will be available online in stages, to allow the use of the QPress prior to its completion.

Each stage in the QPress process uses computer software to reduce the effort involved in generating and interpreting usable structures.

Minh Hoai Nguyen, an assistant professor in the Department of Computer Science at Stony Brook University and doctoral student Boyu Wang from the Computer Vision Lab at SBU are creating a flake cataloger, which will use image analysis software to scan and record the location of flakes and their properties.

“The flakes that scientists are interested in are thin and thus faint, so manual and visual inspection is a laborious and error-prone process,” Nguyen said in the BNL feature.

At BNL, Shin is one of three scientists the Upton-based facility is hiring as a part of this effort. They are also seeking robot or imaging process experts. Shin has “been in the CFN just a short while, but is already having an impact- — for instance, allowing us to handle classes of two-dimensional materials that we were not working with before,” Yager said.

The field of quantum information science is extremely competitive, with researchers from all over the world seeking ways to benefit from the properties of materials on such a small scale. The United States has been investing in this field to develop leadership science in this area.

The University of Tokyo has developed an automation system, but Shin explained that it is still not perfect.

Yager said that numerous unknown applications are “waiting to be discovered. Researchers are working hard on real quantum computers. Prototypes already exist but creating viable large-scale quantum computers is a major challenge.”

A resident of on-site housing at BNL, Shin was born in the United States and grew up in Korea. He is married to Hyo Jung Kim, who is studying violin at Boston University. 

As for the work Shin and others are doing, Yager suggested that the effort has generated considerable interest at the CFN.

“There is huge excitement at BNL about quantum research broadly and QPress in particular,” said Yager. Shin is “a big part of this — bringing new technical knowledge and new enthusiasm to this ambitious project.”