Tags Posts tagged with "Brookhaven National Laboratory"

Brookhaven National Laboratory

Brookhaven Lab Scientist Guobin Hu loaded the samples sent from researchers at Baylor College of Medicine into the new cryo-EM at LBMS. Photo from BNL

On January 8 the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory welcomed the first virtually visiting researchers to the Laboratory for BioMolecular Structure (LBMS), a new cryo-electron microscopy facility. DOE’s Office of Science funds operations at this new national resource, while funding for the initial construction and instrument costs was provided by NY State. This state-of-the-art research center for life sciences imaging offers researchers access to advanced cryo-electron microscopes (cryo-EM) for studying complex proteins as well as the architecture of cells and tissues.

Many modern advances in biology, medicine, and biotechnology were made possible by researchers learning how biological structures such as proteins, tissues, and cells interact with each other. But to truly reveal their function as well as the role they play in diseases, scientists need to visualize these structures at the atomic level. By creating high-resolution images of biological structure using cryo-EMs, researchers can accelerate advances in many fields including drug discovery, biofuel development, and medical treatments.

During the measurement of the samples, the LBMS team interacted with the scientists from Baylor College of Medicine through Zoom to coordinate the research. Photo from BNL

This first group of researchers from Baylor College of Medicine used the high-end instruments at LBMS to investigate the structure of solute transporters. These transporters are proteins that help with many biological functions in humans, such as absorbing nutrients in the digestive system or maintaining excitability of neurons in the nervous system. This makes them critical for drug design since they are validated drug targets and many of them also mediate drug uptake or export. By revealing their structure, the researchers gain more understanding for the functions and mechanisms of the transporters, which can improve drug design.  The Baylor College researchers gained access to the cryo-EMs at LBMS through a simple proposal process.

“Our experience at LBMS has been excellent. The facility has been very considerate in minimizing user effort in submission of the applications, scheduling of microscope time, and data collection,” said Ming Zhou, Professor in the Department of Biochemistry of Molecular Biology at Baylor College of Medicine.

All researchers from academia and industry can request free access to the LBMS instruments and collaborate with the LBMS’ expert staff.

“By allowing science-driven use of our instruments, we will meet the urgent need to advance the molecular understanding of biological processes, enabling deeper insight for bio-engineering the properties of plants and microbes or for understanding disease,” said Liguo Wang, Scientific Operations Director of the LBMS. “We are very excited to welcome our first visiting researchers for their remote experiment time. The researchers received time at our instruments through a call for general research proposals at the end of August 2020. Since September, we have been running the instruments only for COVID-19-related work and commissioning.”

LBMS has two cryo-electron microscopes—funded by $15 million from NY State’s Empire State Development—and the facility has space for additional microscopes to enhance its capabilities in the future. In recognition of NY State’s partnership on the project and to bring the spirit of New York to the center, each laboratory room is associated with a different iconic New York State landmark, including the Statue of Liberty, the Empire State Building, the Stonewall National Monument, and the Adam Clayton Powell Jr. State Office Building.

“By dedicating our different instruments to New York landmarks, we wanted to acknowledge the role the State played in this new national resource and its own unique identity within Brookhaven Lab,” said Sean McSweeney, LBMS Director. “Brookhaven Lab has a number of facilities offering scientific capabilities to researchers from both industry and academia. In our case, we purposefully built our center next to the National Synchrotron Light Source II, which also serves the life science research community. We hope that this co-location will promote interactions and synergy between scientists for exchanging ideas on improving performance of both facilities.”

Brookhaven’s National Synchrotron Light Source II (NSLS-II) is a DOE Office of Science User Facility and one of the most advanced synchrotron light sources in the world. NSLS-II enables scientists from academia and industry to tackle the most important challenges in quantum materials, energy storage and conversion, condensed matter and materials physics, chemistry, life sciences, and more by offering extremely bright light, ranging from infrared light to x-rays. The vibrant structural biology and bio-imaging community at NSLS-II offers many complementary techniques for studying a wide variety of biological samples.

“At NSLS-II, we build strong partnership with our sister facilities, and we are looking forward to working closely with our colleagues at LBMS. For our users, this partnership will offer them access to expert staff at both facilities as well as to a versatile set of complementary techniques,” said NSLS-II Director John Hill. “NSLS-II has a suite of highly automated x-ray crystallography and solution scattering beamlines as well as imaging beamlines with world-leading spatial resolution. All these beamlines offer comprehensive techniques to further our understanding of biological system. Looking to the future, we expect to combine other x-ray techniques with the cryo-EM data to provide unprecedented information on the structure and dynamics of the engines of life.”

LBMS operations are funded by the U.S. Department of Energy’s Office of Science. NSLS-II is a DOE Office of Science user facility.

Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Veronica Sanders. Photo from BNL

By Daniel Dunaief

If doctors could somehow stick numerous miniature flashlights in human bodies and see beneficial or harmful reactions, they would be able to diagnose and treat people who came into their offices.

That’s what Vanessa Sanders, Assistant Scientist at Brookhaven National Laboratory, is working to develop, although instead of using a flashlight, she and her colleagues are using radioisotopes of elements like arsenic. Yes, arsenic, the same element at the center of numerous murder mysteries, has helpful properties and, at low enough concentrations, doesn’t present health threats or problems.

Arsenic 72 is useful in the field of theranostics, which, as the name suggests, is a combination of therapeutics and diagnostics.

Isotopes “allow us to observe visual defects and through using these radioactive agents, we can also observe the functionality of organs,” Sanders explained in an email. These agents can assist in diagnosing people, which can inform the treatment for patients.

What makes arsenic 72 and other radioisotopes helpful is that they have a longer half-life than other isotopes, like fluorine 18, which only lasts for several minutes before it decays. Arsenic-72 has a half life of 26 hours, which matches with the life of an antibody, which circulates through bodies, searching for targets for the immune system. The combination of arsenic-72 and arsenic-77 allows the former to act as a diagnostic agent and the later as a therapeutic partner.

By attaching this radioisotope to antibodies of interest, scientists and doctors can use the decay of the element as a homing device. Using Positron Emission Tomography, agents allow for the reconstruction of images based on the location of detected events.

“When you want to use an antibody as a target for imaging, you want an isotope that will be able to ride with the antibody and accumulate at an area of interest,” Sanders said.

A radiochemist, Sanders is working to develop systems that help researchers and doctors diagnose the extent of problems, while also tracking progress in fighting against diseases. She is working to produce arsenic-72 through the decay of selenium-72.

Using the Brookhaven Linac Isotope Producer, scientists produce selenium-72. They then create a generator system where the selenium 72 is absorbed onto a solid substrate. As it decays, the solid substrate is washed to obtain arsenic-72.

Sanders is hoping to create a device that researchers could ship to clinical institutions where institutions could use arsenic-72 in further applications.

The system BNL is creating is a research and development project. Sanders and her colleagues are working to optimize the process of producing selenium-72 and evaluating how well the selenium, which has a half life of eight days, is retained and how much they can load onto generators.

“We want [arsenic 72] in a form that can easily go into future formulations,” Sanders said. “When we rinse it off that column, we hope to quickly use it and attach it to biomolecules, antibodies or proteins and use it in a biological system.”

With the increasing prevalence of personalized approaches to diseases, Sanders explained that the goal with these diagnostic tools is to differentiate the specific subtype.

A person with pancreatic cancer, for example, might present a specific target in high yield, while another patient might have the same stage cancer without the same high yield target.

“We want to have different varieties or different options of these diagnostic tools to be able to tailor it to the individual patient,” explained Sanders.

Cathy Cutler, Director of the Medical Isotope Program at BNL, said the isotopes Sanders is working on “have a lot of promise” and are “novel.” She described Sanders as “very organized” and “very much a go-getter.”

Cutler said the department feels “very lucky to get her and have her in the program.”

In her group, Sanders explained that she and her colleagues are eager to develop as many radioisotopes as possible to attach them to biomolecules, which will enable them to evaluate disease models under different scenarios. Other researchers are working with arsenic-77, which acts as a therapeutic agent because it emits a different particle.

Scientists are working on a combination of radioisotopes that can incorporate diagnostic and therapeutic particles. When the arsenic 77 destroys the cells by breaking the DNA genetic code, researchers could still observe a reduction in a tumor size. Depending on the disease type and the receptor targeted, scientists could notice a change by observing less signal.

Sanders is working on attaching several radioisotopes to biomolecules and evaluating them to see how well they are produced and separated.

“We make sure [the isotope] attaches to the thing it’s supposed to stick to” such as an antibody, she said.

A resident of Sound Beach, Sanders grew up in Cocoa, which is in central Florida. When she was younger, she wanted to be a trauma surgeon, but she transitioned to radioisotopes when she was in college at Florida Memorial University. “I liked the problem solving aspect of chemistry,” she said. While she works with cancer, she said she would like to investigate neurological diseases as well.

Sanders, who has been living on Long Island since 2017 when she started her post doctoral work at BNL, enjoys the quieter, suburban similarities between the island and her earlier life in Florida.

At six feet, one and a half inches tall, Sanders enjoys playing center on basketball teams and, prior to the pandemic, had been part of several adult leagues in the city and on Long Island, including Ladies Who Hoop and LI Hoops. She is also involved in a sorority, Zeta Phi Beta Sorority Inc, that contributes to community service efforts.

Sanders and her fiancee Joshua Morancie, who works in IT support, had planned to get married in July. They set a new date in the same month next year. If the pandemic continues to derail their party plans next year, the couple plan to wed in a smaller ceremony.

As for radioisotopes, Sanders hopes people become inspired by the opportunities radioisotopes provide for science and medicine.

“There are so many good things that come out of radioisotopes,” Sanders said. “There are so many promising advantages.”

James Misewich Photo from BNL

By Daniel Dunaief

Even as the pandemic continues to cast a pall over the prospects for the economy, the federal government is finding ways to support science. Recently, as a part of a $625 billion award to a host of institutions, the Department of Energy earmarked $115 million over five years for a part of a project led by Brookhaven National Laboratory.

The science, called quantum information systems, could have applications in a wide range of industries, from health care to defense to communications, enabling higher levels of artificial intelligence than the current binary system computers have used for decades. By benefiting from the range of options between the 0s and 1s that typically dictate computer codes, researchers can speed up and enhance the development of programs that use artificial intelligence.

The investment “underscores the confidence the federal government has with respect to how important this technology is,” said James Misewich, the Associate Laboratory Director for Energy and Photon Sciences at BNL. “Despite the challenges of the time, this was a priority.”

Local leaders hailed the effort for its scientific potential and for the future benefit to the Long Island economy.

“I have seen strong support inside of Congress and the administration for funding requests coming out of the Department of Energy for ideas on how to move the DOE’s mission forward,” said U.S. Rep. Lee Zeldin (R-NY-1). “I have also seen a very high level of appreciation and respect for BNL, its leadership, its staff, its mission and its potential.”

Zeldin said the average American spends more time than ever engaging with technologies and other discoveries that were made possible by the first quantum revolution. “Here we are on the verge of a second quantum revolution and BNL is at the forefront of it,” Zeldin said.

Zeldin sees limitless possibilities for quantum information science, as researchers believe these efforts will lead to advancements in health care, financial services, national security and other aspects of everyday life. “This next round of quantum advancements seeks to overcome some of the vulnerabilities that were identified and the imperfections in the first wave,” he said.

State Senator James Gaughran (D-Northport) expects quantum science to provide a significant benefit to the region. “We believe this is going to be a major part of our economic future,” he said. “It is a huge victory for Long Island.”

The return on investment for the state and the federal government will also materialize in jobs growth. This is “going to employ a lot of people,” Gaughran said. “It will help to rebuild the type of economy we need on Long Island. The fact that we are on the front lines of that will lead to all sorts of private sector development.”

While the technology has enormous potential, it is still in early enough stages that research groups need to work out challenges before they can fully exploit quantum technology. BNL, specifically, will make quantum error correction a major part of their effort.

As quantum computers start working, they run into a limitation called a noisy intermediate scale quantum problem, or NISQ. These problems come from errors that lower the confidence of getting the right answer. The noise is a current limitation for the best quantum computers. “They can only go so far before you end up with an error that is fatal” to the computing process, Misewich said.

By using the co-design center for quantum advantage, Misewich and his partners hope to use the materials that “beat the NISQ error by having the combination of folks with a great team that are all talking to one another.”

The efforts will use a combination of classical computing and theory to determine the next steps in the process of building a reliable quantum information system-driven computer.

Misewich’s group is also focusing on communication. The BNL scientists hope to provide a network that enables distributed computing. In classical computing, this occurs regularly, as computer scientists distribute a problem over multiple computers.

Similarly, with quantum computing, scientists plan to distribute the problem across computers that need to talk to each other.

Misewich is pleased with the combination of centers that will collaborate through this effort. “The federal government picked these centers because they are somewhat complementary,” he said. The BNL-led team has 24 partners, which include IBM, Stony Brook University, SUNY Polytechnic Institute, Yale University, Princeton University, the Massachusetts Institute of Technology, Harvard University, Columbia University and Howard University, among others.

“We had to identify the best team and bring in the right people to fill the gaps,” Misewich explained.

Using a combination of federal funds and money from New York State, BNL plans to build a new beamline at the National Synchrotron Lightsource II, which will operate at very low temperatures, allowing scientists to study the way these materials work under real word conditions.

BNL would like the work they are doing to have an application in calculations in three areas: the theory of the nucleus, quantum chemistry, which explores ways to design better materials, and catalysis.

A quantum computer could help make inroads in some challenging calculations related to electron-electron interactions in superconducting materials, Misewich said, adding that the entire team feels a “tremendous sense of excitement” about the work they are doing.”

Indeed, the group has been working together for close to two years, which includes putting the team in place, identifying the problems they want to tackle and developing a compelling strategy for the research to make a difference.

The group is expecting to produce a considerable amount of research and will likely develop various patents that will “hopefully transfer the technology so companies can start to build next generation devices,” Misewich said.

Along with local leaders, Misewich hopes these research efforts will enable the transfer of this technology to a future economy for New York State.

This effort will also train a numerous graduate and post doctoral students, who will be the “future leaders that are going to drive that economy,” Misewich said.

The research will explore multiple levels of improvement in the design of quantum computers which they hope will all work at the same time to provide an exponential improvement in the ability of the computer to help solve problems and analyze data.

Anže Slosar. Photo from BNL

By Daniel Dunaief

Ever since Ancient Romans and Greeks looked to the stars at night, humans have turned those pinpricks of light that interrupt the darkness into mythological stories.

Two years from now, using a state-of-the-art telescope located in Cerro Pachón ridge in Northern Chile, scientists may take light from 12 billion light years away and turn it into a factual understanding of the forces operating on distant galaxies, causing the universe to expand and the patterns of movement for those pinpricks of light.

While they are awaiting the commissioning of the Vera C. Rubin Observatory, researchers including Brookhaven National Laboratory Physicist Anže Slosar are preparing for a deluge of daily data — enough to fill 15 laptops each night.

An analysis coordinator of the Large Synoptic Survey Telescope’s dark energy science collaboration, Slosar and other researchers from around the world will have a unique map with catalogs spanning billions of galaxies.

Anže Slosar

“For the past five years, we have been getting ready for the data without having any data,” said Slosar. Once the telescope starts producing information, the information will come out at a tremendous rate.

“Analyzing it will be a major undertaking,” Slosar explained in an email. “We are getting ready and hope that we’ll be ready in time, but the proof is in the pudding.”

The Vera C. Rubin Observatory is named for the late astronomer who blazed a trail for women in the field from the time she earned her Bachelor’s Degree from Vassar until she made an indelible mark studying the rotation of stars.

Slosar called Rubin a “true giant of astronomy” whose work was “instrumental in the discovery of dark matter.”

Originally called the Large Synoptic Survey Telescope (LSST), the Rubin Observatory has several missions, including understanding dark matter and dark energy, monitoring hazardous asteroids and the remote solar system, observing the transient optical sky and understanding the formation and structure of the Milky Way.

The study of the movement of distant galaxies, as well as the way objects interfere with the light they send into space, helps cosmologists such as Slosar understand the forces that affect the universe as well as current and ancient history since the Big Bang.

According to Slosar, the observatory will address some of its goals by collecting data in five realms including examining large structures, which are clustered in the sky. By studying the statistical properties of the galaxies as a function of their distance, scientists can learn about the forces operating on them.

Another area of study involves weak lensing. A largely statistical measure, weak lensing allows researchers to explore how images become distorted when their light source passes near a gravitational force. The lensing causes the image to appear as if it were printed on a cloth and stretched out so that it becomes visually distorted.

In strong lensing, a single image can appear as two sources of light when it passes through a dense object. Albert Einstein worked out the mathematical framework that allows researchers to make these predictions. The first of thousands of strong lensing effects was discovered in 1979. Slosar likens this process to the way light behind a wine glass bends and appears to be coming from two directions as it passes around and through the glass.

The fourth effect, called a supernova, occurs when an exploding star reaches critical mass and collapses under its own weight, releasing enough light to make a distant star brighter than an entire galaxy. A supernova in the immediate vicinity of Earth would be so bright, “it would obliterate all life on Earth.”

With the observatory scanning the entire sky, scientists might see these supernova every day. Using the brightness of the supernova, scientists can determine the distance to the object.

Scientists hope they will be lucky enough to see a supernova in a strongly lensed galaxy. Strong lensing amplifies the light and would allow scientists to see the supernova that are otherwise too distant for the telescope to observe.

Finally, the observatory can explore galaxy clusters, which are a rare collection of galaxies. The distribution of these galaxies in these clusters and how they are distributed relative to each other can indicate the forces operating within and between them.

The BNL scientist, who is originally from Slovenia, is a group leader for the BNL team, which has seven researchers, including post docs. As the analysis coordinator of the dark energy science collaboration, he also coordinates 300 people. Their efforts, he said, involve a blend of independent work following their particular interests and a collective effort to prepare for the influx of data.

Slosar said his responsibility is to have a big-picture overview of all the pieces the project needs. He is thrilled that this project, which was so long in the planning and development stage, is now moving closer to becoming a reality. He said he has spent five years on the project, while some people at BNL have spent closer to 20 years, as LSST was conceived as a dark matter telescope in 1996.

Scientists hope the observatory will produce new information that informs current understanding and forms the basis of future theories.

As a national laboratory, BNL was involved in numerous phases of development for the observatory, which had several different leaders. The SLAC National Accelerator in Stanford led the development of the camera that will be integrated into the telescope. BNL will also continue to play a role in the data analysis and interpretation.

“Fundamentally, I just want to understand how the universe operates and why it is like this and not different,” said Slosar.

Ivar Strand Photo courtesy of BNL

By Daniel Dunaief

Ivar Strand had to put on a suit at home to interview virtually for a new job.

In the midst of the pandemic, Brookhaven National Laboratory was looking for a Manager of Research Partnerships in the Strategic Partnership Program and, despite the fact that the lab was limiting the people who were on site, was moving forward to fill a job opening.

“It was a strange situation,” Strand said, but the job piqued his interest, particularly because he’d be working with Martin Schoonen, the leader of BNL’s Strategic Partnership Programs office and an associate laboratory director for environment, biology, nonproliferation and national security. Schoonen and Strand, who worked together at Stony Brook in the late 1990’s, have known each other for over 25 years.

While Strand worked at Stony Brook as an Assistant Vice President of Sponsored Programs, he had a visiting appointment at BNL for five years, from 2005 to 2010. Several of the staff at BNL “remembered who I was, which made the transition a little bit easier,” he said.

Strand most recently worked at Long Island University, where he was the Executive Director in the Office of Sponsored Projects.

Schoonen was pleased to welcome Strand to the BNL fold. “[He is] taking on a pivotal role to develop contractual arrangements with potential partners and assist with growing and diversifying the labs funding sources,” Schoonen said in a statement.

In effect, Strand is facilitating collaborations among institutions. He will facilitate not only the connections and collaborations, but also encourage broadening and deepening professional connections to create either project specific or ongoing strategic partnerships

Strand will work to increase the awareness of the capabilities BNL can provide to researchers, entrepreneurs, and investors. The main drawback in a job he started on May 26 has been that he hasn’t been able to “build face-to-face relationships,” he said. Speaking with people for the first time through web-based platforms is not the same as running into someone who is walking across the site.

Building the relationship with the Department of Energy also represents a new challenge for Strand, who has previously worked with educational institutions as well as with Northwell Health.

“I spent my whole career building partnerships at various research institutions,” he said. After facilitating those collaborations, Strand has entered into agreements and then moved one. At BNL, he has the added dynamic of “making sure it satisfies the requirements of the DOE.” The scope of his work comprises all the research funding coming into the lab outside of the direct money that comes from the DOE, which represents about 90 percent of the funds for research at the lab.

Some of these other initiatives are collaborative, which involve DOE funds that also have a requirement to find a company to contribute financially, such as the Technology Commercialization Fund.

Working with finance and departmental business managers, Strand oversees the non-direct DOE money that comes in. When educational institutions and companies participate, particularly to supply funding, Strand and the strategic partnership team become a part of the conversation.

BNL often competes against the other national labs for major projects. Once the government selects a winner, as it did for the construction of the Electron Ion Collider, the DOE often asks the lead on the project to tap into the expertise and talents of the other institutions. When BNL recently won the EIC contract over Jefferson Laboratory in Virginia, the DOE asked BNL to partner with Jefferson to build the facility. New York State originally agreed to contribute $100 million to the construction of the EIC. Strand said the lab is hopeful that the commitment would come through.

In addition to the scientific discoveries that the EIC will bring, it is also a construction project that will provide the state with jobs. “I’m involved in some of the discussions in order to provide information about the project,” Strand said.

The transition to a government lab will require Strand to maneuver through structured agreements from the DOE, which is a bit of a challenge. The DOE uses structured agreements, while educational institutions also do but often are willing to use the agreements the sponsors propose.

Strand is pleased that BNL recently received approval to participate in the Atom Consortium, which was started by Glaxo and the University of California at San Francisco. The negotiation had been going on for several years. “It allows us to enhance our big data computing capabilities and expertise,” he explained.

Strand is excited about rejoining BNL. “I’ve always wanted to work in the lab and understand how best to build collaborations under the government umbrella,” he said.

Strand hoped his unconventional approach to some of the partnership challenges will work in the context of the structured environment of a national laboratory.

Indeed, in 2007, when he was working at Stony Brook, the university received the funds to buy a supercomputer. The two institutions, however, had decided to house the supercomputer at BNL, which made it a “challenging transaction” for all parties. He and others had to help Stony Brook become an enlisted partner, which allowed BNL to house the supercomputer on site.

In the bigger picture, Strand said he and Schoonen are reviewing where the lab will be from a strategic perspective in five years. In addition to industry, they are looking to collaborate with other federal sponsors with whom they haven’t traditionally partnered. They have to make sure that these efforts conform with DOE’s growth agenda.

A first-generation American whose parents were born in Norway, Strand said his parents met in the United States. A resident of South Setauket, Strand lives with his wife Maritza, who is an implementation specialist for ADT payroll. A tennis player and golfer, Strand alternates visiting and hosting his brother, who lives in Norway and is a veterinarian.

Strand is looking forward to his ongoing collaborations with Schoonen. “Having worked with him in the past, I have a lot of respect” for Schoonen, Strand said. “I jumped at the chance to be reunited with him. He’s an unbelievably great guy to work for.”

Kahille Dorsinvil. Photo courtesy of BNL

By Daniel Dunaief

The show must go on, even in science.

After 70 years of bringing residents into their high tech facility to see some of the cutting-edge technology for themselves and to interact with the scientists from around the world who ask questions about the nature of matter, the universe, energy, weather and myriad other questions, Brookhaven National Laboratory plans to continue the tradition of Summer Sundays, albeit virtually.

Starting this Sunday, Aug. 16, with a virtual explanation video and question and answer session with several scientists, the Department of Energy laboratory will welcome those curious about their labs back, albeit virtually. The first session will begin with a video about the National Synchrotron Lightsource II, a facility that cost close to $1 billion to construct and that has numerous beamlines that enable researchers to see everything from the molecules of a battery in action to cutting edge interactions in biochemistry.

This week’s session, which will run from 3:30 to 5 p.m. will be available on BNL’s YouTube channel. Participants who would like to ask questions during the session can submit them in writing through the lab’s social media accounts or by sending an email to [email protected] A moderator will direct questions to a panel. The other programs are on August 23rd for the Center for Functional Nanomaterials and August 30th for the Relativistic Heavy Ion Collider.

“Summer Sundays are a large public event and clearly that’s not something anyone is doing right now,” said Kahille Dorsinvil, Principal Stakeholder Relations Specialist and Summer Sundays Coordinator at BNL, who has been working at BNL for 14 years. “People probably thought they’d see us in 2021, [but] we’re still doing science and we’re still trying to share what we’re doing.”

The virtual event has the advantage of allowing the lab to serve as a host for a much larger group of people, who aren’t limited by seats or by social distancing rules. “We tried to make it so there was no limit to who could watch or participate with us online,” explained Dorsinvil.

Participants will watch a short video tour and will then have an opportunity to interact with panelists. The videos will include footage shot from numerous angles.

The participants during a typical in-person Summer Sundays event range across the age spectrum, as BNL promotes the effort as a family event.

Summer Sundays appeal to residents who have already attended similar events in prior years. Indeed, when the lab asks visitors if this is their first time, about half have been to the site before. “Some are our best friends come every year,” Dorsinvil said.

Dorsinvil grew up on Long Island, visiting the lab when she was in ninth grade at Newfield High School in Selden. Through the program, and apprenticeship program, which currently exists as STEM prep for rising tenth graders, she focused on a different science topic each week, including basic chemistry and the environment.

Dorsinvil was already interested in science, but visiting BNL “made a difference in how I continued” in the field, she said.

Seven students took top honors and 15 others received honorable mentions in the first-ever virtual version of the annual elementary school science fair sponsored by the U.S. Department of Energy’s Brookhaven National Laboratory in Upton. Girls and boys in kindergarten to grade 6 entered 129 science and engineering projects for the competition. They represented 38 elementary schools across Suffolk County.

The seven students to receive top honors as well as medals and ribbons are kindergartener Jude Roseto of Cutchogue East Elementary School, Mattituck-Cutchogue Union Free School District, “Friction with Bubbles”; first grader Emerson Spooner of Raynor Country Day School, “Save the Earth: One Plastic Straw at a Time”; second grader Sara Jain of Tamarac Elementary School, Sachem Central School District, “Shrink It Up”; and third grader Mia Trani of Fort Salonga Elementary School, Kings Park Central School District, “Housing the Homeless.”

Top honors also went to fourth grader Rebecca Bartha of Raynor Country Day School, “Dynamic Duckweed: A Solution to Pollution in Local Water”; fifth grader Reilly Riviello of Cherry Avenue Elementary School, Sayville Public Schools, “What Material is the best to protect your property from Flash Flooding” and sixth grader Emma Tjersland of Hauppauge Middle School, Hauppauge School District, “Drug Facts: Impacts of Medicine Exposure on Daphnia Magna Heart Rate.”

“Thinking like scientists and engineers is so important for students — asking questions, testing assumptions, drawing conclusions, and thinking about future research,” said Amanda Horn, a Brookhaven Lab educator who coordinated both the virtual science fair and a new Science Share program. “The Lab has hosted science fairs for years to encourage students and we didn’t want COVID-19 to stop us in 2020.”

Science fairs at Brookhaven Lab were typically held in person at the Lab site and students, their families, teachers, and school administrators were invited to attend. With schools closed and Brookhaven Lab’s site mostly inaccessible to limit the spread of COVID-19, Horn, Scott Bronson and their colleagues in Brookhaven’s Office of Educational Programs (OEP) quickly adjusted plans to hold the 2020 science competition virtually.

As in years past, students first qualified for the Lab’s fair by winning their schools’ “local” science fairs, some of which were also held virtually. Projects completed by individual students and groups were accepted — one project per grade per school.

Instead of bringing projects to Brookhaven Lab for an all-day on-site event, parents and teachers submitted photos of students’ projects. OEP staff then distributed the photographs and a rubric among 23 judges, comprising Brookhaven Lab scientists, engineers, and technical staff as well as teachers from local elementary schools. To maintain objectivity and limit potential biases, information such as students’ names, schools, and districts was not shared.

The 15 students who received Honorable Mentions were kindergarteners Taran Sathish Kumar of Bretton Woods Elementary School, Hauppauge School District, “Strength of Spaghetti” and Evelyn Van Winckel of Fort Salonga Elementary School, Kings Park Central School District, “Are Your Hands Clean?”; first-graders Mason Rothstein of Lincoln Avenue Elementary School, Sayville Public Schools, “3,2,1…Let It Rip” and John Henry of Frank J. Carasiti Elementary School, Rocky Point Union Free School District, “Lego Rubber Band Cars”; and second-graders Agnes Van Winckel of Fort Salonga Elementary School, Kings Park Central School District, “The Flight of a Football” and Cassie Danseraeu and Katelynn Hausmann of West Middle Island Elementary School, Longwood Central School District, “Can Aloe Vera Juice Save Strawberries from Mold?”

Honorable mentions were also given to third-graders Mihir Sathish Kumar of Bretton Woods Elementary School, Hauppauge School District, “Strength of Electromagnets” and Matthew Mercorella of Sunrise Drive Elementary School, Sayville Public Schools, “Think Twice Before Melting the Ice”; fourth-graders Samuel Canino of R.J.O. Intermediate School, Kings Park Central School District, “Riddled With Puck Shot,” Jack Gomez of R.J.O. Intermediate School, Kings Park Central School District, “Infinipower” and Madelyn Kalinowski of Laurel Hill School, “Wash Away Germs”; fifth-graders Alexandra Barry of Remsenburg-Speonk Elementary School, Remsenburg-Speonk Union Free School District, “Mutiny on the Bounty” and Gavin Pickford of R.J.O. Intermediate School, Kings Park Central School District, “Is This The Last Straw”; and six-graders Karly Coonan of Raynor Country Day School, “The Last Straw” and Pranav Vijayababu, Hauppauge Middle School, Hauppauge School District, “Save Our Seas.”

“Suffolk County, New York State, the country, and the world need scientists and engineers now and in the future. The students in this science fair are young, but they aren’t too young to have fun with investigative science and engineering processes,” said Scott Bronson, Brookhaven Lab’s manager for K–12 programs.

“Once again, the students who participated were exceptional. Their projects showed it. Congratulations to each of them. And, ‘Thank you,’ to every parent, teacher, mentor, and volunteer who helped them — and will continue to help them along the way.”

For more information, visit https://www.energy.gov/science/.

Photos courtesy of BNL

Jessica Liao, a junior at Ward Melville High School in East Setauket, garnered the top spot in the 2020 Model Bridge Building Contest, held virtually and broadcast online for the first time this year by the U.S. Department of Energy’s Brookhaven National Laboratory. 

Students from 17 Nassau and Suffolk County high schools designed and constructed a total of 190 model bridges intended to be simplified versions of real-world bridges. In this contest, efficiency is calculated from the bridge’s weight and the weight the bridge can hold before breaking or bending more than one inch. The higher the efficiency, the better the design and construction.

Student competitors typically bring their bridges to the Lab to be tested. But for this year’s competition, to help maintain social distance during the developing coronavirus pandemic, engineers at Brookhaven ran the tests and broadcast them to the students virtually.

Liao beat out the competition by building a bridge that weighed 17.25 grams and supported 59.44 pounds. Her bridge had an efficiency of 1562.98, the number of times its own weight the bridge held before breaking or bending more than one inch.

Aidan Wallace, a junior from Walt Whitman High School placed second with a bridge that weighed 17.54 grams, held 51.01 pounds, and had an efficiency of 1319.14.

Third place went to junior Michael Coppi from Ward Melville High School. Coppi’s bridge weighed 9.02 grams, held 25.01 pounds, and had an efficiency of 1271.77.

Sophia Borovikova, a senior from Northport High School won the aesthetic award for the best-looking bridge. Her bridge took 10th place in the contest, weighing 16.17 grams and holding 33.29 pounds for an efficiency of 933.83.

The construction and testing of model bridges promotes the study and application of principles of physics and engineering and helps students develop “hands-on” skills, explained Ken White, manager of Brookhaven Lab’s Office of Educational Programs. Students get a flavor of what it is like to be engineers, designing structures to a set of specifications and then seeing the bridges they build perform their function.

“These same skills are put to the test for the Lab’s engineers on projects like the National Synchrotron Light Source II and the Relativistic Heavy Ion Collider, both world-class research tools that operate as DOE Office of Science user facilities for scientists from all across the world, and the upcoming Electron-Ion Collider,” said White. “Preparing the next generation of engineers to work on projects like these is important to the Lab and the Department of Energy.”

Brookhaven Lab’s Office of Educational Programs coordinated the Regional Model Bridge Building Contest. Now, the two top winners — Liao and Wallace — are eligible to enter the 2020 International Bridge Building Contest in May. For this year’s contest, contestants will mail their bridges to the Illinois Institute of Technology in Chicago, where university faculty and engineers will run the breakage tests and post the results online.

Prior to COVID-19-related school closures on Long Island, Gillian Winters, a science teacher from Smithtown High School East, conducted a bridge competition in her classroom to help students prepare for the contest at Brookhaven. She also built a bridge of her own to compete among students.

“My favorite part is to see the creativity the kids can come up with because they’re all very different,” Winters said. “Some of them have a pretty straightforward way of doing things, and some of them want to put a new twist on things. I love to see how they develop, and by the end, they really have learned a little bit about how to follow the instructions and what a specification really means.”

Borovikova said she plans to pursue civil and environmental engineering or mechanical engineering after graduation. “I really enjoyed the creative process — trying to figure out all of the different parts that are going to come together to form the bridge,” she said. “Designing the bridge was actually a pretty quick process for me because I like to try to imagine concepts right off the top of my head. Then actually letting the bridge come to fruition was really interesting for me, because I saw my design come to life.”

Wallace said he spent many hours creating his bridge and making sure it would qualify. “From this contest, I have learned more about hands-on building and the engineering of bridges,” he said. “I was happy with my results, but of course would have liked to place first!”

The award ceremony for the competition is currently pending, but the Lab hopes to hold it before the end of the academic year, according to Susan Frank, the competition coordinator and educator at the Lab’s Science Learning Center. For more information, please visit www.science.energy.gov.

From left, Kerstin Kleese van Dam, Brand Development Manager at BNL Diana Murphy, and John Hill at the Practical Quantum Computing Conference (Q2B) in San Jose, CA, Dec. 2019. Photo courtesy of Kerstin Kleese van Dam

By Daniel Dunaief

Brookhaven National Laboratory is putting its considerable human and technical resources behind the global effort to combat the coronavirus.

John Hill, the director of the National Synchrotron Lightsource II, is leading a working group to coordinate the lab’s COVID-19 science and technology initiatives. He is also working on a team to coordinate COVID-19 research across all the Department of Energy labs.

“We are proud that the tools we built at BNL, which include the NSLS II, which took 10 years to build and cost about a billion dollars,” will contribute to the public health effort, Hill said. “We feel that science will solve this problem, and hopefully soon. It’s great that BNL is a part of that fight.”

In addition to using high-technology equipment like the NSLS II to study the atomic structure of the virus and any possible treatments or vaccines, BNL is also engaging a team led by Kerstin Kleese van Dam, who is the director of BNL’s Computational Science Initiative.

According to Hill, the combination of the physical experiments and the computing expertise will provide a feedback loop that informs the efforts with each team. Kleese van Dam’s team is using supercomputers to run simulated experiments, matching up the atomic structure of the viral proteins with any potential drugs or small molecules that might interfere with its self-copying and life-destroying efforts.

The computer simulations will enable researchers to narrow down the list of potential drug candidates to a more manageable number. Experimental scientists can then test the most likely  treatments the computer helped select.

Across the world, the scale of the science to which BNL is contributing is even larger than the Manhattan Project that led to the creation of the atomic bomb during World War II, said Hill.

In just three months since scientists in China produced the genetic sequence of the coronavirus, researchers around the world have produced over 15,000 research articles, some of which have been published in scientific journals, while researchers have self-published others to share their findings in real time.

Working with computer scientists from different fields at BNL, Kleese van Dam is helping researchers screen through the abundant current research on COVID-19. The number of papers is “accelerating at a rate no one can read,” Hill explained. 

Kleese van Dam and four of her scientists are setting up a natural language processing interface so scientists can type in what they want to find, such as a protein binding with a specific complex, and put it into a search engine. She is working on an initial service that she hopes to expand. Additionally, the computer science team is planning to start a project to look at epidemiological data to determine how various people might react to different treatment.

Kleese van Dam and her team are also working to build an archive in the United States that they hope will host at least the results of the Department of Energy funded projects in medical therapeutics. “[We are] convinced that this would provide a much better starting point for future outbreaks, as well as providing a near term clearing house of results,” she explained in an email.

As for the work at the synchrotron, Hill said that the high-energy x-rays can determine the specific atomic configuration of proteins in the virus.

The NSLS II, which was designed to study the structure of batteries, geology and plant cells, among other objects, can look at “small protein crystals better than anywhere else in the world.”

The virus relies on a docking mechanism that allows it to enter a cell and then insert its malevolent RNA to disrupt the cell’s normal function. Understanding how the pieces come together physically can allow researchers to look for small molecules or approved drugs that could interfere with the virus.

One of the many advantages of the synchrotron over protein crystallography is that the NSLS II doesn’t need as many copies of proteins to determine their atomic structure. Hill said protein crystallography needs samples that are about 100 to 200 microns in size, which is about the width of a human hair, which can take weeks to months to years to grow. This is a “bottleneck in the whole process” of solving protein structure, he said.

On the other hand, the NSLS II only requires samples of about a micron in size. This “greatly speeds up the process,” he added. Two different groups of researchers, from the pharmaceutical industry and from academia and national labs, are conducting experiments on the NSLS II.

Hill said he was receiving viral proteins scientists believe will bind with the virus from collaborators in the United Kingdom. The scientific process is as quick and collaborative as it’s ever been among researchers, he said. The proteins arrived recently.

That collaborative process would have “taken months to set up under normal circumstances,” Hill said. Instead, it only took a few days.

At the same time, BNL is constructing a cryo-electron microscope, which doesn’t have the same resolution as the NSLS II, but does not need crystals and can study individual proteins. Researchers need about 10,000 of them and can average the images together. The resolution is five to 10 times worse than x-rays.

BNL is accelerating the construction of the cryo EM and hope to have the first beam in mid-May. Commissioning will take some extra time, Hill said. The first structure of the coronavirus spike protein was determined by using an electron microscope.

For Hill and Kleese van Dam, who each have dedicated much of their time to these efforts, the opportunity to contribute to a project that could have implications for a public that is battling this disease is rewarding and offers reasons for optimism. 

“To be able to help at such a scale is indeed humbling and gratifying,” said Kleese van Dam. “Science is going to solve this problem,” added Hill. “That gives me comfort.”

Daniel Mazzone. Photo courtesy of BNL

By Daniel Dunaief

Like many people who hunch down when they step into cold air, many materials shrink when exposed to the frigid temperatures.

That, however, is not the case for samarium sulfide when it has impurities such as yttrium sprinkled throughout. Indeed, the material goes through negative thermal expansion, in which cold air causes it to expand.

Daniel Mazzone, a post-doctoral fellow in Brookhaven National Laboratory’s Condensed Matter Physics and Materials Science Department who is joining the Paul Scherrer Institute in May, wanted to know how this happened.

Working with synchrotrons on three different continents, at the National Synchrotron Lightsource II at BNL, the Soleil synchrotron in France and the SPring-8 synchrotron in Japan, Mazzone and a team of scientists explored the properties of this metal.

The work that led to an understanding of the properties that made the metal expand in cold temperatures could have applications in a range of industries. Some companies use materials that balance between expansion and contraction to prevent the lower temperatures from altering their configuration. 

Mazzone said the expansion properties can be fine tuned by altering the mixture of materials. With these results, he and his colleagues “bring a new material class to the focus of the community,” he wrote in a recent email.

So, what is happening with this samarium sulfide mixed with yttrium particles?

In a paper in the journal Physics Review Letters, Mazzone and his partners, including Ignace Jarrige, who is the group leader of the Soft Inelastic X-ray Scattering Beamline, described the way mobile conduction electrons screen the samarium ions, causing a fractional transfer of an electron into the outermost electronic samarium shell. Quantum mechanical rules govern the process.

Using the Pair Distribution Function beamline at NSLS-II, the researchers performed diffraction experiments. The scientists determined how the x-rays bounced off the samarium sample at different temperatures. The sample was contained in a liquid helium cooled crysotat.

“We track how the x-rays bounce off the sample to identify the locations of atoms and the distances between them,” Milinda Abeykoon, the lead scientist of the PDF beamline, said in a press release. “Our results show that, as the temperature drops, the atoms of this material move farther apart, causing the entire material to expand up to three percent in volume.”

In France and Japan, the researchers also used x-rays to explore what electrons were doing as temperatures changed.

“These ‘x-ray absorption spectroscopy’ experiments can track whether electrons are moving into or out of the outermost ‘shell’ of electrons around the samarium atoms,” Jarrige explained in a press release.

The valence electrons in samarium, which are the outermost electrons, are in a shell that is under half full. That means that they are more reactive than they would be if they the shell was full, as it is with noble gases.

The researchers observed that a fractional part of the electrons are transferred from the conduction band in the outermost samarium shell. This causes the samarium to expand, as the outermost shell needs to accommodate an extra electron. When this happens for the numerous ions in the system, this can have an important effect.

By working with Maxim Dzero, who is a theoretical physicist at Kent State University, the scientists were able to apply the Kondo effect, which was named after solid-state physicist Jun Kondo. Back in the 1960s, Kondo explained how magnetic impurities encourage electron scattering at low temperatures, which not only increases the volume of the materials, but can also increase their electrical resistance.

In the Kondo effect, electrons align their spins in the opposite direction of the larger magnetic articles to cancel its magnetism. For the samarium material, the outer shell moves around the atomic core, creating the magnetic moment of the samarium ion. 

“For some elements, because of the way the outer shell fills up, it is more energetically favorable for electrons to move out of the shell,” Jarrige explained in a press release. “But for a couple of these materials, the electrons can move in, which leads to expansion.”

A phone call among several of the collaborators led them to believe the process involved with the samarium was akin to the one that causes water to expand when it freezes. As scientists build on this understanding, they will likely need to create or search for similar but alternative materials to samarium sulfide, Mazzone said. 

Samarium sulfide is incredibly expensive. Materials scientist will need to find the right elements that can “do the same job,” he explained. “The next step is to find the materials that are cheaper and optimize it.”

Mazzone, who is currently living in his home country of Switzerland, is preparing for his next job, which is expected to start next month.

He and his wife Fabienne, who is an economist at the ski producer Stöckli, enjoyed living on Long Island during his two year post-doctoral research experience.

“Switzerland is landlocked and surrounded by mountains,” said Mazzone, who speaks German, French, English and some Italian. “Having a beach at the front door [when they lived on Long Island] was beautiful.”

Dedicated climbers, the Mazzones traveled to the Shawangunk and Adirondack mountains while they lived on Long Island to find an outlet for their passion for rock climbing.

As for his future work, Mazzone anticipates remaining in academia where he would like to continue his research and teach. He plans to conduct additional experiments on the Kondo effect. These materials also feature properties such as unconventional superconductivity and other quantum phases that may help with quantum computing.