Search

scientists collaborate - search results

If you're not happy with the results, please do another search

Mehdi Damaghi. Photo from Stony Brook Hospital

By Daniel Dunaief

Do the birds on the Galapagos Islands, with their unique coloration, differently shaped beaks and specific nesting places, have anything to do with the cancer cells that alter the course of human lives?

For Mehdi Damaghi, Assistant Professor in the Department of Pathology at the Renaissance School of Medicine at Stony Brook University, the answer is a resounding, “Yes.”

Damaghi uses the same principles of evolutionary biology to understand how cancer, which resides within human genes, works to adapt, as it tries to win the battle to survive.

“What we try to understand is the Darwinian principals of cancer,” said Damaghi. Cancer “adapts and reprograms themselves” to their environment to survive.

Damaghi, who arrived at Stony Brook four months ago from Moffitt Cancer Center, plans to address numerous questions related to cancer. He recently received a $4 million grant from the Physical Science in Oncology program (PSON) through the National Institutes of Health/ National Cancer Institute. Working with cancer biologists, clinicians, and computational scientists, he plans to define and understand cancer’s fitness.

“We are trying to study the core evolution of cancer cells and the normal stroma around them,” said Damaghi. “We are looking at the evolution of the tumor and some of the host cells.”

Cancer biologists are trying to build mathematical and theoretical models to explore the playbook cancer uses when confronted with threats, either in the form of a body’s natural defenses against it or from therapies against which it can, and often does, develop resistance.

Treating cancer could involve using adaptive therapy, which could enable people to control and live with cancer longer, Damaghi suggested.

In studying cancer’s phenotype, or the way the disease is expressed and survives, he hopes to understand factors in the microenvironment. Many cancers, he reasons, become more problematic as people age. Indeed, centuries ago, cancer wasn’t as prevalent as it is today in part because life expectancy was shorter.

Damaghi also has an evolutionary model to explore metastasis, in which cancer spreads from one organ or system to other parts of the body. He is looking at the earliest stages of breast cancer, to see what factors some of these cancers need or take from the environment that enables them not only to develop into breast cancer, but also to spread to other systems.

Through the microenvironment, he is looking for biomarkers that might signal a potential tumor development and metastasis long before a person shows signs of an aggressive form of the disease.

“We look at the tumor as a part of a whole ecosystem that can have different niches and habitats,” he said. “Some can be hypoxic and oxidative, and others can be like a desert on Earth, where not much grows and then cancer evolves.”

Damaghi challenges cells in a culture or organoids, which are miniature, three-dimensional live models of human cells, with different microenvironmental conditions to see how they respond. He exposes them to hormones, immune cells, and hypoxic conditions.

“We try to understand what is the adaptation mechanism of cancer to this new microenvironment and how can we push them back to the normal phenotype,” he said.

Like other scientists, Damaghi has demonstrated that many of these cancer cells use sugar. Removing sugar caused some of the cancer to die.

Increasing the survival for patients could involve knowing what kinds of micro-environments cancer uses and in what order. Deprived of sugars, some cancers might turn to amino acids, dairy or other sources of food and energy.

Damaghi thinks researchers and, eventually, doctors, will have to approach cancer as a system, which might have a patient-specific fingerprint that can indicate the resources the disease is using and the progression through its various diseased stages.

Choosing Stony Brook

Damaghi appreciates the depth of talent in cancer sciences at Stony Brook University. He cited the work of Laufer Center Director Ken Dill and Cancer Center Director Yusuf Hannun. He also suggested that the Pathology Department, headed by Ken Shroyer, was “very strong.”

For their part, leaders at Stony Brook were pleased to welcome, and collaborate with, Damaghi. Hannun suggested Stony Brook recruited Damaghi because his research “bridges what we do in breast cancer and informatics.”

Shroyer, meanwhile, has already started collaborating with Damaghi and wrote that his new colleague’s focus on breast cancer “overlaps with my focus on pancreatic cancer.”

To conduct his research, Damaghi plans to look at cells in combination by using digital pathology, which can help reveal tumor ecosystems and niches.

He also appreciated the work of Joel Saltz, the Founding Chair in the Department of Biomedical Informatics. “In the fight against cancer, we all need to unite against this nasty disease,” Damaghi said. “From looking at it at different angles, we can understand it first and then design a plan to defeat it.”

Originally from Tehran, Iran, Damaghi is the oldest of five brothers. He said his parents encouraged them to explore their curiosity.

Damaghi, whose wife Narges and two daughters Elissa and Emilia are still in Tampa and hope to join him before long, has hit the ground running at Stony Brook, where he has hired three postdoctoral researchers, a lab manager, four PhD students, two master’s candidates, and three undergraduates.

Damaghi is inspired to conduct cancer research in part because of losses in his family. Two grandparents died from cancer, his aunt has breast cancer, and his cousin, who had cancer when he was 16, fought through the disease and is a survivor for 20 years.

Damaghi bicycles and plays sports including soccer. He also enjoys cooking and said his guests appreciate his Persian kebobs.

As for his arrival in Stony Brook, he said it was “the best option for me. It’s a great package and has everything I need.”

The U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has awarded a $61.8 million contract to Plainview, NY-based E.W. Howell to build the Lab‘s new Science and User Support Center (SUSC). This new facility is part of a larger effort to redevelop an existing on-site apartment area near Brookhaven Lab‘s entryway. General contractor E.W. Howell will oversee SUSC construction, planned to start in the first quarter of 2022.

With approximately 75,000 gross square feet, the SUSC will serve as a welcome center for guests, researchers, and facility users arriving at Brookhaven Lab. It will offer modern, configurable conference space for scientists to collaborate and office areas for Lab employees.

The future Science and User Support Center

The SUSC is the first building planned for Discovery Park, a new vision for the gateway to Brookhaven Lab. The concept for Discovery Park includes the potential for additional development on approximately 60 acres of previously used, publicly accessible land. The Lab is working, in coordination with DOE, on a process for developers, collaborators, and entrepreneurs to propose, build, and operate new facilities in Discovery Park. Future occupants will complement the DOE and Brookhaven Lab missions, leveraging opportunities that result from close proximity to the Laboratory. Discovery Park will offer a flexible platform to advance science and technology-based economic development for Long Island, New York State, and beyond.

Brookhaven Lab‘s 5,321-acre site is located north of the Long Island Expressway near Exit 68 and east of the William Floyd Parkway. The SUSC and Discovery Park will be built off William Floyd Parkway along the access road leading to Brookhaven Lab‘s main entrance.

The selection of E.W. Howell as general contractor follows DOE’s decision on Sept. 13, 2021, approving a total project cost of $86.2 million and awarding the Lab‘s SUSC project team with “Critical Decision Three” (CD-3). CD-3 is the fourth major milestone in DOE’s five-step project management process. The SUSC project team—comprising staff from Brookhaven Lab and the DOE’s local Brookhaven Site Office—and E.W. Howell are targeting summer 2024 for SUSC construction to be completed.

The SUSC was designed by Burns & McDonnell and Gensler, two U.S.-based international firms.

Significant investment supporting science and technology

The Science and User Support Center will serve as a welcome center for guests, researchers, and facility users arriving at Brookhaven Lab. It will offer modern, configurable conference space for scientists to collaborate and office areas for Lab employees.

“The Department of Energy’s investment in the Science and User Support Center reflects our commitment to science and technology for the nation. It represents a significant step towards moving Brookhaven National Laboratory’s outwardly facing organizations closer and more accessible to the public. DOE continues to support the SUSC to improve researchers’ access to the experts and capabilities offered at Brookhaven Lab,” said Robert Gordon, manager of DOE’s local Brookhaven Site Office.

“Awarding this contract marks a major milestone in Brookhaven Lab‘s efforts to improve experiences for staff, guests, and users, to modernize infrastructure, and increase the Laboratory’s overall impact,” said Jack Anderson, Deputy Director for Operations at the Lab. “We’re excited for the facility and for the scientific collaborations it will help facilitate.”

Future first destination for thousands of visiting scientists
More than 5,000 guests traveled to Brookhaven Lab annually in the years before the COVID-19 pandemic. The largest percentage came from institutions in New York State, but many came from across the country and around the world, attracted by the Lab‘s in-house experts and highly specialized research facilities for experiments. Those facilities include DOE Office of Science User Facilities such as the Relativistic Heavy Ion Collider, National Synchrotron Light Source II, and Center for Functional Nanomaterials. Guests also visited—sometimes hundreds at a time—for conferences, workshops, and other events to discuss scientific results and opportunities for future research.

Because of the ongoing pandemic, research collaborations are continuing with remote access and few guests traveling to Brookhaven Lab. When it becomes safer for the Laboratory to return to more normal operations, many guests and facility users are expected to return to the Lab site. Upon completion, the SUSC will be their first destination on site upon arrival at the Laboratory.

The SUSC project is funded by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Farmingdale State College (FSC) and The Estée Lauder Companies (ELC) have signed a strategic alliance to drive innovation and support for emerging STEM talent across Long Island. The announcement was made in press release on Feb. 10.  

As part of the collaboration, ELC has leased approximately 40,000 sq. ft. of laboratory and office space at  Broad Hollow Bioscience Park (BHBP), located on the FSC campus. ELC intends to hire talent for more than 30 new scientific R&D roles and in spring 2022 will relocate select teams of employees to the new space.

The collaboration will include an applied learning initiative, which will begin in Fall 2022, and will help prepare students in FSC’s science and engineering programs for potential R&D roles at ELC. It will also include internships and collaborative research activities for FSC students and faculty, adjunct academic opportunities for ELC R&D leaders, and student scholarships.

The arrangement also brings to BHBP an anchor tenant focused on research and development, and marks ELC’s first co-location with an academic institution. The space at BHBP is only two miles from ELC’s skin care, makeup, body, fragrance, basic science and advanced technology R&D labs in Melville.

The Broad Hollow Bioscience Park is a partnership between Farmingdale State College, Cold Spring Harbor Laboratory, and the Research Foundation of the State University of New York (SUNY). BHBP is home to various biotech companies partnering to grow the bioscience industry along the Route 110 corridor.

“We are thrilled to welcome The Estée Lauder Companies to the Broad Hollow Bioscience Park and Farmingdale State College,” said Dr. John Nader, President of Farmingdale State College (FSC). “This extraordinary public-private alliance brings a premier corporate partner to our campus and will lead to scholarship support and collaboration opportunities for Farmingdale State College students and faculty. This is a victory for Long Island, the College, and the region’s bioscience corridor.” 

The new alliance reinforces ELC’s longstanding commitment to investing in and modernizing its Long Island operations and supporting the local communities in New York State. The company currently, which has been on Long Island for more than 50 years, has thousands of employees across R&D, manufacturing, finance, information technology, and other areas working on its Melville, NY campus. ELC has a strong history of hiring SUNY graduates and also has FSC alumni working at the company. 

 “We are very proud to collaborate with Farmingdale State College and SUNY to further fuel R&D innovation and empower STEM leaders of tomorrow across Long Island and New York State,” said Lisa Napolione, Senior Vice President, Global Research & Development at The Estée Lauder Companies. 

“At ELC, our scientists, researchers, engineers, and product developers thrive on combining science, technology and creativity to formulate transformative prestige beauty products. Our collaborations with universities around the world help us stay on the cutting edge and advance our commitment to scientific excellence and delivering the highest quality, breakthrough prestige beauty products to consumers.”

“This partnership between Farmingdale State College and The Estée Lauder Companies at Broad Hollow Bioscience Park is a testament to how SUNY and the private sector can work together to create limitless opportunities within STEM fields,” said SUNY Interim Chancellor Deborah F. Stanley. 

“I’m confident this collaboration will yield hands-on experiences for our students to learn and grow, research and instruction opportunities for our faculty and job creation potential for years to come. Congratulations to Farmingdale State College on this exciting venture, and to our students who are seizing this opportunity and making their mark,” he added.

A collection of tools found in Grotte Mandrin of both Neanderthals and modern humans. The pointier tools were made by modern humans about 54,000 years ago. Image from Ludovic Slimak

By Daniel Dunaief

Two Stony Brook University researchers are helping a team of scientists rewrite the timeline of modern humans in Europe.

Prior to a ground breaking study conducted in the Rhône Valley in a cave called Grotte Mandrin in southern France, researchers had believed that homo sapiens — i.e. earlier versions of us — had arrived in Europe some time around 45,000 years ago.

Scientists had been studying the stone tools in this cave for close to 30 years that seemed inconsistent with the narrative that Neanderthals had exclusively occupied Europe at that point. Researchers found key evidence in this cave, including advanced tools and teeth that came from modern humans, that pushed the presence of modern humans back by about 10,000 years to about 56,800 years ago, while also indicating that the two types of humans interacted in the same place.

“This is a huge paradigm shift in our understanding of modern human origin expansion,” said Jason Lewis, a lecturer in the Department of Anthropology at Stony Brook University and Assistant Director at the Turkana Basin Institute in Kenya. “We can demonstrate that it was modern humans. We have a whole series of radiometric dates to shore that up 100 percent. Any method that was useful was applied” to confirm the arrival of homo sapiens in southern France.

Ludovic Slimak, CNRS researcher based at the University of Toulouse Jean Jaures, is the lead author on a 130-page paper that came out this week in Science Advances. Slimak has been exploring a site for 24 years that he describes as a kind of Neanderthalian Pompei, without the catastrophe of Mount Vesuvius erupting and preserving a record of the lives the volcano destroyed.

“This is a major turn, maybe one of the most important since a century,” Slimak explained in an email.

The early Homo sapiens travelers left behind clues about their presence in a rock shelter that alternately served as a home for Homo sapiens and Neanderthals in the same year.

“We demonstrate in our paper that there is less than a year, maybe a season (six months), maximal time between the last Neanderthal occupation in the cave and the first Sapiens settlement,” Slimak wrote. “This is a very, very short time!”

The scientists came to this conclusion after they developed a new way to analyze the soot deposits on the vault fragments of the cave roof, he added.

When modern humans arrived in the Rhône Valley, they likely turned to Neanderthals, who had occupied the area considerably longer, as scouts to guide them, Slimak suggested.

Homo sapiens likely traveled by boat to France at the same time that other Homo sapiens journeyed over the water to Australia, between 50,000 and 60,000 years ago.

“We know that when Mandrin groups reached western Europe, Eurasian populations perfectly master navigation at the other end of the continent,” Slimak explained in an email. “It is then very likely that these technologies were at this time period well known by all these populations.”

Different tools

In addition to fossils, scientists have focused on the tools that Homo sapiens produced and used. Homo sapiens likely used bows or spears with mechanical propulsion, while Neanderthals had heavy hand-cast spears, Slimak explained.

The modern human technology was “very impressive,” Slimak added. They are exactly the same technologies we found in the eastern Mediterranean at the very beginning of the Upper Paleolithic in the same chronology [as] the Grotte Mandrin.”

The tools were small and pointed and looked like the kind of arrowheads someone might find when hiking along trails on Long Island, Lewis described. “It’s never been suggested or demonstrated that Neanderthals made bows and arrows or complex projectiles,” he said.

Once they discovered teeth of Homo sapiens, the researchers found the conclusive fossil proof of “who was there doing this,” Lewis said. “Even on a baby tooth, you can distinguish Neanderthals from modern humans.”

While researchers have excavated other caves in the Middle Rhône Valley region, they have not used such stringent methods, Lewis explained. “Mandrin is truly unique for the vision it gives us into this period of the past,” he explained in an email. He described Mandrin as more of a rock shelter than a cave, which is about 10 meters wide and eight meters deep.

The importance of timing

With the importance of providing specific dates for these discoveries, scientists who specialize in ancient chronology, such as Marine Frouin, joined the team.

Frouin, who started working in the Grotte Mandrin in 2014 when she was a post-doctoral fellow at the Luminescence Laboratory at the University of Oxford, looks for the presence of radioactive elements like potassium, thorium and uranium to determine the age of sediments. When these elements decay, they emit radiation, which the sediments accumulate.

Frouin likened the build up of radioactive elements in the grains to the process of charging a battery. Over time, the radioactive energy increases, providing a signal for the last time sunlight reached the sediment.

Indeed, when the sun reaches these grains, it eliminates the signal, which means that Frouin collected samples in lower light, transported them to a lab or facility in darkness, and then analyzed them in rooms that look like a photographer’s darkroom studio.

Frouin conducted the first of three approaches to determining the timing for these discoveries. She used luminescence on quartz, feldspar and flint and was the first one to obtain dates in 2014. Colleagues at the Université de Paris then conducted Thermoluminescence dating on burnt flint, while the lab of Andaine Seguin-Orlando at the University Paul Sabatier Toulouse 3 provided single grain dating.

The three labs “were able to combine all our results together and propose a very precise chronology for this site with very high confidence,” she explained in an email.

Frouin, who arrived at Stony Brook University in January of 2020, has designed and built her own lab, where she plans to study samples and advance the field of luminescence dating.

At this point, luminescence dating can provide the timing from a few hundred years ago to 600,000 years, beyond which the radioactive signal reaches its maximum brightness. Trained as a physicist, Frouin, however, is developing new techniques to find larger doses from grains that data at least over a million years old.

Journey to France

During this period of time on the Earth, the climate was especially cold. That, Lewis said, would favor the continued use of the cave by Neanderthals, who could have survived better under more challenging conditions.

At around 55,000 years ago, however, something may have shifted in the modern human population that allowed Homo sapiens to survive in a colder climate. These changes could include projectile weapons, more advanced clothing and/or social cooperation.

“These are all hypotheses we are dealing with,” Lewis said. “In this case, it seems like a tentative exploration by modern humans into Western Europe.”

The cave itself would have been especially appealing to Neanderthals or modern humans because of its geographic and topological features. For scientists, some of those same features also helped provide a chronological record to indicate when each of these groups lived in that space.

Near the cave, the Rhône River provides a way to travel. The cave itself is situated at a bottleneck through which groups of migrating animals such as horse, bison and deer traveled to follow their own food sources.

“It’s one of the most strategic points in Southern France,” Lewis said.

Indeed, Allied Forces during World War II recognized the importance of this site, landing in Provence on August 15, 1944. The progression into Europe mirrored the expansion of modern humans, said Lewis, who studies history and is particularly interested in WWII.

The site faces northwest in a part of the Rhône Valley in which the mistral wind, which is a cold and dry strong wind, can reach up to speeds of 60 miles per hour. During the glacial period, the wind blew dust that came off the tundra of northern Europe, filling the cave with fine grain sediment that helped preserve the site. Using that dust, scientists determined that Neanderthals had occupied that cave for almost 100,000 years. Around 55,000 years ago, modern humans showed up, who were replaced again by Neanderthals.

A resident of Stony Brook, Lewis lives with his wife Sonia Harmand, who is in the same department at Stony Brook and with whom he has collaborated on research, and their daughter Scarlett.

A native of Dover, Pennsylvania, Lewis decided to study evolution after reading a coffee table book at a friend’s house when he was 13 that included descriptions of the work of the late paleoanthropologist Richard Leakey. After reading that book, Lewis said evolution made sense to him and he was eager to participate in the search for evidence of the changes that led to modern humans.

His first field experience was in a Neanderthal site in France, where he also traveled to the Turkana basin in Kenya for a project directed by Rutgers University. Ultimately, he wound up working for Rutgers and has conducted considerable research in Kenya as well.

“After working at Rutgers, I came to Stony Brook to work for [Richard Leakey in a field school at [what would become] the Turkana Basin Institute,” he said. The combination of his earlier aspirations to join Leakey, his first research field experiences including time in France and Kenya, and his eventual work with Leakey and his role at TBI were a part of his “circle of life.”

Lewis is thrilled to be a part of the ongoing effort to share information discovered in a cave he called a “magical place. The satisfaction at being there is high.”

For Slimak, the years of work at the site have been personally and professionally transformational. After taking necessary breaks from the rigors of excavating on the cave floor, he is now more comfortable sleeping on a hard floor than on a soft mattress.

Professionally, Slimak described this paper as the culmination of 32 years of continuous scientific efforts, which includes a “huge amount of very important unpublished data” that include social, cultural, economic and historical organization of these populations.

The current paper represents “only the visible part of the iceberg and many important enlightenment and other fascinating discoveries from my team will be made available in the coming months and years.”

A tough beginning

A native of Bordeaux, France, Frouin had a tough start to her work at Stony Brook. She arrived two months before the pandemic shut down many businesses and services, including driving schools and social security offices.

When she arrived, she didn’t have a driver’s permit or a credit history, which meant that she relied on the kindness and support of her colleagues and transportation from car services to pick up necessities like groceries.

A resident of Port Jefferson, Frouin, who enjoys playing electric guitar and does oil painting when she’s not studying sediments, said it took just under a year to get her American driver’s license.

Frouin, who has an undergraduate and a graduate student in her lab and is expecting to add another graduate student soon, appreciates the opportunity to explore the differences between the north and south shore of Long Island. 

As for her contribution to this work, she said this effort was “extremely exciting. I’m doing what I wanted to do since I was a kid. We were able to answer many questions that maybe 20 years ago, we weren’t able to answer.”

Jason Trelewicz Photo from SBU

By Daniel Dunaief

One day, ships in the Navy may not only last longer in the harsh environment of salt water, but some of their more complicated parts may also be easier and quicker to fix.

That’s thanks to the mechanical engineering efforts of researchers at Stony Brook University and Brookhaven National Laboratory, who have been teaming up to understand the microstructural origins of corrosion behavior of parts they produce through laser additive manufacturing into shapes with complex geometries.

The Navy is funding research at the two institutions.

Eric Dooryhee. Photo from BNL

“As you would expect you’d need near any marine environment with salt water, [the Navy] is interested in laser additive manufacturing to enable the production of parts at lower cost that have challenging geometries,” said Jason Trelewicz, Associate Professor of Materials Science and Engineering at Stony Brook University. Additionally, the Navy is hoping that such efforts can enable the production of parts with specific properties such as corrosion resistance on demand.

“If you’re out at sea and something breaks, can you make something there to replace it?” asked Trelewicz. Ideally, the Navy would like to make it possible to produce parts on demand with the same properties as those that come off a manufacturing line.

While companies are currently adopting laser additive manufacturing, which involves creating three-dimensional structures by melting and resolidfying metal powders one layer at a time with the equivalent of a laser printer, numerous challenges remain for developing properties in printed materials that align with those produced through established routes.

Additive materials, however, offer opportunities to structure products in a way that isn’t accessible through traditional techniques that create more complex geometry components, such as complex heat exchangers with internal cooling channels.

In addition to the science remaining for exploration, which is extensive, the process is driving new discoveries in novel materials containing unique microstructure-chemistry relationships and functionally graded microstructures, Trelewicz explained.

“These materials are enabling new engineering components through expanded design envelopes,” he wrote in an email.

With colleagues from BNL including Research Associate Ajith Pattammattell and Program Manager for the Hard X-ray Scattering and Spectroscopy Program Eric Dooryhee, Trelewicz published a paper recently in the journal Additive Manufacturing that explored the link between the structure of the material and its corrosive behavior for 316L stainless steel, which is a corrosion resistant metal already in wide use in the Navy.

The research looked at the atomic and microstructure of the material built in the lab of Professor Guha Manogharan at Penn State University. Working with Associate Professor Gary Halada in the Department of Material Science and Chemical Engineering, Trelewicz studied the corrosive behavior of these materials.

Often, the surface of the material went through a process called pitting, which is common in steels exposed to corrosive environments, which occurs in cars driven for years across roads salted when it snows.

The researchers wanted to understand “the connection between how the materials are laser printed, what their micro structure is and what it means for its properties,” Trelewicz said, with a specific focus on how fast the materials were printed.

While the research provided some structural and atomic clues about optimizing anti corrosive behavior, the scientists expect that further work will be necessary to build more effective material.

In his view, the next major step is understanding how these defects impact the quality of this protective film, because surface chemical processes govern corrosive behavior.

Based on their research, the rate at which the surface corrodes through laser additive manufacturing is comparable to conventional manufacturing.

Printed materials, however, are more susceptible to attack from localized corrosion, or pitting. 

At the hard x-ray nanoprobe, Pattammattel explored the structure of the material at a resolution far below the microscopic level, by looking at nonstructural details.

“It’s the only functional beamline that is below 10 nanometers,” he said. “We can also get an idea about the electronic structures by using x-ray absorption spectroscopy,” which reveals the chemical state.

Pattammattel, who joined BNL in 2018, also uses the beamline to study how lung cells in mice interact with air pollutants. He described “the excitement of contributing to science a little more” as the best part of each day.

Meanwhile, Dooryhee as involved in writing the seed grant proposal. By using the x-rays deflected by the variety of crystalline domains or grains that compose the materials, HE can interpret the material’s atomic structure by observing the diffraction angles. The discrete list of diffraction angles is a unique fingerprint of the material that relates to its long-range atomic ordering or stacking.

In this study, researchers could easily recognize the series of diffraction peaks associated with the 316L stainless steel.

Dooryhee was able to gather insight into the grain size and the grain size distribution, which enabled him to identify defects in the material. He explained that the primary variable they explored was the sweeping rate of the laser beam, which included 550, 650 and 700 millimeters per second. The faster the printing, the lower the deposited energy density.

Ultimately, Dooryhee hopes to conduct so-called in situ studies, in which he examines laser additive manufacturing as it’s occurring.

“The strength of this study was to combine several synchrotron techniques to build a complete picture of the microstructure of the [additively manufactured] material, that can then be related to its corrosion response,” he explained in an email.

Dooryhee grew up in Burgundy France, where his grandfather used to grow wine. He worked in the vineyards during the fall harvest to help pay for his university studies. Dooryhee has worked at BNL for over 12 years and appreciates the opportunity to collaborate with researchers at Stony Brook University.

Rebecca Smith at the Sólheimajökull glacier in Iceland, where the scientist did field work during the 2015 Astrobiology Summer School. Photo from Rebecca Smith

By Daniel Dunaief

Rocks may not speak, move or eat, but they can and do tell stories.

Recognizing the value and importance of the ancient narrative rocks on Earth and on other planets provide, NASA sent vehicles to Mars, including the rover Perseverance, which landed on February 18 of this year.

Perseverance brought seven instruments, most of them identified by the acronym-loving teams at NASA, that carry out various investigations, such as searching for clues about a water-rich environment that may have sustained life about 3.5 billion years ago.

Several instrument teams developed and monitor these pieces of equipment, including Joel Hurowitz, Associate Professor in the Department of Geosciences at Stony Brook University and Deputy Principal Investigator on the Planetary Instrument for X-ray Lithochemistry, or PiXL.

In addition to the instrument leads, NASA chose participating scientists who can contribute to several teams, providing scientific support for a host of questions that might arise as the rover explores the terrain of the Red Planet 128 million miles from Earth.

Rebecca Smith, a post-doctoral researcher at Stony Brook in Geosciences Professor Scott McLennan’s lab, is one such participating scientist.

“I get to move around between all these different groups, which is fun,” said Smith, whose appointment will last for three years. While the Mars2020 program takes up about 20 percent of Smith’s time, the remainder is focused on the Mars Science Laboratory mission. Smith is likely to spend almost all of her time on Mars2020 starting this September.

Smith has helped make the science plans for the rover. The scientist and other researchers help select targets for the instruments that will help answer specific science questions. For this work, they collaborate with different science teams. Smith plans to get more involved with specific instrument teams soon, including SuperCam, PiXL and Sherloc.

For Smith’s own research, the scientist has a suite of rock samples that include lacustrine carbonates and hydrothermally altered volcanic rocks. The volcanic rocks formed under conditions that might be analogous to those once present in Jezero crater, where the rover landed and is currently maneuvering. The crater is just north of the Martian equator and has a delta that once long ago contained water and, potentially, life.

On Earth, Smith is using versions of the SuperCam, PiXL, and Sherloc to understand how these rocks would look to different instruments and determine what baseline measurements they need to tell the different types of rocks apart using the instruments aboard the rover.

Smith has studied rocks on Earth located in Hawaii, Iceland and the glaciers in the Three Sisters Volcanic Complex in Oregon.

Many planetary geologists use Earth as an analog to understand geologic processes on other planets. It is still uncertain if the climate of early Mars was warn and wet or cold and icy and wet, Smith explained in an email, adding, “It is possible the minerals we see with the rovers and from orbit can help us answer this question.” 

Most of the work the scientist been involved with is trying to understand how Mars-like volcanic rocks chemically weather under different climates.

Through previous research on Mars, scientists discovered that large regions had poorly crystalline materials. The poorly crystalline nature of the materials makes them difficult to identify using rover-based or orbiter-based instruments.

“The fact that they could have formed in the presence of water makes them important to understand,” Smith explained.

Part of the work Smith is doing is to understand if poorly crystalline material formed by water have specific properties that relate to the environment or climate in which they formed.

Smith said the bigger picture question of the work the teams are doing is, “was there life on Mars? If not, why not? We think that Mars, for the first billion years or so, was pretty similar to Earth around the same time and Earth developed life.”

Indeed, Earth had liquid water on its surface, which provided a habitat for microbial life about 3.5 billion years ago.

The ancient rock record on Mars provides a better-preserved history because the Red Planet doesn’t have plate tectonics.

“Based on what we know about Earth, if life ever developed on early Mars, it would likely have been microbial,” Smith wrote.

Other goals of Mars2020 include characterizing the climate and the geology. Both goals focus on looking for evidence of ancient habitable environments and characterizing those to understand a host of details, such as the pH of the water, the temperature and details about how long the water was on the surface.

Part of the reason NASA put out a call for participating scientists is to “bridge instrument data” from different pieces of equipment, Smith explained.

“I love the collaborative nature of working on a team like this,” Smith offered. “Everybody is interested in getting the most important information and doing the best job that we can.”

Smith enjoys the opportunity to study potentially conflicting signals in rocks to determine what they indicate about the past.“Geology is just so complex. It’s a big puzzle. Forces have been acting over a very long period of time and forces change over time. We are trying to tease apart what happened and when.”

While Smith works at Stony Brook, the post-doctoral scientist returned to California during the pandemic to live closer to her family. After finishing the current research program, Smith plans to remain open to various options, including teaching.

Smith appreciates the opportunity to work on the Mars 2020 mission, adding, “I’m really grateful for that during this past year in particular.”

By Daniel Dunaief

It started over four decades ago, with a “help wanted” advertisement.

Luci Betti-Nash needed money for art supplies. She answered an ad from the Stony Brook University Department of Anatomical Sciences that sought artists who could draw bones. She found the work interesting and realized that she could “do it fairly easily. I could not have imagined a more fulfilling career.”

Betti-Nash spent 41 years responding to requests to provide illustrations for a wide range of scientific papers, contributing images that became a part of charts and graphs and drawing everything from single-celled organisms to dinosaurs. She retired last April.

Her coworkers at Stony Brook, many of whom collaborated with her for decades, appreciated her contributions and her passion and precision for her job.

Maureen O’Leary, Professor in the Department of Anatomical Sciences, said Betti-Nash’s work enhanced her professional efforts. “I couldn’t have had the same career without her,” O’Leary wrote in an email. “Artists are true partners.”

O’Leary appreciated how Betti-Nash noticed parts of the work that scientists miss. 

“I think the most important thing is figuring out together what to put in and what to leave out of a figure,” O’Leary explained. “A photograph shows everything and it can be a blizzard of detail, really too much, and it will not focus the eye. The artist-scientist collaboration is about simplifying the detail to show what is important and how to show it clearly.”

One of O’Leary’s favorite illustrations from Betti-Nash was a pull-out, color figure that envisioned the ancient Trans-Saharan Seaway from about 75 million years ago. The shallow sea, which was described in the movie “Aquaman,” supported numerous species that are currently extinct. Betti-Nash created a figure that showed these creatures in the sea and how water drained from nearby mountains, all superimposed over the geology.

“It told the story of how ancient life turned into rocks and fossils,” O’Leary explained.

Betti-Nash, who continues to sketch from her home office and plans to be selective about taking on future assignments, has numerous stories to tell about her work.

For starters, the world of science is rife with jargon. When she was starting out, she didn’t always stop researchers who tossed around the terms that populate their life as if they were a part of everyone’s vocabulary.

“Some [scientists] would come in and assume you knew exactly what they were talking about,” Betti-Nash said. “It was something they were studying for years. They would assume you knew all the terminology.”

Each discipline, from cell biology to gross anatomy to dinosaur taxonomy had its own terminology, some of which “was way over my head,” she said. 

Early in her career, Betti-Nash felt she didn’t know details she thought she should.

“The older I got, the bolder I got about asking” scientists to explain what they meant in terms she could understand, she said, adding that she felt fortunate to have scientists who were “more than willing and eager to answer my questions when I was bold enough to ask. That was one of the many life lessons I learned … don’t be afraid to ask questions.”

Betti-Nash sometimes had to work under intense time pressure. Collaborating with David Krause, who was at Stony Brook and is now Senior Curator of Vertebrate Paleontology in the Department of Earth Sciences at the Denver Museum of Science, Betti-Nash illustrated the largest frog ever discovered, which lived in Madagascar over 65 million years ago. Called the Beelzebufo, this frog weighed in at a hefty 10 pounds and was 16 inches. Ribbit!

A short time before going to press, the scientific team decided they needed a common object as a frame of reference to compare the size of this ancient amphibian and the largest living frog in Madagascar.

“We scrambled,” Betti-Nash recalled. “We decided on a pencil.” 

She didn’t have time to draw the pencil, so she put it on her scanner, did some quick painting in Photoshop, put a shadow in, added it to the scan of the painting, saved it in the format required for the journal and sent it off.

“Adding the pencil was one of those typical strokes of genius that [Betti-Nash] routinely added to artwork,” explained Krause in an email. “Everyone knows the size of a number 2 pencil.”

Even though she hadn’t sculpted in 32 years, she had to create a sculpture of the frog that students could touch. The sculpture had to be non-toxic, dry and ready within three days.

Betti-Nash turned to the Guild of Natural Science Illustrators, asking for help with ideas for the materials. She also asked Joseph Groenke from Krause’s lab to contribute his fossil preparing experience. She used an epoxy clay that she massaged into shape, and then colored it with acrylic, non-toxic paints.

That sculpture was featured as a part of a display at Stony Brook Hospital for years and has since traveled with Krause to Denver where “kids especially love it, in part because it is touchable,” Krause wrote.

Krause was grateful for a partnership with Betti-Nash that spanned almost 40 years.

“There is no doubt in my mind that [Betti-Nash] made me a better scientist and there is also no doubt that my science is better” because of her, he explained. Krause described her stipple drawings as “incredibly painstaking to execute.” His favorite is of a large fossil crocodile found in Madagascar from the Late Cretaceous called Mahajangasuchus. 

Betti-Nash urges artists considering entering the field of scientific illustrating to attend graduate school or even to take undergraduate courses, which would provide time to learn skills and terminology before working in the field.

She also suggests artists remain “interested in what you’re drawing at that moment, no matter what it is,” she said, adding that drawing skills provide a solid foundation for a career in science illustrating. Computer skills, which help with animation and videos, are good tools to learn as well.

Growing up in Eastchester, Betti-Nash often found herself doodling patterns in her notebooks. When she worked on graph paper, she colored in the squares. She also received artistic guidance from her father, the late John Betti.

A graphic designer, Betti worked for a company in Westchester, where he designed the town seal for Tuckahoe as well as the small airplane wings children used to get when they flew on planes.

During World War II, Betti, who grew up in Corona, Queens, used his artistic skills to create three-dimensional models from aerial photographs. Stationed close to the residence of his extended family in Italy during part of the war, Betti also created watercolor paintings of the Italian landscape.

When she was growing up, Betti-Nash had the “best model-making teacher in my dad,” who taught her to create paper maché.

Married to fellow illustrator Stephen Nash, Betti-Nash plans to remain active as an artist, doing her own illustrations involving nature and the relationship between birds and the environment. 

She currently leads Second Saturday Bird Walks at Avalon Nature Preserve in Stony Brook and Frank Melville Memorial Park in Setauket through the Four Harbors Audubon Society (4HAS.org)

Betti-Nash is pleased with a career that all started with a response to an ad in the paper. “I feel very privileged to have had the opportunity to work as a scientific illustrator,” she said. “I hope I was able to help communicate the science behind the discoveries that the amazing scientists at Stony Brook made during my time there.”

All photos courtesy of Luci Betti-Nash

From left, Research Assistant Onur Eskiocak, CSHL Fellow Semir Beyaz and graduate student Ilgin Ergin. Photo by Gina Motisi, 2019/CSHL.

By Daniel Dunaief

It’s a catch-22: some promising scientific projects can’t get national funding without enough data, but the projects can’t get data without funding.

That’s where private efforts like The Mark Foundation for Cancer Research come in, providing coveted funding for promising high-risk, high-reward ideas. Founded and funded by Pamplona Capital Management CEO Alex Knaster in 2017, the Foundation has provided over $117 million in grants for various cancer research efforts.

Tobias Janowitz

This year, The Mark Foundation, which was named after Knaster’s father Mark who died in 2014 after contracting kidney cancer, has provided inaugural multi-million dollar grants through the Endeavor Awards, which were granted to three institutions that bring scientists with different backgrounds together to address questions in cancer research. 

In addition to teams from the University of California at San Francisco and a multi-lab effort from Columbia University, Memorial Sloan Kettering Cancer Center and Johns Hopkins University School of Medicine, Cold Spring Harbor Laboratory scientists Tobias Janowitz and Semir Beyaz received this award.

“We are absolutely delighted,” Janowitz wrote in an email. “It is a great honor and we are excited about the work.” He also indicated that the tandem has started the first set of experiments, which have produced “interesting results.”

The award provides $2.5 million for three years and, according to Janowitz, the researchers would use the funds to hire staff and to pay for their experimental work.

Having earned an MD and a PhD, Janowitz takes a whole body approach to cancer. He would like to address how the body’s response to a tumor can be used to improve treatment for patients. He explores such issues as how tumors interact with the biology of the host.

Semir Beyaz

Semir Beyaz, who explores how environmental factors like nutrients affect gene expression, metabolic programs and immune responses to cancer, was grateful for the support of the Mark Foundation.

Beyaz initially spoke with the foundation about potential funding several months before Janowitz arrived at Cold Spring Harbor Laboratory. When the researchers, whose labs are next door to each other, teamed up, they put together a multi-disciplinary proposal.

“If the risks [of the proposals] can be mitigated by the innovation, it may yield important resources or new paradigms that can be incorporated into research proposals that can be funded by the [National Institutes of Health] and other government agencies,” Beyaz said.

Janowitz wrote that he had a lunch together in a small group with Knaster, who highlighted the importance of “high-quality data and high-quality data analysis to advance care for patients with cancer.”

Michele Cleary, the CEO of The Mark Foundation, explained that the first year of the Endeavor program didn’t involve the typical competitive process, but, rather came from the Foundation’s knowledge of the research efforts at the award-winning institutions.

“We wanted to fund this concept of not just studying cancer at the level of the tumor or tumor cells themselves, but also studying the interaction of the host or patient and their [interactions] with cancer,” Cleary said. “We thought this was a fantastic project.”

With five people on the Scientific Advisory Committee who have PhDs at the Foundation, the group felt confident in its ability to assess the value of each scientific plan.

Scientists around the world have taken an effective reductionistic approach to cancer, exploring metabolism, neuroendocrinology and the microbiome. The appeal of the CSHL effort came from its effort to explore how having cancer changes the status of bacteria in the gut, as well as the interplay between cancer and the host that affects the course of the disease.

From left, Becky Bish, Senior Scientific Director, Ryan Schoenfeld, Chief Scientific Officer and Michele Cleary, CEO of The Mark Foundation at a workshop held at the Banbury Center at Cold Spring Harbor Laboratory in September 2019. Photo by Constance Brukin.

These are “reasonable concepts to pursue, [but] someone has to start somewhere,” Cleary said. “Getting funding to dive in, and launch into it, is hard to do if you can’t tell a story that’s based on a mountain of preliminary data.”

Beyaz said pulling together all the information from different fields requires coordinating with computational scientists at CSHL and other institutions to develop the necessary analytical frameworks and models. This includes Cold Spring Harbor Laboratory Fellow Hannah Meyer and Associate Professor Jesse Gillis.

“This is not a simple task,” Beyaz said. The researchers will “collaborate with computational scientists to engage currently available state-of-the-art tools to perform data integration and analysis and develop models [and] come up with new ways of handling this multi-dimensional data.”

Cleary is confident Janowitz and Beyaz will develop novel and unexpected insights about the science. “We’ll allow these researchers to take what they learn in the lab and go into the human system and explore it,” she said.

The researchers will start with animal models of the disease and will progress into studies of patients with cancer. The ongoing collaboration between CSHL and Northwell Health gives the scientists access to samples from patients.

With the Endeavor award, smaller teams of scientists can graduate to become Mark Foundation Centers in the future. The goal for the research the Foundation funds is to move towards the clinic. “We are trying to join some dots between seemingly distinct, but heavily interconnected, fields,” Beyaz said.

Beyaz has research experience with several cancers, including colorectal cancer, while Janowitz has studied colorectal and pancreatic cancer. The tandem will start with those cancers, but they anticipate that they will “apply similar kinds of experimental pipelines” to other cancer types, such as renal, liver and endometrial, to define the shared mechanisms of cancer and how it reprograms and takes hostage the whole body, Beyaz said. 

“It’s important to understand what are the common denominators of cancer, so you might hopefully find the Achilles Heel of that process.”

While Cleary takes personal satisfaction at seeing some of the funding go to CSHL, where she and Mark Foundation Senior Scientific Director Becky Bish conducted their graduate research, she said she and the scientific team at the foundation were passionate to support projects that investigated the science of the patient.

“No one has tried to see what is the cross-talk between the disease and the host and how does that actually play out in looking at cancer,” said Cleary, who earned her PhD from Stony Brook University. “It’s a bonus that an institution that [she has] the utmost respect for was doing something in the same space we cared” to support.

The CSHL research will contribute to an understanding of cachexia, when people with cancer lose muscle mass, weight, and their appetite. Introducing additional nutrition to people with this condition doesn’t help them gain weight or restore their appetite.

Janowitz and Beyaz will explore what happens to the body physiologically when the patient has cachexia, which can “help us understand where we can intervene before it’s too late,” Cleary said.

The CSHL scientists will also study the interaction between the tumor and the immune system. Initially, the immune system recognizes the tumor as foreign. Over time, however, the immune system becomes exhausted.

Researchers believe there might be a “tipping point” in which the immune system transitions from being active to becoming overwhelmed, Cleary said. People “don’t understand where [the tipping point] occurs, but if we can figure it out, we can figure out where to intervene.”

Scientists interested in applying for the award for next year can find information at the web site: https://themarkfoundation.org/endeavor/. Researchers can receive up to $1 million per year for three years. The Mark Foundation is currently considering launching an Endeavor call for proposals every other year.

 

Brookhaven Lab Scientist Guobin Hu loaded the samples sent from researchers at Baylor College of Medicine into the new cryo-EM at LBMS. Photo from BNL

On January 8 the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory welcomed the first virtually visiting researchers to the Laboratory for BioMolecular Structure (LBMS), a new cryo-electron microscopy facility. DOE’s Office of Science funds operations at this new national resource, while funding for the initial construction and instrument costs was provided by NY State. This state-of-the-art research center for life sciences imaging offers researchers access to advanced cryo-electron microscopes (cryo-EM) for studying complex proteins as well as the architecture of cells and tissues.

Many modern advances in biology, medicine, and biotechnology were made possible by researchers learning how biological structures such as proteins, tissues, and cells interact with each other. But to truly reveal their function as well as the role they play in diseases, scientists need to visualize these structures at the atomic level. By creating high-resolution images of biological structure using cryo-EMs, researchers can accelerate advances in many fields including drug discovery, biofuel development, and medical treatments.

During the measurement of the samples, the LBMS team interacted with the scientists from Baylor College of Medicine through Zoom to coordinate the research. Photo from BNL

This first group of researchers from Baylor College of Medicine used the high-end instruments at LBMS to investigate the structure of solute transporters. These transporters are proteins that help with many biological functions in humans, such as absorbing nutrients in the digestive system or maintaining excitability of neurons in the nervous system. This makes them critical for drug design since they are validated drug targets and many of them also mediate drug uptake or export. By revealing their structure, the researchers gain more understanding for the functions and mechanisms of the transporters, which can improve drug design.  The Baylor College researchers gained access to the cryo-EMs at LBMS through a simple proposal process.

“Our experience at LBMS has been excellent. The facility has been very considerate in minimizing user effort in submission of the applications, scheduling of microscope time, and data collection,” said Ming Zhou, Professor in the Department of Biochemistry of Molecular Biology at Baylor College of Medicine.

All researchers from academia and industry can request free access to the LBMS instruments and collaborate with the LBMS’ expert staff.

“By allowing science-driven use of our instruments, we will meet the urgent need to advance the molecular understanding of biological processes, enabling deeper insight for bio-engineering the properties of plants and microbes or for understanding disease,” said Liguo Wang, Scientific Operations Director of the LBMS. “We are very excited to welcome our first visiting researchers for their remote experiment time. The researchers received time at our instruments through a call for general research proposals at the end of August 2020. Since September, we have been running the instruments only for COVID-19-related work and commissioning.”

LBMS has two cryo-electron microscopes—funded by $15 million from NY State’s Empire State Development—and the facility has space for additional microscopes to enhance its capabilities in the future. In recognition of NY State’s partnership on the project and to bring the spirit of New York to the center, each laboratory room is associated with a different iconic New York State landmark, including the Statue of Liberty, the Empire State Building, the Stonewall National Monument, and the Adam Clayton Powell Jr. State Office Building.

“By dedicating our different instruments to New York landmarks, we wanted to acknowledge the role the State played in this new national resource and its own unique identity within Brookhaven Lab,” said Sean McSweeney, LBMS Director. “Brookhaven Lab has a number of facilities offering scientific capabilities to researchers from both industry and academia. In our case, we purposefully built our center next to the National Synchrotron Light Source II, which also serves the life science research community. We hope that this co-location will promote interactions and synergy between scientists for exchanging ideas on improving performance of both facilities.”

Brookhaven’s National Synchrotron Light Source II (NSLS-II) is a DOE Office of Science User Facility and one of the most advanced synchrotron light sources in the world. NSLS-II enables scientists from academia and industry to tackle the most important challenges in quantum materials, energy storage and conversion, condensed matter and materials physics, chemistry, life sciences, and more by offering extremely bright light, ranging from infrared light to x-rays. The vibrant structural biology and bio-imaging community at NSLS-II offers many complementary techniques for studying a wide variety of biological samples.

“At NSLS-II, we build strong partnership with our sister facilities, and we are looking forward to working closely with our colleagues at LBMS. For our users, this partnership will offer them access to expert staff at both facilities as well as to a versatile set of complementary techniques,” said NSLS-II Director John Hill. “NSLS-II has a suite of highly automated x-ray crystallography and solution scattering beamlines as well as imaging beamlines with world-leading spatial resolution. All these beamlines offer comprehensive techniques to further our understanding of biological system. Looking to the future, we expect to combine other x-ray techniques with the cryo-EM data to provide unprecedented information on the structure and dynamics of the engines of life.”

LBMS operations are funded by the U.S. Department of Energy’s Office of Science. NSLS-II is a DOE Office of Science user facility.

Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Jeremy Borniger. Photo from CSHL

By Daniel Dunaief

Much as New Yorkers might want to minimize sleep, even during the pandemic when the need to be active and succeed is hampered by limited options, the body needs rest not only for concentration and focus, but also for the immune system.

Recently, Assistant Professor Jeremy Borniger, who joined Cold Spring Harbor Laboratory in January, collaborated with his former colleagues at Stanford University to publish research in the journal Science Advances that sheds light on the mechanism involved in this linkage.

Doctors and researchers had known for a long time that the release of glucocorticoids like cortisol, a stress hormone, can suppress the ability to fight off an infection. “That happens in people that are chronically stressed, even after surgery,” said Borniger in a recent interview.

A comprehensive understanding of the link between neuronal cells that are active during stress and a compromised immune system could help develop new ways to combat infections. The Stanford-led study provides evidence in a mouse model of the neuronal link between stress-induced insomnia and a weakened immune system.

Ideally, scientists would like to understand the neural pathways involved, which could help them design more targeted approaches for controlling the immune system using natural circuitry, according to Borniger.

Scientists could take similar approaches to the therapies involved with Parkinson’s, depression and obesity to increase or decrease the activity of the immune system in various disease states, instead of relying on a broader drug that hits other targets throughout the body.

In theory, by controlling these neurons, their gene products or their downstream partners, researchers could offer a way to fight off infections caused by stress.

While their studies didn’t look at how to gauge the effect of various types of sleep, such as napping or even higher or lower quality rest, their efforts suggest that sleep can help protect against stress-triggered infections.

The total amount and the structure of sleep play roles in this feedback loop. The variability among people makes any broad categorization about sleep needs difficult, as some people function well with six hours of sleep, while others need closer to eight or nine hours per day.

“Scientists are still working out how the brain keeps track of how much sleep it needs to rest and recover,” Borniger explained. “If we can figure this out, then, in principle, we could mess with the amount of sleep one needs without jeopardizing health.”

Researchers don’t know much about the circuitry controlling sleep amount. Borniger recognizes that the conclusions from this study are consistent with what doctors and parents have known for years, which is that sleep is important to overall health. The research also identifies a brain circuit that may be responsible for the way sleep buffers stress and immune responses.

People who have trouble sleeping because of elevated stress from an upcoming deadline often have a flare up of diseases they might have had under control previously, such as herpes viruses or psoriasis. These diseases opportunistically reemerge when the immune system is weakened.

The major finding in this study is not that the connection exists, but that the researchers, including principal investigator Luis de Lecea and first author Shi-Bin Li at Stanford, found the neural components.

While the studies of these linkages in the hypothalamus of mice were consistent across individuals, the same can’t be said for anecdotal and epidemiological evidence in humans, in part because the mice in the study were genetically identical.

For humans, age, sex, prior experiences, diet, family history and other factors make the linkage harder to track.

Even though researchers can’t control for as many variables with humans as they can with mice, however, several other studies have shown that stress promotes insomnia and poor immune function.

Borniger emphasized that he is the second author on the paper, behind Li and was involved in tracking the immune system component of the work.

Borniger and de Lecea are continuing to collaborate to see if drugs that target the insomnia neurons block the effect of stress on the immune system.

Now that he has moved into the refurbished Demerec Laboratory at CSHL, Borniger plans to work on projects to investigate how to use the nervous system to control anti-tumor immunity in models of breast and colorectal cancer, among others.

By understanding this process, Borniger can contribute to ways to manipulate these cells and the immune system to combat cancer and other inflammatory diseases.

Ideally, he’d like to be a part of collaborations that explore the combination of manipulating nervous and immune systems to combat cancer.

Borniger came to Cold Spring Harbor Laboratory because he was eager to collaborate with fellow scientists on site, including those who look at the immune system and metabolism. He appreciates how researchers at the famed research center look at how bodies and the brain respond to a growing tumor and would like to explore how tumors “influence nerves and then, reciprocally, how nerves influence tumor progression.”

The first few steps towards working at CSHL started in 2018, when Tobias Janowitz, Assistant Professor at CSHL, saw a paper Borniger published on breast cancer and asked him to give a 15-minute talk as a part of a young scholars symposium.

Borniger grew up in Washington, DC, attended college at Indiana University, went to graduate school at Ohio State and conducted his post-doctoral work at Stanford. Coming to CSHL brings him back to the East Coast.

Borniger and his fiancée Natalie Navarez, Associate Director of Faculty Diversity at Columbia University, met when they were in the same lab at Stanford. The couple had planned to get married this year. During the pandemic, they have put those plans on hold and may get married at City Hall.

Borniger and Navarez, who live on campus at Hooper House at CSHL, look forward to exploring opportunities to run, hike and swim on Long Island.

The new CSHL researcher appreciates the new opportunities on Long Island.

“This sort of collaborative atmosphere is what I would have in my Utopian dream,” Borniger said.