Search

scientists collaborate - search results

If you're not happy with the results, please do another search

by -
0 873

With far-reaching technological development, the group works to contribute to new BNL programs

He takes over a team that has had a hand in everything from the creation of video games to the silicon drift detector (which is used in X-ray spectrometry and electron microscopy).

As the recently appointed head of the instrumentation group at Brookhaven National Laboratory, Graham Smith, who has led the Gas and Liquid Detector Group for 15 years, now takes over as the leader of 40 professionals, most of them scientists, engineers and technicians. Smith helps coordinate the development and refinement of technology designed to answer questions ranging from understanding why neutrinos have mass to determining the structure of complex protein molecules.

A part of the Nuclear and Particle Physics directorate, the instrumentation division also works with the other four units at BNL, which include Basic Energy Sciences, Photon Sciences, Global and Regional Solutions and Environmental and Life Sciences.

The division applies some of its work with gas-filled neutron detectors to national security. His group is developing instruments that can “identify contraband material being brought into the country,” which could include uranium or plutonium, he said. Those materials emit neutrons, which are hard to stop, even for a lead-lined shipping container.

“There are only certain materials in nature that are sensitive to neutrons,” he explained. “Hydrogen and Helium-3 are good at stopping thermal neutrons.”

The instrumentation division at BNL has collaborated with professionals in nonproliferation and national security to build neutron detectors that are many pinhole cameras in a single instrument, which can be placed at ports around the country to look for radioactive objects that generate neutrons.

The instrumentation division is also playing an important part in the Long Baseline Neutrino Experiment (or LBNE). The centerpiece of the LBNE will be a liquid argon detector and electronics that BNL’s expertise is making possible, Smith said.

BNL’s Milind Diwan (Power of Three, Jan. 10) has been working closely with the instrumentation group, as well as with the physics, chemistry, accelerator, nuclear engineering and magnet units at BNL.

“The instrumentation division is crucial because they are going to be responsible for the wire chambers and the electronics that must operate at very low temperatures and with a lifetime of several decades without any maintenance,” he explained. “The technological development is far-reaching and extraordinary.”

Diwan is confident the group is up to the task, suggesting that the Instrumentation Division is “considered the best in the world in developing such advanced technologies.”

Smith and his colleagues have also been involved in developing a medical imaging instrument called RatCAP (for Rat Conscious Animal Positron Emission Tomography).

It’s the same principle as a PET scan for humans. The innovation, however, is that it allows an animal to wear the monitor while engaging in its normal activities. Typically, animal PET scans have required anesthesia, to keep an animal still as scientists survey the brain or other areas of the body. The instrumentation group designed and integrated a detector system for annihilation gamma-rays that is compact, lightweight and low power, which benefits from microelectronics.

“When the animal is anesthetized,” suggested Smith, “the brain activity is compromised. The idea is to investigate brain activity without putting the rat under any drug-induced sleep.”

Smith lives in Port Jefferson with his wife, Anne, a teaching assistant at Setauket Elementary School. Their older son, Edward, works in Manhattan in information technology, while their younger son, Michael, is a building manager in Seattle.

The couple enjoy the similarities between the village of Port Jefferson and their home villages in the United Kingdom. They enjoy walking through town, grabbing a cup of coffee, observing the harbor and trekking back.

In addition to the potential professional collaboration with Stony Brook scientists, Smith also appreciates the chance to play squash at the university campus. He met his wife on a squash court when they were at the University of Leicester.

In leading the instrumentation group, Smith said he hopes to continue to create a positive atmosphere that he likens to an extended family.

As for following in the footsteps of William Higinbotham, who invented the video game “Tennis for Two” at BNL in 1958, Smith suggested: “My goal is to provide the motivation for our outstanding staff to continue making significant high technology contributions to new BNL programs, for a better understanding of nature and for an overall benefit to society.”

 

by -
0 928

Strokes, cancer and other diseases can be more accurately studied and treated with new technology

Yingtian Pan works at the cutting edge of biological imaging, looking with increasing breadth and depth into cells ranging from bladder cancer to diabetes. Congwu Du, meanwhile, who has also done imaging, has studied the effects of cocaine on the brain.

One night, Du suggested the two Stony Brook scientists, who met when they were undergraduates studying biology in their native China, work together to get a better view of how blood flow changes in the brain after cocaine use.

Strokes, in which brain cells die because they don’t have enough oxygen, are one of the most serious medical risks of cocaine abuse. Getting a closer look at blood flow in the brain might suggest how these strokes develop.

Pan didn’t take too long with his decision. After all, he said he was eager to collaborate with Du, who isn’t just his professional colleague, but is also his wife and the mother of their two children.

Using animal models, Pan and Du employed 3D optical Doppler imaging tomography to look closely at the effect of cocaine on cerebral blood flow. Sure enough, even a single dose of the drug causes the flow to decrease. The scientists observed a disruption in some terminal arterioles and the connecting capillaries.

“When cocaine is administered, it causes constriction,” Pan explained. “The local brain oxygen is reduced.”

Cerebral blood flow decreased by as much as 70 percent within two to three minutes after a dose of cocaine. While the blood flow often returns to normal within three minutes, some flows were shut down and did not come back for at least 45 minutes. The delayed recovery was a new observation, Pan explained.

Another dose of cocaine soon thereafter causes the area with restricted blood to grow like a cloud.

“We see more of this shutting down” of blood flow, Pan commented. “That’s very unhealthy. There’s a long period of time with very low oxygen supply.”

The next step in this research is to look at the effects of longer-term cocaine abuse.
Pan, who has been at Stony Brook since 2002, has applied his imaging skills to a wide range of projects.

He worked on bladder cancer, which, if detected early, can have a good prognosis but becomes much more problematic if it progresses without intervention.

Using optical coherence tomography, which is similar to the Doppler technology he used for the cocaine study, Pan was able to increase the reliability of determining cancer screenings from 75 percent to 94 percent for sensitivity.

While some scientists have called this type of screening optical biopsies (i.e. looking closely at suspected cancers without removing any living tissue and screening it in at pathology lab), Pan is cautious in his use of that term.

“The issue with any new technology is that before it’s been clinically approved and without histological (or cellular) proof, we haven’t reached that stage yet,” he explained.

With these images, however, doctors can be more specific and targeted in their approach to bladder tumors. The next step is to provide computer-aided diagnosis to physicians for more accurate diagnosis in the operating room and for outpatient facilities.

Pan has also worked with wound healing for people with diabetes. By using imaging technology, doctors can monitor every lesion and can understand the exact benefit, or lack thereof, of any potential drug.

At this point, that work was limited to an animal model to track the growth of skin under different bioactive implants.

He has also worked on interstitial cystitis (also called IC, a condition in which people can feel intense pain in their bladder when they urinate) and geriatric incontinence.
Pan said he has found collaborators by building up a network of fellow researchers, many of whom approach him with imaging questions and opportunities.

“We hope we can provide a device to physicians,” he said. “We need to give them some understanding of the technology so they can get a good idea of how to interpret the images.”

Eventually, Pan expects that this technology, which is already widely used in eye clinics, will become similar to ultrasound in its medical usage. While it has high resolution, its image depth is limited depending on the type of tissue.

Right now, the field is very competitive, with scientists around the world looking for better, clearer, and more specific images of biological systems.

“We like competition,” he offered. “It means we have to work hard.”

by -
0 1314

Recent research suggests how the brain puts together multisensory information

Rats are not only capable of learning a maze to get to a reward (the coveted cheese, for example), but they also have the ability to process a combination of slow or fast flashes and clicks to learn whether their prize will be on the left or right side of a cage.

Cold Spring Harbor neuroscientist Anne Churchland recently published a paper in the Journal of Neuroscience that shows that rats are capable of putting together combinations of sights and sounds and changing their behavior to fill their rat stomachs.

The results suggest rats may prove to be effective mammalian models for understanding the neuronal circuitry that other mammals (namely, say, humans) use to process information around them and make decisions about courses of action.

“Very little is known about how the brain puts together multisensory information,” Churchland said. “It’s a mystery how neural circuits of the brain make this happen. An animal model can really get at the neural mechanism that underlies multisensory integration.”

While Churchland’s study was a behavioral one — flash the lights, make the sounds and see where the rat goes — she also plans to add electrophysiological data. That means she will study the neurons that are active as a rat combines pieces of information. Neurons are cells that transmit information through chemical and electrical signals.

By looking closely at the responses of rats, she hopes to figure out how these signals come together.

For some people, reacting to and processing a combination of sights and sounds is sometimes “impaired when compared to typically developing peers,” Churchland explained. Some people, for example, struggle when they go into a multisensory environment, like a grocery store.

“If we understand the sensory side more, we’ll be in a better position to treat those aspects of the disorder,” she explained.

Some people with autism spectrum disorders have a hard time interpreting cues such as a tone of voice, body posture, or the look on someone’s face.

Understanding the sensory side of some of these disorders can put scientists and doctors “in a better position to treat” people, Churchland said.

The Cold Spring Harbor neuroscientist works much more on basic research and is not directly involved in clinical applications.

“I hope that our work might inform the ongoing foundation of knowledge that the community is starting to have about autism spectrum disorders,” she expounded.

Some of Churchland’s passion for addressing autism comes from her experience as a camp counselor and as a babysitter, where she took responsibility for a child with autism. While earning her undergraduate degree at Wellesley College, she took courses in child and cognitive development, even as she was earning a degree in math.

After college, she worked at the University of California at San Francisco, where she “fell in love with lab work,” she recalled. “Doing science captured my imagination. The big questions are so exciting.”

Aside from babysitting and camp, Churchland had plenty of opportunities to think about development and, specifically, neuroscience. Her parents, Anne and Paul Churchland, are neuroscientists and philosophers. Indeed, they met in a philosophy class.

“Their enthusiasm for the field was contagious, not just for me, but it inspired many people,” Churchland said. They addressed questions, she explained, such as, how our brains make us who we are, and how we navigate through the world.

She said her parents didn’t encourage her and her brother Mark to pursue careers in neuroscience.

“When we were undergraduates, NIH [National Institutes of Health] funding was at a low level, as it is now,” she explained.

Still, that didn’t keep either her or her brother Mark away, as both of them have now developed careers in experimental neuroscience.

“I feel really lucky to have a family with so many shared interests,” she said. Some day, she hopes to collaborate with her brother, who works at Columbia University.

As for her immediate family, Churchland is married to Michael Brodesky, who works at Bookish in Manhattan, lives at Cold Spring Harbor, and has two children who are in the early stages of primary school.

In her first experience of living in New York, she lauded Long Island for its hiking and biking trails and kayaking opportunities.

by -
0 1870

Studying both brain and bone cells to defeat two mountains: Alzheimer’s, osteoporosis

Lisa Miller lives a life of extremes. At work, she looks inside brain and bone cells through some of the highest-tech equipment in the country, checking the chemistry of diseases like Alzheimer’s and osteoporosis. In her free time, the Brookhaven National Laboratory’s Associate Division Director climbs mountains, looking out at the world from the planet’s highest peaks.

Using mid-infrared light, Miller, who is in BNL’s Photon Sciences Directorate, has shown that some areas of the brains of people afflicted with Alzheimer’s disease have high amounts of metals like copper and zinc.

“Metals in our body are tightly regulated and are bound to proteins,” Miller explained. On their own, the metals could be “toxic and can kill cells.”

The brains of people who suffer from Alzheimer’s have amyloid plaques, where brain cells are folded over and clumped together. These plaques have high amounts of these metals.
Using the National Synchrotron Light Source (one of only four such Department of Energy funded tools in the country), Miller wanted to examine how the metals might build up in the brains of those with Alzheimer’s.

Because the concentration of iron in the amyloid plaques is ten times higher than normal, the presence of this metal could be an important diagnostic tool.

MRIs and other tools in doctors’ offices can measure the concentration of iron in a person’s brain.

“It’s possible to image patients who don’t have symptoms yet for high iron content,” Miller offered. Miller cautioned that it’s unclear whether there is a direct connection between the presence of these metals and the onset or course of Alzheimer’s disease.

Indeed, the BNL faculty plans to examine the link between copper in the plaques with disease severity. If the presence of metal is an important part of the progression of the disease, it shouldn’t show up in people who have amyloid plaques but don’t have symptoms. Miller is helping to hire scientists and engineers at BNL to build the next generation light source that uses x-ray, ultraviolet and infrared light. The NSLS-ii, which will be complete in March of 2014, will produce x-rays that are more than 10,000 times brighter than the ones from the current NSLS.

“She’s taken an active role in managing the facility,” said Antonio Lanzirotti, a senior research associate at the University of Chicago who collaborated with Miller on her Alzheimer’s studies. “She’s incredibly impressive in terms of her breadth of knowledge. People respect her opinion at the highest level of management.”

In addition to Alzheimer’s, Miller has also used the NSLS to study osteoporosis.
Partnering with biomedical engineer Stefan Judex at Stony Brook University, Miller and her lab have looked at how osteoporosis drugs affect the chemistry and strength of bones.
Fosamax and Actonel “work really well, not only in slowing down the resorption of bone,” she said, but also in helping the body produce “good, quality bone.”

When she’s not studying the chemistry of bones, brains and other tissues, Miller is an enthusiastic backpacker. She has climbed to highest point in 48 of the 50 U.S. states. Last year, she trekked to the top of Mt. Kilimanjaro.

A native of Cleveland, Miller took her first hike when her father “dragged us to the top of Mount St. Helens” when she was in graduate school at the Albert Einstein College of Medicine. Once she got the climbing bug, she couldn’t stop.

Miller believes in helping the next generation of researchers reach its own scientific peaks.
She helped start a new BNL program called Introducing Synchrotrons into the Classroom (called InSynC) that allows high school students to design research studies that use BNL’s synchrotron.

The projects, which go through a competitive review process, give students and teachers a chance to test their ideas using the NSLS. Miller credits her advisors with guiding her career and wants to pass that long.

“I always had good mentors,” she recalls. “If you’re excited about something, you want others to be as well.”