Tags Posts tagged with "Esther Takeuchi"

Esther Takeuchi

JoAnne Hewett. Twitter photo

By Daniel Dunaief

Daniel Dunaief

Finally!

Brookhaven National Laboratory has had nine lab directors since it was founded in 1946. Earlier this week, the Department of Energy facility, which has produced seven Nobel Prizes, has state-of-the-art facilities, and employs over 2,800 scientists and technicians from around the world announced that it hired JoAnne Hewett as its first female lab director.

Successful, determined, dedicated and award-winning local female scientists lauded the hire of Hewett, who comes to BNL from SLAC National Accelerator Laboratory where she was associate lab director for fundamental physics and chief research officer. SLAC is operated by Stanford University in Menlo Park, California. In email responses, local female scientists suggested that Hewett’s hiring can and would inspire women in science, technology, engineering and math (STEM) fields.

“I am so delighted by the news that Dr. JoAnne Hewett has been named to be the next director of Brookhaven National Laboratory,” wrote Esther Takeuchi, William and Jane Knapp chair in Energy and the Environment and SUNY distinguished professor at Stony Brook University and chair of the Interdisciplinary Science Department at BNL. As the first female director for the lab, Hewett “is an inspiration not only for the women who are in the field, but for future female scientists who will witness first hand that success at the highest level.”

Stella Tsirka, SUNY distinguished professor in the Department of Pharmacological Sciences at the Renaissance School of Medicine at Stony Brook University, suggested this hire was a part of an increasing number of women in prominent positions in science at local institutions.

Stony Brook and BNL are “becoming a hub of strong female role models for younger females, in STEM, in medicine, in leadership!” Tsirka wrote. “Between [SB President] Maurie McInnis, Hewett, Ivet Bahar (the director of the Laufer Center), Anissa Abi-Dargham [principal investigator for the Long Island Network for Clinical and Translational Science] and many other successful female faculty in leadership positions, hopefully, the message comes out loud and clear to our young women who are in science already, or aspire to be in science.”

For her part, Abi-Dargham, who is chair in the Department of Psychiatry and Behavioral Health, described Hewett’s hire as “amazing” and suggested it was “really exciting to see an accomplished female scientist selected to head our collaborating institution at BNL!”

Cold Spring Harbor Laboratory Professor and Cancer Center Program co-leader Mikala Egeblad added that the significance of Hewett’s hire goes “well beyond inspiring young girls. It is important to have women leaders for all sciences, also for someone at my career stage. I hope that one day, we will get to a point when we don’t think about whether a leader is a woman or a man.”

Women remain underrepresented at top leadership positions, so Egeblad finds it “very inspiring to see a woman recognized for her leadership skills and selected” to head BNL.

Leemor Joshua-Tor, professor and HHMI investigator at CSHL, called the hire “really great news” and indicated this was “especially true for the physical sciences, where there are even fewer women in senior positions than in biology.” Joshua-Tor added that the more women in senior, visible positions, “the more young women and girls see this as a normal career to have.”

Alea Mills, professor and Cancer Center member at CSHL, wrote that it is “fantastic that BNL has found the very best scientist to lead them into their next new mission of success. And it’s an extra bonus that this top scientist happens to be a woman!”

Mills added that efforts to enhance diversity are fashionable currently, but all too often fall short. Hiring Hewett makes “real traction that will undoubtedly inspire future generations of young women in STEM.”

Patricia Wright, distinguished service professor at Stony Brook in the Department of Anthropology, wrote that it was “inspiring” to see a female director of BNL and that “young female scientists can aspire to being in that role some day.”

Esther Takeuchi

Esther S. Takeuchi, PhD, Distinguished Professor and the William and Jane Knapp Chair at Stony Brook University is being honored by the National Academy of Sciences (NAS) and will receive the Award in Chemical Sciences. This award is in recognition of her breakthrough contributions in the understanding of electrochemical energy storage.  

Takeuchi, who holds a joint appointment at Department of Energy’s (DOE) Brookhaven National Laboratory, is an internationally recognized inventor, researcher, and educator in the fields of materials science, chemistry and renewable energy. She will be honored in a ceremony during the NAS 159th annual meeting on May 1 and will receive a medal and prize of $15,000 sponsored by the Merck Company Foundation.

The award cites Takeuchi’s contributions “to the materials and mechanistic understanding relevant to electrochemical energy storage, using chemical insight to address issues of critical importance.”

“I am sincerely honored to receive the National Academy of Science Award for Chemical Sciences,” said Takeuchi, also the Knapp Chair Professor of Energy and the Environment in the Department of Materials Science and Chemical Engineering “The fundamental chemistry of electrochemical energy storage is complex and the subsequent development of viable energy storage devices is made even more challenging by the unique demands of each application.”

Takeuchi’s research has been instrumental in energy storage improvements that meet societal needs and can be applied to electric vehicles, medical devices, and batteries that back up the power grid. Among her numerous and notable inventions is a compact lithium/silver vanadium oxide battery that increased the lifespan of implantable cardiac defibrillators, a solution that reduced the number of surgeries patients needed to undergo to replace the devices that detect and correct irregular, potentially fatal, heart rhythms.

Takeuchi was recently elected a member of the American Academy of Arts and Sciences. She has also been inducted into the National Academy of Engineering and selected as a Fellow of the American Institute for Medical and Biological Engineering and the American Association for the Advancement of Science. She was selected as the 2013 recipient of the E.V. Murphree Award in Industrial and Engineering Chemistry from the American Chemical Society. She was inducted into the National Inventors Hall of Fame in 2011. In 2009, President Obama presented Takeuchi with the National Medal of Technology and Innovation, the highest honor possible for technological achievement in the United States.

Peng Zhang, center, with four of his students from his power systems class, from left, Marissa Simonelli, Ethan Freund, Kelly Higinbotham and Zachary Sola, who were selected as IEEE Power and Engergy Scholars in 2017. Photo by Mary McCarthy

By Daniel Dunaief

If Peng Zhang succeeds in his work, customers on Long Island and elsewhere will no longer lose power for days or even hours after violent storms.

One of the newest additions to the Department of Electrical and Computer Engineering at Stony Brook University, Zhang, who is the SUNY Empire Innovation associate professor, is enhancing the resiliency and reliability of microgrids that may be adaptable enough to provide energy to heat and light a home despite natural or man-made disruptions. Unlike the typical distributed energy network of most utilities around the country, microgrids are localized and can function on their own.

Peng Zhang. Photo from SBU

A microgrid is a “central theme of our research,” said Zhang, who joined Stony Brook at the beginning of September. “Even when a utility grid is down because of a hurricane or an attack, a microgrid is still able to supply the local customers” with power. He is also using quantum information science and quantum engineering to empower a resilient power grid.

Zhang expects that the microgrid and utility grid will be more resilient, stable and reliable than the current system. A microgrid will provide reliable power even when a main grid is offline. The microgrid wouldn’t replace the function of the grid in the near future, but would enhance the electricity resilience for customers when the central utility is unavailable or unstable.

Part of his motivation in working in this field comes from his own experience with a weather-related loss of power. 

Even though Zhang, who used his training in mathematics to develop an expertise in power systems, had been working on wind farms and their grid integration, he decided after Hurricane Irene and a nor’easter that he should do more research on how to restore power after a utility became unavailable.

Irene hit in August, while the nor’easter knocked out power in the winter. After the storms, Northeast Utilities, which is currently called Eversource Energy, asked him to lead a project to recommend solutions to weather-induced outages.

Zhang plans to publish a book through Cambridge University Press this year called “Networked Microgrids,” which not only includes his previous results but also presents his vision for the future, including microgrids that are self-healing, self-protected, self-reconfiguring and autonomous.

He recognizes that microgrids, which are becoming increasingly popular in the energy community, present a number of challenges for customers. For starters, the cost, at this point, for consumers can be prohibitively high.

Zhang can cut those expenses, however, by replacing hardware upgrades with software, enabling more of the current system to function with greater resilience without requiring as many costly hardware modifications.

His National Science Foundation project on programmable microgrids will last until next year. He believes he will be able to verify most of the prototypes for the programmable microgrid functions by then.

Zhang called advances in energy storage a “key component” that could improve the way microgrids control and distribute power. Energy storage can help stabilize and improve the resilience of microgrids.

He is eager to work with Esther Takeuchi, who has dual appointments at Stony Brook University and Brookhaven National Laboratory, not only on microgrid technologies but also on renewable integration in the transmission grid.

Zhang appreciates SBU’s reputation in physics, applied math, computer science and electrical and computer engineering. When he was young, he said he also heard about and saw Chen-Ning Yang, whom he described as a model and legend.

“I feel proud and honored to be working at Stony Brook where Dr. Yang taught for more than three decades,” he stated in an email.

In his lab, Zhang has six doctoral students, one visiting doctoral student and two master’s students. A postdoctoral researcher, Yifan Zhou, who worked with him at the University of Connecticut, will soon join his Long Island lab.

Zhang, who earned doctorates from Tsinghua University and the University of British Columbia, brought along a few grants from the University of Connecticut where he held two distinguished titles.

Zhang has “high expectations for the people who work for him,” Peter Luh, a board of trustees distinguished professor at the University of Connecticut, explained in an email. “However, he is considerate and helps them achieve their goals.”

Zhou, who comes from Tsinghua University, is working with him on stability issues in microgrids to guarantee their performance under any possible scenario, from a major storm to a cyberattack.

Zhang is working with Scott Smolka and Scott Stoller, both in the Computer Science Department  at Stony Brook, on resilient microgrids

“We are planning to use simulations and more rigorous methods for formal mathematical analysis of cyberphysical systems to verify resiliency properties in the presence of fault or attacks,” said Stoller who described Zhang as a “distinguished expert on electric power systems and especially microgrids. His move to Stony Brook brings significant new expertise to the university.”

The Stony Brook scientists have created an exercise in which they attack his software systems, while he tries to ensure its ongoing reliability. Zhang will develop defense strategies to guarantee the resilience and safety of the microgrids.

Zhang was born in Shandong Province in China. He is married to Helen Wang, who works for a nonprofit corporation as an electrical engineer. The power couple has three sons: William, 13, Henry 10, and Benjamin, 8. They are hoping their sons benefit from the public school system on Long Island.

Zhang’s five-year goal for his work involves building an institute for power engineering, which will focus on microgrids and other future technologies. This institute could have 20 to 30 doctoral students.

An ambitious researcher, Zhang would like to be the leader in microgrid research in the country. “My goal is to make Stony Brook the top player in microgrid research in the U.S.,” he said.

Meng Yue, scientist in the Sustainable Energy Technologies Department at Brookhaven National Laboratory who has been collaborating with Zhang for over five years, anticipates that Zhang’s research will help consumers.

“As New York State has more aggressive renewable portfolio, I believe the research achievements will soon advance technologies in the power grid application,” he said.

 

By Daniel Dunaief

Replacing batteries in a flashlight or an alarm clock requires simple effort and generally doesn’t carry any risk for the device. The same, however, can’t be said for battery-operated systems that go in human bodies and save lives, such as the implantable cardiac defibrillator, or ICD.

Earlier versions of these life-saving devices that restore a normal heart rhythm were large and clunky and required a change of battery every 12 to 18 months, which meant additional surgeries to get to the device.

Esther Takeuchi with Michaëlle Jean, the secretary general of the Organisation Internationale de la Francophonie, and moderator Fernando Tiberini at the award ceremony in Paris on June 7. Photo courtesy of European Patent Office

That’s where Esther Takeuchi, who is now Stony Brook University’s William and Jane Knapp Endowed Chair in Energy and the Environment and the chief scientist of the Energy Sciences Directorate at Brookhaven National Laboratory, has made her mark. In the 1980s, working at a company called Greatbatch, Takeuchi designed a battery that was much smaller and that lasted as long as five years. The battery she designed was a million times higher power than a pacemaker battery.

For her breakthrough work on this battery, Takeuchi has received numerous awards. Recently, the European Patent Office honored her with the 2018 innovation prize at a ceremony in Paris. Numerous high-level scientists and public officials attended the award presentation, including former French Minister of the Economy Thierry Breton, who is currently the CEO of Atos, and the Secretary General of the International Organisation of Francophony Michaëlle Jean. 

Takeuchi was the only American to win this innovation award this year.

Takeuchi’s work is “the epitome of innovation, as demonstrated in this breakthrough translational research for which she was recognized,” Dr. Samuel L. Stanley Jr., the president of Stony Brook and board chair of Brookhaven Science Associates, which manages Brookhaven National Laboratory. “Her star keeps getting brighter, and I’m proud that she is part of the Stony Brook University family.”

As a winner of this award, Takeuchi joins the ranks of other celebrated scientists, including Shuji Nakamura, who won the European Inventor Award in 2007 and went on to win the Nobel Prize in physics, and Stefan Hell from Germany, whose European Inventor Award predated a Nobel Prize in chemistry. 

Among the over 170 innovators who have won the award, some have worked on gluten substitutes from corn, some have developed drugs against multi-drug-resistant tuberculosis, and some have developed soft close furniture hinges.

“The previous recipients have had substantial impact on the world and how we live,” Takeuchi explained in an email. “It is incredible to be considered among that group.” Nominated for the award by a patent examiner from the European Patent Office, she described the award as an “honor” for the global recognition.

The inventor award is a symbolic prize in which the recipients receive attention for their work, explained Rainer Osterwalder, the director of media relations at the European Patent Office.

Takeuchi was one of four women to receive the award this year — the largest such class of women innovators.

“It was very meaningful to see so many accomplished women be recognized for their contributions,” she explained. “I was delighted to meet them and make some additional contacts with female innovators as well.”

About half the researchers in her lab, which currently includes three postdoctoral researchers and usually has about 12 to 16 graduate students, are women. Takeuchi has said that she likes being a role model for women and that she hopes they can see how it is possible to succeed as a scientist.

Implantable cardiac defibrillators are so common in the United States that an estimated 10,000 people receive them each month.

Indeed, while she was at the reception for an awards ceremony attended by over 600 people, Takeuchi said she met someone who had an ICD.

“It is very rewarding to know that they are alive due to technology and my contributions to the technology,” she explained.

Takeuchi said that many people contributed to the battery project for the ICD over the years who were employed at Greatbach. These collaborators were involved in engineering, manufacturing, quality and customer interactions, with each aspect contributing to the final product.

The battery innovation stacks alternating layers of anodes and cathodes and uses lithium silver vanadium oxide. The silver is used for high current, while the vanadium provides long life and high voltage.

Takeuchi, who earned her bachelor’s degree from the University of Pennsylvania and her doctorate from Ohio State University, has received over 150 patents. The daughter of Latvian emigrants, she received the presidential level National Medal of Technology and Innovation from Barack Obama and has been inducted into the National Inventors Hall of Fame.

Takeuchi continues to push the envelope in her energy research. “We are now involved in thinking about larger scale batteries for cars and ultimately for the grid,” she wrote in an email. “Further, we have demonstrated methods that allow battery components to be regenerated to extend their use. This could potentially minimize batteries going into land fills in the future.”

Takeuchi is one of a growing field of scientists who are using the high-tech capabilities of the National Synchrotron Light Source II at BNL, which allows her to see inside batteries as they are working.

“We recently published a paper where we were able to detect the onset of parasitic reactions,” she suggested, which is “an important question for battery lifetime.”

In the big picture, the scientist said she is balancing between power and energy content in her battery research.

“Usually, when cells need to deliver high power, the energy content goes down,” she said. “The goal is to have high energy and high power simultaneously.”