Tags Posts tagged with "Daniel Dunaief"

Daniel Dunaief

by -
0 1342

By Daniel Dunaief

Hurry, hurry, hurry! You’ve got five minutes to get to the high school before your daughter’s graduation. It usually takes six. You might have to go faster than the speed limit, but you’ve done it before.

Your daughter looks great and she’s so calm. You push on the accelerator on the straight road ahead. Your daughter takes a deep breath.

OK, just a little faster and you’ll make it. Oh, no, no, no, a small car pulls in front of you. It’s being driven at 25 mph in a 35 mph zone. Why do cars pull in front of you and then go slowly? “Come on!” you implore, flicking your fingers forward as if you were trying to scratch a chalkboard from the bottom up.

“Dad, it’s OK,” your daughter insists. “I don’t want you to be late,” you say.

You drive carefully around a curve and head for another straight part of the road. You reach a stop sign, where a BMW misses an opening to go. It was a small one, but you’ve got to make your own openings in this town. That’s what you’d tell everyone today if you were giving the speech your daughter won the right to deliver.

Your daughter did better in school than you did. That makes you proud, but you don’t have time to be proud. All these people are slowing you down. You just have a few more turns.

A Girl Scout troop crosses the road in front of you. Your daughter was in Girl Scouts years ago, but you don’t like them now. They’re making you late for such an important day for the family.

Then the Girl Scouts, whose uniforms make you think of those mint cookies, cross the street. You’re a block from the school and a sedan takes forever to park.

You grind your teeth and lift your hand to touch the horn. Your daughter puts her hand firmly on yours and shakes her head slowly.

The woman with streaks of gray in her hair and a green suit looks vaguely familiar as she gets out of a car.

Finally, you park, get in the school and, shockingly, your daughter’s friends have reserved you great seats.

You pick up your phone to start recording your daughter’s speech. The camera’s out of memory. You grind your teeth as you try to delete enough old pictures to record this magic moment.

“Good morning,” your daughter’s voice offers the room. Your wife tells you to stop fiddling with your phone and look up. After your daughter shares memories of high school, she wants to offer advice to her class.

“I want you to remember to leave some margin for error,” she urges. Right, you smile. Your daughter, who made so many fewer errors than you did, is talking to the other people about their mistakes. You nod to the other people.

“If we need to do something, to be somewhere or to accomplish anything, we need to accept that the route might include detours or unexpected obstacles,” she offers, sharing that crooked smile she developed in middle school. “It’s not anyone else’s fault. If it’s important, don’t blame the obstacles. Be prepared for them. Planning means understanding them and giving yourself some extra time to reach your goals.”

You take a deep breath, the way she did so many times while she waited for you at the entrance to the house. You look around the room to see if anyone else knows she’s talking to you. You now recognize the woman on stage with streaks of gray in her hair and a green suit; she’s the superintendent of schools.

You realize how much smarter your daughter is than you.

SBU graduate student and grand niece of world renowned anthropologist Richard Leakey, Acacia Leakey, draws a sketch of huts in the village of Ambodiaviavy, Madagascar as the children look on. Photo from Mickie Nagel

By Daniel Dunaief

 

Mickie Nagel recently returned from the island nation of Madagascar, and she’s filled with ideas, inspiration, observations and opportunities. One of the three founders of a new nongovernmental organization called BeLocal, the Laurel Hollow resident spent several weeks with Stony Brook University graduate students Leila Esmailzada and Acacia Leakey taking videos and gathering information about life in Madagascar.

The goal of the new organization is to share this footage and insight with undergraduate engineers at SBU, who might come up with innovations that could enhance the quality of life for the Malagasy people.

In one village, a man showed her a three-inch lump on his shoulder, which he got by dragging a long stick with bunches of bananas that weigh over 100 pounds along a clay footpath out of the forest. People also carry rice that weighs over 150 pounds on their heads, while many others haul buckets of water from rivers and streams to their homes while walking barefoot.

In addition to transportation, Nagel also found that villagers around Centre ValBio, a Stony Brook research station, had basic food and water needs. Over 17 years ago, another group had installed four water pumps in a village to provide access to water. Only one pump now works.

SBU graduate student Leila Esmailzada helps villagers in Ambodiaviavy, Madagascar, clean rice. The job is usually delegated to the children who pound the rice for 30 minutes. Photo by Mickie Nagel

As for food, some villagers in Madagascar spend hours preparing rice, including beating off the husks and drying the rice. They store this hard-earned food in huts that are often infiltrated with rats, who consume their rice and leave their feces, which spreads disease.

Traveling with Esmailzada and Leakey, Nagel not only helped document life in these villages but also searched for information about available resources to drive engineering innovations, while Leakey gathered information about an invasive species of guava.

“Ideally, if any projects require wood, then they should incorporate guava sticks into their design, as opposed to planks from forest trees,” explained Leakey in an email sent from Madagascar. The graduate student, who recently earned her bachelor’s degree at Stony Brook, will be recording the average thickness of the stems, the average length of a straight piece and the load capacity of the branches. Leakey plans to return from the African continent in the beginning of August.

Leakey also visited metalworkers to explore the local capacity. The raw materials come from scrap metal dealers, who often get them from old car parts.

Nagel started BeLocal with her husband Jeff Nagel and a classmate of his from their days as undergraduates at Carnegie Mellon University, Eric Bergerson. Indeed, BeLocal fulfills a long-standing goal of Jeff Nagel’s. Before freshman year in college, Nagel told Bergerson that he wanted to do something that had a positive impact on the world.

While the founders have contributed through their work, their jobs and their families, they found that partnering with Stony Brook University and Distinguished Professor Patricia Wright in Madagascar presented a chance to have a meaningful impact on life on the island nation.

Nagel, whose background is in marketing, visited Madagascar over two years ago, where she traveled for over a hundred hours on a bus through the country. “You just see people living below the poverty line and you see how that plays out in normal day-to-day activities,” she said. “You see a young mom carrying a child on her back and one on her front, with heavy produce on her head and you just think, ‘Wow, there has to be an easier way for some of this.’”

Mickie Nagel, far right, on an earlier trip to Central ValBio with her daughters Gabrielle, far left, and Lauren, center. when they first visited Centre ValBio. Photo by Heidi Hutner

When Nagel returned from her initial trip to Madagascar with her daughters Gabrielle, 18, and Lauren, 17, she and her husband thought people around the world would likely want to help but that not everyone could afford to travel that far.

Nagel recalls Bergerson, who is the director of research at the social data intelligence company Tickertags, telling her that they “don’t have to travel there. You can videotape the daily challenges and crowd source” innovations.

That’s exactly what Leakey and Esmailzada did for the last few weeks. Leakey said she is looking forward to working with senior design students as they go through their projects at Stony Brook and is eager to see how they understand the situation “through the footage and pictures we collect.”

The BeLocal approach isn’t limited to Madagascar, the BeLocal founders suggested. Indeed, given the distance to an island famous for its lemurs, animated movies and an Imax film that features primates with personality, BeLocal could have started in a Central American country like Belize.

Mickie Nagel, however, urged them to start at a location where they would immediately have the trust of local residents. That, she suggested, came from the over quarter of a century of work from Wright, an award-winning scientist who has not only helped preserve Ranomafana [National Park in Madagascar] but has also helped bring health care and education to the villages around the CVB research station. Wright and the Malagasy people have a “mutual respect for each other,” Nagel said.

“People have been exceptionally warm and welcoming,” Leakey said. Getting people accustomed to the presence of cameras hasn’t been straightforward, as people sometimes stop what they are doing, but the guides have helped make the villagers more comfortable.

Jeff Nagel, who works at a private equity firm in New York City, explained that Madagascar is the first step for BeLocal. This effort “can be expanded to other countries or other areas,” Nagel said. “It doesn’t have to be engineers and universities,” but can be instituted by creative people everywhere.

At this point, BeLocal is not looking for any additional funding but might consider expanding the effort at this time next year. Nagel said this fall, they will look for professional engineers to advise on projects. “We would like people who are interested in participating or just keeping up with developments to come and register on our website, www.BeLocalgrp.com,” she suggested.

The site, which the group is upgrading, is up and running. Bergerson explained that they have a “lot of infrastructure to build on” to create the crowd sourcing platform.

Jeff Nagel suggested that this effort is designed to use technology constructively. “Technology’s job, first and foremost, is to help humanity,” he said. “This is a chance to use it in a way that matters to people.”

Gal Gadot tackles the role of Wonder Woman in Warner Brothers new superhero flick. Image courtesy of Warner Bros.

By Daniel Dunaief

Remember those Mad Libs games? You’d insert an adjective, a noun, a verb, adverb, a command, perhaps, into a premade sentence and then you’d read it back, laughing or pondering the combination of words thrown into the structure of a familiar narrative?

Superhero movies, particularly those about the origin of a character we all know, are like a game of Mad Libs. Few superheroes start out life with a cape, a star or a penchant for helping society and standing up against supervillains. Superheroes start out not knowing their fate, or some secret about themselves, and then have to learn the truth along the way.

“Wonder Woman,” the film version from Warner Brothers Studios based on the DC Comics, provides an enjoyable Mad Libs experience, sticking, for the most part, to a familiar structure. The movie, which has been flying high at the box office despite the lack of an invisible plane, executes on its premise well, while offering a few moments of levity scattered through its mix of high-action battle scenes.

Played by the easy-on-the-eyes Gal Gadot, to whom the movie’s other characters react with the kind of awe and attraction the audience might have if they met her, Wonder Woman tells the tale of Diana, the Amazonian princess of Themyscira. We meet her as a young girl, on a picturesque island full of woman who are forever training to fight a battle against man, who may discover their island some day despite remaining hidden from view.

Diana’s mother Hippolyta, played by Connie Nielsen, doesn’t want her daughter to be a warrior, which, of course, means that Diana’s primary focus is on developing her battle skills.

Enter Steve Trevor, an American spy played by Chris Pine, whose plane penetrates the fog that renders the island invisible. Now grown up, Diana races to save Trevor, who crash lands off shore. Trevor, unfortunately, brings an armada of Germans to the beach, where the first of many battles occurs. Diana is determined to end the War to End All Wars by returning to the outside world and fighting an enemy Trevor doesn’t see. While Pine’s Trevor doesn’t understand much about Diana and the island, Diana, in turn, finds the American warrior confounding and slightly amusing.

The interactions between Diana and Trevor throughout the film are amusing, filled with a blend of Trevor’s humorous awe and Diana’s unrelenting sincerity in her quest to end the war.

Complete with the Mad Libs collection of damaged heart-of-gold band of merry men, which fits conveniently into the superhero plot, Diana, Trevor and company seek out the evil General Ludendorff, played by Danny Huston, who seems bent on using a toxin Dr. Maru, Elena Analya, is creating.

The best parts of the film are when Diana, who is unaware of the broader conflict around her, drives the action. She races out of the trenches to try to save a town held by the Germans, followed by the reluctant heroes-despite-themselves band, including Trevor. Movie aficionados have focused on the glass ceiling shattered by director Patty Jenkins, who set a box office record for a movie directed by a woman. Jenkins has blended character development, high energy and an enjoyable script to create a worthwhile comic book movie. Her direction, with battle scenes alternating with the ongoing quest to end the war, kept the pace of the movie. The interaction among the main characters — friend and villain alike — made this Mad Libs origin story a success.

Now playing at local theaters, “Wonder Woman” is rated PG-13 for sequences of violence and action.

Priya Sridevi with her golden doodle Henry. Photo by Ullas Pedmale

By Daniel Dunaief

Priya Sridevi started out working with plants but has since branched out to study human cancer. Indeed, the research investigator in Cold Spring Harbor Laboratory Cancer Center Director David Tuveson’s lab recently became the project manager for an ambitious effort coordinating cancer research among labs in three countries.

The National Cancer Institute is funding the creation of a Cancer Model Development Center, which supports the establishment of cancer models for pancreatic, breast, colorectal, lung, liver and other upper-gastrointestinal cancers. The models will be available to other interested researchers. Tuveson is leading the collaboration and CSHL Research Director David Spector is a co-principal investigator.

The team plans to create a biobank of organoids, which are three-dimensional models derived from human cancers and which mirror the genetic and cellular characteristics of tumors. Over the next 18 months, labs in Italy, the Netherlands and the United States, at Cold Spring Harbor Laboratory, expect to produce up to 150 organoid models.

The project officially started in January and the labs have been setting up the process through June. Sridevi is working with Hans Clevers of the Hubrecht Institute, who pioneered the development of organoids, and with Vincenzo Corbo and Aldo Scarpa at the University and Hospital Trust of Verona.

Sridevi’s former doctoral advisor Stephen Alexander, a professor of biological sciences at the University of Missouri, said Sridevi has had responsibilities beyond her own research. She was in charge of day-to-day operations in his lab, like ordering and regulatory reporting on radioactive material storage and usage, while he and his wife Hannah Alexander, who was Sridevi’s co-advisor, were on sabbatical. “She is hard working and determined,” said Alexander. “She knows how to get things done.”

In total, the project will likely include 25 people in the three centers. CSHL will hire an additional two or three scientists, including a postdoctoral researcher and a technician, while the Italian and Netherlands groups will also likely add another few scientists to each of their groups.

Each lab will be responsible for specific organoids. Tuveson’s lab, which has done considerable work in creating pancreatic cancer organoids, will create colorectal tumors and a few pancreatic cancer models, while Spector’s lab will create breast cancer organoids.

Clevers’ lab, meanwhile, will be responsible for creating breast and colorectal organoids, and the Italian team will create pancreatic cancer organoids. In addition, each of the teams will try to create organoids for other model systems, in areas like lung, cholangiocarcinomas, stomach cancer, neuroendocrine tumors and other cancers of the gastrointestinal tract.

For those additional cancers, there are no standard operating procedures, so technicians will need to develop new procedures to generate these models, Sridevi said. “We’ll be learning so much more” through those processes, Sridevi added. They might also learn about the dependencies of these cancers during the process of culturing them.

Sridevi was particularly grateful to the patients who donated their cells to these efforts. These patients are making significant contributions to medical research even though they, themselves, likely won’t benefit from these efforts, she said. In the United States, the patient samples will come from Northwell Health and the Tissue Donation Program of Northwell’s Feinstein Institute of Medical Research. “It’s remarkable that so many people are willing to do this,” Sridevi said. “Without them, there is no cancer model.”

Sridevi also appreciates the support of the philanthropists and foundations that provide funds to back these projects. Sridevi came to Tuveson’s lab last year, when she was seeking opportunities to contribute to translational efforts to help patients. She was involved in making drought and salinity resistant rice and transgenic tomato plants in her native India before earning her doctorate at the University of Missouri in Columbia.

Alexander recalled how Sridevi, who was recruited to join another department at the University of Missouri, showed up in his office unannounced and said she wanted to work in his lab. He said his lab was full and that she would have to be a teaching assistant to earn a stipend. He also suggested this wasn’t the optimal way to conduct research for a doctorate in molecular biology, which is a labor-intensive effort. “She was intelligent and determined,” Alexander marveled, adding that she was a teaching assistant seven times and obtained a wealth of knowledge about cell biology.

Sridevi, who lives on campus at CSHL with her husband Ullas Pedmale, an assistant professor at CSHL who studies the mechanisms involved in the response of plants to the environment, said the transition to Long Island was initially difficult after living for six years in San Diego.

“The weather spoiled us,” she said, although they and their goldendoodle Henry have become accustomed to life on Long Island. She appreciates the “wonderful colleagues” she works with who have made the couple feel welcome.

Sridevi believes the efforts she is involved with will play a role in understanding the biology of cancer and therapeutic opportunities researchers can pursue, which is one of the reasons she shifted her attention from plants. In Tuveson’s lab, she said she “feels more closely connected to patients” and is more “directly impacting their therapy.” She said the lab members don’t get to know the patients, but they hope to be involved in designing personalized therapy for them. In the Cancer Model Development Center, the scientists won a subcontract from Leidos Biomedical Research. If the study progresses as the scientists believe it should, it can be extended for another 18 months.

As for her work, Sridevi doesn’t look back on her decision to shift from plants to people. While she enjoyed her initial studies, she said she is “glad she made this transition” to modeling and understanding cancer.

Leemor Joshua-Tor. Photo from CSHL

By Daniel Dunaief

Like many of the other talented and driven professionals at Cold Spring Harbor Laboratory, Leemor Joshua-Tor often works far from the kind of spotlight that follows well-known actors or authors.

That changed in April and early May. First, the American Academy of Arts and Sciences elected her a member on April 11. Other members joining the academy this year include Carol Burnett, New York Times columnist Nicholas Kristof, actor Ian McKellen, who played Gandalf in the Hobbit films and Magneto in the X-Men movies, and Israeli writer David Grossman.

Then, on May 2, the National Science Foundation elected the Cold Spring Harbor Laboratory professor and Howard Hughes medical investigator to join its ranks. “I got a huge amount of congratulatory emails from many friends, some of which I haven’t been in touch with for a while,” Joshua-Tor said. “It’s humbling.”

Joshua-Tor’s research covers a range of areas in structural and molecular biology. She works with RNA interference, where she focuses on how small molecules regulate gene expression or translation. She has also worked with Cold Spring Harbor Laboratory President Bruce Stillman on the early stages of DNA replication.

Early this year, Joshua-Tor and Stillman published a paper in eLife Sciences in which they offered more details about the human origin recognition complex. Stillman suggested that Joshua-Tor was the “main driver” for the research, studying the structure of a protein he had isolated years ago. “I am not a structural biologist, but she is an outstanding one and together, we came up with a very satisfying result.”

The origin recognition complex begins the process of replication, recruiting a helicase, which unwinds DNA. It also brings in regulatory factors that ensure smooth timing and then other factors such as polymerase and a clamp that keeps the process flowing and ensures accurate copying of the genetic code. “We don’t know how ORC’s motor activity is used,” Joshua-Tor explained. “We don’t really know what it is on the DNA that the ORC likes to bind to.”

In the recent work, the scientists explored the ORC’s structure and tinkered with it biochemically to understand it. The ORC binds and hydrolyzes the energy molecule adenosine triphosphate, or ATP, in the same way a motor would, although it probably isn’t continuous. “It might use ATP hydrolysis to perform one sort of movement, perhaps a detachment,” Joshua-Tor suggested.

In the early stages of replication, ATP is necessary for the integrity of the ORC complex, as well as the helicase that gets recruited. “We knew from biochemistry that ORC bounds multiple ATP molecules, but we did not know precisely how,” Stillman explained in an email. “The structure told us. ORC does not open the DNA by itself, but loads a protein complex onto the DNA that, when activated, can open the DNA.” Stillman is working on that process now. The next step for the CSHL collaborators is to get a structure of human ORC bound to DNA.

In their recent work, the researchers characterized how mutations involved in ATP hydrolysis affect a condition called Meier-Gorlin syndrome. Of the mutations they characterized, one affects the ability to hydrolyze ATP. Patients with this syndrome have one copy of the gene with typical function and the other that doesn’t. This likely leaves the patient with half of the molecules to do the required job.

The misregulation of replication is often associated with cancer and is something Joshua-Tor and others consider when they conduct these studies.

ATP, meanwhile, is associated with all kinds of activities, including cell adhesion and taking down misfolded proteins. Many processes in the cell connect to these types of molecular machines.

In her research with RNA interference, she is studying how a microRNA called Let7 is produced. Let7 is involved in development. Before cells differentiate when they are stem cells, they make Let7 continuously and then destroy it. She is studying the pathway for this process. Let7 is absent from stem cells and in some cancers.

Interested in science and theater when she was young, Joshua-Tor grew up in Israel, where she participated in activities at the Weizmann Institute of Science. The institute has biology, biochemistry, chemistry, math, computer science and physics, as well as an archeology unit that didn’t exist when she was there. Later, when she was a graduate student, Joshua-Tor returned to the institute and became an instructor.

An important moment in her scientific development occurred when she was in seventh grade. She was learning about elements and she put each one on a card. She brought these cards to class to study them. Her mother gave her a container that had housed her perfumes, which created a positive association for chemistry every time she studied the elements.

Joshua-Tor was also interested in theater, where she was initially in shows and then became an assistant director. The researcher lives with her daughter Avery, who is 8 and attends the Jack Abrams Magnet School. The tandem have a Schnauzer named Charles Darwin. Her daughter is proud of her mother and tells “anyone that would listen” about the awards her mother recently won, Joshua-Tor said.

Joshua-Tor, whose lab now has 11 people, said she is excited for the opportunity to meet some of her fellow honorees this fall.

Stillman expressed pride in “all our scientists and especially when they make major discoveries and they receive such peer recognition,” he wrote in an email. Joshua-Tor is “one of our best, but we have many scientists who will go on to gain substantial peer recognition. This is her turn, at least for these two awards!”

Fan Ye. Photo from SBU

By Daniel Dunaief

Fan Ye has a vision for the future filled with high service and efficiency that doesn’t involve butlers or personal attendants. The assistant professor of electrical and computer engineering in the College of Engineering and Applied Sciences at Stony Brook University is focused on creating smart environments in which window blinds open as people pull into their driveways, lights turn off in unoccupied rooms and the building guides a new student turn by turn through complex floors and hallways from entrance to the registrar’s office.

“The physical environment would be like a caring mother,” said Ye. It would sense and figure out people’s needs and “take care of the occupants inside the building.”

In Ye’s vision, which he estimates is about one year to decades away from a reality, objects that rely on people to turn them on or off, reposition them or alter their settings would have chips embedded in them, working together to create an environment that anticipates and learns in response to the need around it.

“With sensors, [a smart environment] can sense both physical conditions and human activities and adjust the environment in manners that create/improve comfort, safety, convenience” and the productivity of the occupant, he explained in an email.

Ye recently received a $450,000 award over the next five years from the National Science Foundation for early-career faculty for his study of smart environments. The prestigious award is the highest honor given by the government to scientists and engineers beginning their independent careers.

Initially, Ye is developing and testing a security system with the Stony Brook University Police Department and the Center of Excellence in Wireless and Information Technology that grants specific access to buildings or facilities depending on the specifications of an administrator.

Many of the buildings on campus have electric locks, which someone can open with a badge where there’s a badge reader. A badge, however “isn’t that flexible,” Ye said. If an administrator would like to grant someone one-time access to open a door that doesn’t provide ongoing access, that is difficult to do with a badge system.

“What’s lacking in this closed proprietary system is flexible access control, which can determine who has what access based on context factors,” he said. Ye, his team, the police department and the CEWIT are building a system that can enable greater flexibility that allows someone to open an office door for five minutes during a specific hour. “If any of these context factors is not satisfied, they don’t have access,” he said.

Ultimately, he would like to construct a system using modern mobile technology, like smartphones, instead of physical badges. The system would include embedded security that employs modern cryptography so a hacker or attacker can’t trick the system.

By using software and hardware security, Ye is hoping to develop a system that prevents the most common attacks at a reasonable cost, which he hopes would prevent someone from gaining access.

Ye is building real systems and testing them. The cost-benefit of these systems depends on the object. A motor to open and close a window would cost money to manufacture, install and operate. As with any technological innovation, he said, “the question comes down to, How do you invest versus how much do you get in return?”

Looking at the historical trend for computation resources, Ye said computing and storage costs are falling at an exponential rate, while the price for radio and sensing is also falling rapidly, although not at the same pace.

“I believe this trend will continue, especially for a lot of these objects that need small embedded systems” that can be manufactured at a scale with low cost, he continued. The process of turning the environment into an efficient, high-service system isn’t an all-or-nothing proposition. Consumers might decide to focus on the air-conditioning or heat use in their homes.

Other researchers are developing ways to harness the vibrational energy of movement or sound, which, conceivably, could power some of these electronics without requiring the delivery and consumption of more energy.

Ye recognizes that these parts can and will break down and require repair, just as dishwashers sometimes stop working and iPhones can lose a list of contacts. So many small electronic parts in a smart environment could seem like an invitation to malfunctions.

He likens the repair process to cloud computing, which allows small to medium-sized companies to rent computing resources from larger companies. “A smart environment, especially for public buildings like a university or office, could potentially run in a similar model,” he said. Individuals might rely on IT support from dedicated personnel who, like a superintendent in a building, could be responsible for a host of smart products.

A native of Hubei Province in China, Ye, who now lives in Setauket, loves to hike in national parks. His favorite is Canyonlands in Utah. Ye had worked at IBM for about 10 years before joining Stony Brook almost three years ago. While he was there, Ye worked on numerous projects, including distributed stream processing, cloud-based queueing and wide-area dependable messaging. “I learned tremendously at IBM,” he said.

Ye is “”well known and respected in the mobile and wireless computing research community,” Hui Lei, an IBM distinguished engineer, wrote in an email. “He conducted pioneering work on scalable message delivery, robust coverage and security in wireless sensor networks, which are well received and highly cited and closely related to the smart environment work he is doing now.”

Lei suggested that Ye’s experience and accomplishments provide him with a solid track record and he is “confident that [Ye] will be able to come up with innovative solutions in this area.”

From left, Christopher Gobler with his research team Andrew Griffith, Theresa Hattenrath-Lehmann and Yoonja Kang. Photo from SBU

By Daniel Dunaief

Christopher Gobler searches the waters around Long Island for signs of trouble, which can appear starting in April. This year, he found it, in Shinnecock Bay. Monitoring for a toxin carried by algae called Alexandrium, Gobler recently discovered levels that were three times the allowable limit from the Food and Drug Administration. His finding, along with measurements from the New York State Department of Environmental Conservation of toxins in shellfish in the bay, have caused the recent closure of shellfishing in the bay for the fourth time in seven years.

While Gobler, a marine science professor at the School of Marine and Atmospheric Sciences at Stony Brook University, watches carefully for the appearance of red tides from these algae locally, he recently completed a much broader study on the spread of these toxins.

Gobler led a team that explored the effect of ocean warming on two types of algae, Alexandrium and Dinophysis. Since 1982, as the oceans have heated up, these algae have become increasingly common, particularly in the northern Atlantic and Pacific oceans, according to a study Gobler and his colleagues recently published in the Proceedings of the National Academy of Sciences. When they become concentrated in shellfish, these algae can lead to diarrhea, paralysis and even death if people consume enough of them.

Over the course of the study, algae have begun to form “denser populations that are making shellfish toxic,” Gobler said. Temperature is one of many factors that can affect the survival, growth and range of organisms like the algae that can accumulate toxins and create human illness. “As temperatures get higher, they are becoming closer to the ideal for some species and out of the ideal for other species,” Gobler said.

The strongest effect of changing temperatures are at higher latitudes, which were, up until recently, prohibitively cold for these types of algae. The biggest changes over the course of the study came in the Bay of Fundy in Canada, in Scotland, Ireland, Scandinavia, Iceland, Greenland and Alaska. The toxic algal blooms increased in frequency between 40 and 60 degrees north latitude, according to the study. These are places where toxic algae lived but weren’t as prevalent, but the warming trend has created a more hospitable environment, Gobler said.

Raphael Kudela, a professor of ocean sciences at the University of California, Santa Cruz who wasn’t involved in this research, explained that other papers have suggested a similar link between temperature and the movement of these algae. “We’ve seen the expansion of ciguatera fish poisoning, as the temperature range has moved poleward for those algae,” Kudela wrote in an email. NOAA biological oceanographer Stephanie Moore has documented an expanded window of opportunity for paralytic shellfish poisoning linked to changes in temperature, Kudela said. “While we can point to specific events, and it makes intuitive sense, the Gobler paper actually documented these trends using a long time series, which hasn’t been done before,” Kudela continued.

R. Wayne Litaker, a supervisory ecologist at NOAA’s National Ocean Service, collaborated with Gobler on the project. He said small differences in temperature are significant for the growth rate of these toxic algae. Extending this to other organisms, Litaker explained that fish are also extending their ranges amid a rise in global temperatures. “There’s been a general movement of temperate species toward the poles,” Litaker said. He’s seen tropical fish, such as butterfly fish, off the docks of North Carolina that he hadn’t seen that far north before.

Gobler and his colleagues estimate that the need to close shellfish beds, the increase in fish kills, and the health care damage to people has exceeded a billion dollars since 1982. The largest problem for people in areas like Alaska is their lack of experience with red tides.

“Communities are being exposed to these blooms where they had not been in the past,” Gobler said. “[The blooms] can be most dangerous when they take a community by surprise.” Gobler said this happened in Alaska during the study. In the last decade, shellfish toxins that are 1,000 times more potent than cyanide caused illnesses and were suspected in two deaths in Haines, Alaska.

Litaker said he gave a talk several years ago at a conference. Gobler approached him and asked if they could work together. “One of the wonderful things about these meetings is that you see things that trigger possibilities and whole new projects are born,” Litaker said.

Litaker described Gobler as a “major player in the field” who has done “fantastic work over the years.” Litaker said he was “quite impressed with what he’s done.” Litaker explained that the climate is changing and urged fisheries and shellfish experts to prepare to respond throughout the country. “As we get warmer and more run off of nutrients, toxic cyanobacteria [algal blooms] are causing problems in all 50 states,” Litaker said.

Kudela suggested that the “new records every year for the last several years … will undoubtedly continue to impact the range, duration and toxicity of blooms.”

Locally, Gobler continues to monitor dozens of sites on Long Island, where he suggested that Alexandrium could become less prevalent with warming, while Dinophysis could become more common. Temperature and other factors favorable for algae growth have led to red tides in the past.

In oceans across the world, Kudela said the next logical step would be to explore the interaction of temperature and nutrients. “We know both are changing, and they are likely to have additive or synergistic effects, but we haven’t done the same careful study as the Gobler paper looking at how the trends are interacting,” he explained.

Student Giancarlos Llanos Romero will be joining the SBU team on a trip to Kenya this summer. Photo by Phoebe Fornof

By Daniel Dunaief

In a region known for the study of fossils left behind millions of years ago, a team of students from Stony Brook University’s College of Engineering and Applied Sciences is planning to travel to Kenya this summer to learn about and try to solve the challenges of today.

The university will send eight undergraduates to the Turkana Basin Institute for the engineering department’s first program in Kenya, which will run for over four weeks. In addition to classroom study, the students will seek opportunities to offer solutions to problems ranging from refrigeration, to energy production, to water purification.

The students learned about the opportunity in the spring, only a few months before they would travel to a country where the climate and standard of living for Kenyans present new challenges. “We were skeptical about how many students we would be able to get,” said Fotis Sotiropoulos, the dean of the College of Engineering and Applied Sciences, who “didn’t start marketing this” until after he took a trip to Kenya and the Turkana Basin Institute, which Stony Brook created at the direction of world-renowned anthropologist Richard Leakey.

Giancarlos Llanos Romero, who is interested in robotics and nanotechnology and is finishing his junior year, had originally planned to spend the summer seeking an internship in the Netherlands or Germany. When he learned about this opportunity, he immediately changed his focus. “I need to do this,” Romero said. “This is much more important than anything I could do in an internship.”

On first blush, the trip is anything but ideal for Romero, whose skin is sensitive to extreme heat, which he can expect to encounter in the sub-Saharan African country. He didn’t want that, however, to stop him and is planning to travel with seven other people he met for the first time last week. Romero said his immediate family, which is originally from Colombia, supported the trip.

Sotiropoulos, who is in his first year as dean, embraced the notion of connecting the engineering department with the Turkana Basin Institute. “Before I came here” said Sotiropoulos, “I felt very passionately about making sure that engineering students became familiar with the rest of the world” and that they understood global challenges, including issues like poverty and water scarcity.

Sotiropoulos met with TBI Director Lawrence Martin during one of his interviews prior to his arrival at SBU. Martin invited Sotiropoulos to visit with Richard Leakey, the founder of TBI whose family has been making scientific discoveries in Kenya for three generations.

Women and children in Kenya searching for, and drinking from, water found beneath the dry riverbed. Photo by Lynn Spinnato

This program quickly came together after those meetings. The two courses will teach students about design thinking, said Robert Kukta, the associate dean for undergraduate programs in the College of Engineering and Applied Sciences. Stony Brook would like to help students develop “the ability to think broadly about solutions and boil it down to the essence of the problem,” Kukta said. This, he said, will all occur in the context of a different culture and local resources.

Students will start their summer experience in Nairobi and then they will travel to Princeton University’s Mpala Research Centre, Martin said. “The journey through Kenyan towns opens visitors’ eyes tremendously to how different peoples’ lives are in different parts of the world,” Martin explained by email. “The goal is not so much to contribute immediately but to understand the challenges that people face, the resources available locally and then to improve their ability to think through possible solutions.”

Once students arrive at TBI, they will have an opportunity to see fossils from many time periods, including those from late Cretaceous dinosaurs. “Every visitor I have ever taken to TBI is amazed and in awe of the abundance of fossil evidence for past life on Earth,” Martin said.

A distinguished professor in the Department of Chemistry at SBU, Benjamin Hsiao, who traveled with Sotiropoulos to Kenya in the spring, is a co-founding director of Innovative Global Energy Solutions Center. Hsiao has been developing water filtration systems through IGESC, which brings together TBI with universities, industry, international governments and foundations. He is well acquainted with the challenges the first set of students will face.

“Once we bring technologies over to Kenya, [sometimes] they do not work for reasons we have not thought of,” which include dust or a broken part for which it’s difficult to find a replacement, he said. “Those failed experiments give us tremendous insight about how to design the next-generation systems which will be much more robust and sustainable and easier to operate by local people.”

Acacia Leakey, who grew up in Kenya and is Richard Leakey’s grandniece, recently completed her senior design project as an undergraduate at Stony Brook. Her work is intended to help farmers extend the life of their tomato plants when they bring them to market.

About 32 percent of the tomatoes go to waste from the extreme heat. Acacia and her team developed a vegetable cooler that employs solar panels to reduce the temperature from 32 degrees Celsius to 15 degrees Celsius, which should extend the life of the tomatoes. Her classmates were “surprisingly supportive” of her work, she said, as some of them hadn’t considered applying their skills in a developing country.

Leakey, who will train for her master’s degree at Stony Brook this fall, will continue to provide insights into Madagascar, another developing African nation where the university has an internationally acclaimed research center. This summer, she will produce a video that will record information from villages near Centre ValBio in Madagascar, which she will bring back to Stony Brook in the hopes of encouraging others to use that information to create their own design projects next year.

As for Romero, who is raising money for the trip through a GoFundMe page, he is prepared to discover opportunities amid the challenges of his upcoming trip and is eager “to be able to actually help a community and say I left a mark.”

Patricia Wright speaks at the Earth Optimism Summit in April. Photo by Ronda Ann Gregorio

By Daniel Dunaief

Determined to share success stories instead of doom and gloom, Nancy Knowlton, the Sant Chair of Marine Science at the Smithsonian Institution’s National Museum of Natural History, decided to change the tone of the conservation dialog.

Knowlton organized the first Earth Optimism Summit around the most recent Earth Day this April. She searched for speakers who could share their progress and blueprints for success. That included Patricia Wright, a Stony Brook University distinguished professor who has developed an impressive legacy during her 25 years in Madagascar.

Nancy Knowlton, organizer of the first Earth Optimism Summit in April. Photo by Ronda Ann Gregorio

In Madagascar, the 10th poorest country on Earth, optimism has been growing, perhaps even more rapidly than the 1,000 endemic trees that have been making a comeback in the island nation off the southeast coast of Africa. The growth of those trees has encouraged the return of animals that had retreated from an area thinned out by selective logging.

“This year, the rare and furtive bird, the scaly ground roller, came back and nested,” Wright reported. The “black and white ruffed lemur gave the area the thumbs up and reestablished territories and reproduced.”

The critically endangered golden bamboo lemur also doubled the size of its population. “The forest took 25 years to recover, but it can recover,” Wright said in her speech. Dedicated to the study of lemurs, Wright in 1991 helped create Ranomafana National Park, which is the third largest park in Madagascar. She served as a plenary speaker for a gathering that drew over 1,400 people to Washington. Scientists and policymakers held sister summits in nine other countries at the same time.

“You can’t possibly make progress in conservation if you only talk about the problems,” said Knowlton, a co-host of the summit. Knowlton knew Wright from serving on the Committee for Research and Exploration, where the two interacted six times a year. When she was putting together the list of speakers, Knowlton approached the 2014 winner of the Indianapolis Zoo Prize to see if she could share a positive message in conservation.

When Wright accepted, Knowlton was “thrilled, not only because she’s a good storyteller, but because she’s also done incredibly important work in Madagascar.” Indeed, Wright said national parks have greatly expanded from only two in the 1980s. “Now with the work of many dedicated environmentalists, including the enlightened policy of the U.S. government through USAID, we have 18 National Parks and a National Park Service to manage and protect them,” she told the session.

Restoring trees to the area also offers economic opportunity, Wright said. Under the endemic trees, farmers can grow crops like vanilla, chocolate, cinnamon and wild pepper, she said. “All these products can be marketed for high prices. We will take back that land and make it productive again, doubling or tripling its value,” Wright continued.

A scientist featured in the 2014 film “Island of Lemurs: Madagascar,” Wright has engaged in a wide range of efforts on behalf of the Malagasy. Last year, she negotiated with a mayor on the island to pick up trash in exchange for the purchase of several wheelbarrows. She also helped encourage the renovation of 35 schools in communities around Ranomafana, where students learn critical thinking and molecular biology. This, Wright said, is occurring in a country where three out of five students don’t remain in school past fifth grade. “More children in this region are graduating from high school and over a handful have received university degrees,” she explained.

A health team also walks to 50 nearby villages, carrying medicines and basic health lessons. SBU brought drones last year, which can fly medicines as far as 40 miles away. Drones could monitor the outbreak of any unknown and potentially dangerous disease and can offer health care for people who live in ares that are inaccessible by road.

The financial support of the National Science Foundation helped create Centre ValBio, a field station and campus in the middle of the rainforest. The research station has modern facilities and equipment to conduct genetics and disease analyses. “We provide tools and training and even fiber-optic cable internet, the fastest in the region,” Wright said. They are expanding the research facilities this year.

Through research efforts, Wright and other scientists have also discovered two new species of lemurs and found two others that were considered extinct. Restoring the national forest not only brought back animals that had retreated into the inner part of the forest, but it also encouraged the growth of ecotourism.

In 1991, there was only one tourist hotel and now there are 32 hotels, providing facilities for the 30,000 tourists. “That can start to change an economy,” Wright suggested. “Cottage industries have developed like the woman’s weaving group and the basket weavers and blacksmiths who all make a good living from selling to tourists and researchers.”

Wright attributes these positive steps to a dedication to working with residents in the area. “We have been successful by training local residents and university students, by listening to what the communities want, rather than what we think is best,” she said.

Knowlton suggested that “you can’t helicopter conservation into a particular place. It’s got to be built from the ground up. She’s done it in Madagascar.” While these are positive steps, Wright declared this is just the beginning. “There are endless possibilities of scientific knowledge and research,” she said. “They all matter and impact our daily lives.”

As for the Earth Optimism Summit, Knowlton said this is just the beginning as well, originally thinking of organizing a second summit in 2020, but may hold the next one sooner. “We’re identifying what’s working and putting a spotlight on it,” Knowlton said. “The feedback has been extraordinarily, unbelievably positive. We’ve come to realize that people are demanding” another conference.

She appreciated Wright’s contribution to April’s conference.“By sharing her successes, Pat Wright brings home the message that if she can do it, so can we all,” Knowlton said. “The summit succeeded because Wright and over 240 other speakers made it obvious, through the successes that they shared, that solving the environmental problems we face is not out of reach.”

Ride For Life presents CSHL with $300,000 for ALS research: from left, CSHL Director of Annual Giving and Donor Relations Karen Orzel, CSHL Assistant Professor Molly Hammell, Ride for Life Founder Chris Pendergast, Stony Brook Associate Professor Josh Dubnau and Ride for Life board member Frank Verdone. Photo by Jessa Giordano, Cold Spring Harbor Laboratory

By Daniel Dunaief

The past can come back to haunt us, even in the world of genetics. Over the course of millions of years, plants and animals have battled against viruses, some of which inserted their genes into the host. Through those genetic struggles, explained Molly Hammell, an assistant professor at Cold Spring Harbor Laboratory, cells develop “elaborate ways to fight back,” even as they continue to make copies of these pieces of DNA.

Sometimes, when our defenses break down, these retrotransposons, or jumping genes, can become active again. Indeed, that appears to be the case in a fly model of amyotrophic lateral sclerosis, also known as ALS or Lou Gehrig’s disease.

Working on a fruit fly model of ALS, Joshua Dubnau, an associate professor at Stony Brook University, Lisa Krug, who earned her doctorate at Cold Spring Harbor Laboratory and is now working at Kallyope in New York, and Hammell showed that these ancient genetic invaders play an important role in the disease amid activation by a protein often linked to ALS called TDP-43.

A recent study, published in PLOS Genetics, “really proves that retroviral reactivation (as a consequence of TDP-activity) is … central to either causing or accelerating neuronal cell death when TDP-43 inclusions are present,” explained Hammell in an email. If TDP-43 plays the same role for humans, this would suggest that targeting this protein or the jumping genes, it activates could lead to potential treatment for ALS.

These collaborators showed that an aggregation of this protein turned on jumping genes. These genes can make copies of themselves and insert themselves in other parts of the genetic code. In this case, TDP-43 expression disrupts the normal immune-like system that silences retrotransposons such as gypsy, which is a particular type of jumping gene in the fruit fly.

When gypsy was activated, the fruit fly exhibited many of the features of ALS, including protein pathology, problems with movement, shortened life span and cell death or glia and neurons in the brain. The scientists were also able to turn gypsy off, which improved the health and extended the life span of the fly.

Mimicking this protein results in broad activation of several retrotransposons. If this also occurs in people, the disease may activate a retrotransposon that is the human analog to gypsy, called HERV-K, as well as other retrotransposons. The study also suggests that DNA damage caused by retrotransposons may active a cell suicide mechanism. Finally, this effort showed a means by which the protein disrupts the normal immune surveillance that keeps retrotransposons quiet.

To be sure, Dubnau cautioned that animal models of a disease may not translate when returning to people. Researchers need to look at more patients at all the retrotransposons in the human genome to monitor its prevalence, Dubnau suggested. If the link between retrotransposon activation and the development of ALS is as evident in humans as it is in the fruit fly, scientists may take an approach similar to that which they took to battle the human immuno-deficiency virus, or HIV. Retrotransposons have an RNA genome that needs to be copied to DNA. This, Dubnau explained, is the step in the process where researchers attacked the virus.

In a small subset of HIV patients who have motor neuron symptoms that are similar to ALS, Avi Nath, a senior investigator at the National Institutes of Health discovered that treating patients with the typical HIV medication cocktail helped relieve their ALS symptoms as well.

“What is not known is whether, for some reason, this subset of patients had an ALS syndrome caused by HIV or they were curing them” by treating HIV, Dubnau said. Nath is currently involved in one of two clinical trials to see if HIV medications help ALS patients. The next step for Dubnau and Hammell is to screen the tissue of numerous ALS patients after their death to see if their retrotransposons were elevated.

In addition to NIH funding, the scientists received financial support from Ride for Life, which is a not-for-profit organization started in 1997 that raises funds for research to find a cure for ALS, supports patients and their families through patient services and raises awareness of ALS. Every May, Ride for Life conducts a 12-day, 100-mile patient wheelchair ride across Long Island. Dubnau and Hammell, who received a $300,000 grant from Ride for Life in 2015, said they have been inspired by Ride for Life founder Chris Pendergast.

Meeting Pendergast “has had a big impact,” Dubnau said. “He’s a force of nature. He’s an incredibly strong and intelligent person.” Receiving funds from Ride for Life created a sense of personal obligation to Pendergast and many other people who “had raised that money through sweat and effort.”

Without funding from the Ride for Life Foundation, “We would not have the resources to obtain these samples and do the sequencing experiments necessary to prove that this is a clinically relevant phenomenon in a large number of ALS patients,” Hammell said.

Through an email, Pendergast explained that Ride for Life chose to fund the work by Dubnau and Hammell because the research met several criteria, including that it might lead to new strategies to treat ALS and the research was on Long Island, which is a “powerful affirmation for our generous donors.”

Pendergast emphasized the importance of funding basic ALS research. “We need to know why it develops, how it progresses [and] how it can be diagnosed and monitored,” he urged.

A resident of Huntington, Dubnau and his wife Nicole Maher, who works at the Nature Conservancy as a climate scientist, have a nine-year-old daughter, Caitlin. Reflecting both of her parents’ professional interests, Caitlin is going to a statewide science fair, where she is presenting her work on how temperature affects the life span of insects.

As for his research, Dubnau hopes a further exploration of TDP-43 might reveal an important step in the progression of ALS. He hopes this discovery may suggest a strategy researchers and clinicians can take that might “stop the cascade of events” in ALS.