Tags Posts tagged with "Brookhaven National Laboratory"

Brookhaven National Laboratory

Jun Wang in her laboratory with a transmission x-ray microscope. Photo from BNL

By Daniel Dunaief

The first time is most definitely not the charm. That’s what Jun Wang and her colleagues at Brookhaven National Laboratory discovered about sodium ion batteries.

Wang, a physicist and lead scientist at the facility, looked deep into the inner workings of a sodium ion battery to determine what causes structural defects as the battery functions. As it turns out, the first time a sodium ion battery charges and discharges, it develops changes in the microstructure and chemical composition of iron sulfide. These changes, which degrade the performance of the battery, are irreversible during the first charging cycle.

“We found that the cracks happened during the first cycle, then, after that, the structure kind of reached equilibrium,” said Wang, who published her research in the journal Advanced Energy Materials. “All these changes happen during the first cycle.”

Collaborators from Brookhaven’s Photon Sciences and Sustainable Energy Technologies groups stand behind the new transmission x-ray microscope (TXM) at BNL’s National Synchrotron Light Source. From left: Yu-chen Karen Chen-Wiegart, Can Erdonmez, Jun Wang (team leader), and Christopher Eng. Photo from BNL

Sodium ion batteries are considered an alternative to lithium ion batteries, which are typically found in most consumer electronics. Like lithium, sodium is an alkali metal, which means that it is in the same group in the periodic table. Sodium, however, is more abundant and, as a result, considerably less expensive than lithium.

Using a synchrotron-based hard X-ray full-field microscope, Wang was able to see what happened when sodium ions moved into and out of an iron sulfide electrode through 10 cycles. “We can see this microstructure evolution,” she said.

Wang monitored the evolution as a function of time while the battery is charging and discharging. The results are the first time anyone has studied a sodium-metal sulfide battery with these tools, which provides information that isn’t available through other methods. “It is challenging to prepare a working sodium ion battery for the in operandi/in situ TXM study to correlate the microstructural evolution with its electrochemical performance,” she said.

Other researchers suggested that Wang has developed a following in the scientific community for her ground-breaking research. “She has a very good reputation in the area of X-ray nanotomography, applied to a wide range of different materials,” Scott Barnett, a professor of materials science and engineering at Northwestern University, explained in an email. “I am most familiar with her work on fuel cell and battery electrodes — I think it is fair to say that this work has been some of the best pioneering research in this area,” he said.

Barnett, who started collaborating with Wang in 2010 on measuring fuel cell and battery electrodes with X-ray tomography, suggested that Wang’s work on capacity loss “could certainly lead to new breakthroughs in improved batteries.”

In her most recent work with sodium ion batteries, Wang found that the defects start at the surface of the iron sulfide particles and move inward toward the core, Wang said. The microstructure changes during the first cycle and is more severe during sodiation. The particles don’t return to their original volume and shape. After the first cycle, the particles reach a structural equilibrium with no further significant morphological changes, she said.

In other cycles, the material does not show further significant morphological changes, reach a structural equilibrium and electrochemical reversibility. Wang and her colleagues confirmed these observations with X-ray nanotomography, which creates a three-dimensional image of the battery material while recording the change in volume.

Wang suggested that a way to reduce these structural defects could be to reduce the size of the iron sulfide particles to create a one-phase reaction. She will work with other collaborators on modeling and simulations that will enhance the design of future battery materials.

In addition to conducting research on batteries, Wang is an industrial program coordinator in the Photon Science Directorate at BNL. She works with industrial researchers and beamline staff to find and explore new opportunities in industrial applications using synchrotron radiation. She leads the industrial research program, interacting with user groups through consultation, collaboration and outreach.

To manage her research, which includes a lab of three other researchers, and to accomplish her mission as manager of an industrial research program, Wang jokes that she “spends 100 percent of her time” with each responsibility. “I try to do my best for the different things” she needs to do with her time, she said.

Jun Wang with her husband Qun Shen and their 11-year old son Sam in Waikiki last year. Photo from Jun Wang

A native of Wuhu, China, Wang earned her bachelor’s degree in physics from Anhui University in China and her doctorate in physics from the Chinese Academy of Sciences in Beijing. She worked at the Beijing Synchrotron Radiation Facility, which was the first synchrotron light source in China. During her doctoral training, she studied multilayer films using X-ray diffraction and scattering.

A resident of Poquott, Wang is married to Qun Shen, who is the deputy director for science at the NSLS-II. The couple has an 11-year-old son, Sam, who is a sixth-grade student at Setauket Elementary School. Shen and Wang met at an international X-ray crystallography conference in the early 1990s.

Shen trained in the United States after he graduated from Beijing University in 1980, when he went to Purdue University for his doctorate through the China-US Physica Examination and Application Program. The couple have worked together a few times over the years, including publishing a paper in Nature Communications. Wang is hoping that her work with battery research will lead to improvements in the manufacture and design of sodium ion batteries.

Line Pouchard at the Great Smoky Mountains National Park in 2013. Photo by Allan Miller

By Daniel Dunaief

They produce so much information that they can’t keep up with it. They use the latest technology to gather data. Somewhere, hidden inside the numbers, might be the answer to current questions as well as the clues that lead to future questions researchers don’t know how to ask yet.

Scientists in almost every facility, including at Brookhaven National Laboratory, Cold Spring Harbor Laboratory and Stony Brook University, are producing information at an unprecedented rate. The Center for Data-Driven Discovery at Brookhaven National Laboratory can help interpret and make sense of all that information.

Senior researcher Line Pouchard joined BNL’s data team early this year, after a career that included 15 years at Oak Ridge National Laboratory (another Department of Energy facility) and more than two-and-a-half years at Purdue University. “The collaborations at the [DOE] lab are highly effective,” she said. “They have a common purpose and a common structure for the scientist.” Pouchard’s efforts will involve working with metadata, which adds annotations to provide context and a history of a file, and machine learning, which explores large blocks of information for patterns. “As science grows and the facility grows, we are creating more data,” she said.

Scientists can share large quantities of information, passing files through various computer systems. “You may want to know how this data has been created, what the computer applications or codes are that have been used, who developed it and who the authors are,” she said.

Knowing where the information originated can help the researchers determine whether to trust the content and the way it came together, although there are other requirements to ensure that scientists can trust the data. If the metadata and documentation are done properly “this can tell you how you can use it and what kind of applications and programs you can use to continue working with it,” Pouchard said. Working in the Computational Science Initiative, Pouchard will divide her time between responding to requests for assistance and conducting her own research.

“At Purdue, [Pouchard] was quite adept at educating others in understanding metadata, and the growing interest and emphasis on big data in particular,” explained Jean-Pierre Herubel, a professor of library science at Purdue, in an email. Herubel and Pouchard were on the research council committee, and worked together with other members to shepherd their research agendas for the Purdue University library faculty.

Pouchard “has a capacity to participate well with colleagues; regarding national and international venues, she will be a strong participating member,” Herubel continued. “She does well working and integrating with others.”

Pouchard recently joined a team that submitted a proposal in the area of earth science and data preservation. She has also worked on something called the Semantic Web. The idea, which was proposed by Tim Berners-Lee, who invented the World Wide Web, is to allow the use of data items and natural language concepts in machine readable and machine actionable forms. As an example, this could include generating rules for computers that direct the machines to handle the multiple meanings of a word.

One use of the Semantic Web is through searches, which allows people to look for information and data and, once they’re collected, gives them a chance to sort through them. Combined with other technologies, the Semantic Web can allow machines to do the equivalent of searching through enormous troves of haystacks.

“When I first started talking about the Semantic Web, I was at Oak Ridge in the early days,” Pouchard said. Since then, there has been considerable progress, and the work and effort have received more support from scientists.

Pouchard was recently asked to “work with ontologies [a Semantic Web technology] in a proposal,” she said, which suggests they are getting more traction. She is looking forward to collaborating with several scientists at BNL, including Kerstin Kleese van Dam, the director of the Computational Sciences Initiative and the interim director of the Center for Data-Driven Discovery.

Kleese van Dam has “an incredible vision of what is needed in science in order to improve computational science,” said Pouchard, who met the director about a decade ago when van Dam was working in England. Pouchard has an interest in data repositories, which she explored when she worked at Purdue University.

Living temporarily in Wading River, Pouchard bought a home in Rocky Point and hopes to move in soon. Her partner Allan Miller, from Knoxville, Tennessee, owned and managed the Disc Exchange in Knoxville for 26 years. He is starting to help small business owners and non-profit organizations with advertising needs. Pouchard experienced Long Island when she was conducting her Ph.D. research at the City University of New York and took time out to visit a friend who lived in Port Jefferson.

When she’s not working on the computer, Pouchard, who is originally from Normandy, France, enjoys scuba diving, which she has done in the Caribbean, in Hawaii, in Mexico and a host of other places.

When Pouchard was young, she visited with her grandparents during the summer at the beach in Normandy, in the town of Barneville-Carteret. Her parents, and others in the area, lectured their children never to go near or touch metal objects they found in the dunes because unexploded World War II devices were still occasionally found in remote areas. The environment on Long Island, with the marshes, reminds her of her visits years ago.

Pouchard has an M.S. in information science from the University of Tennessee and a Ph.D. in comparative literature from the City University of New York.

As for her work, Pouchard said she is “really interested in the Computational Science Initiative at BNL, which enables researchers to collaborate. Computational science is an integral part of the facilities,” at her new research home.

By Daniel Dunaief

First responders, soldiers or those exposed to any kind of chemical weapons attack need a way to remove the gas from the air. While masks with activated carbon have been effective, the latest technological breakthrough involving a metal organic framework may not only remove the gas, but it could also disarm and decompose it.

That’s the recent finding from research led by Anatoly Frenkel in a study on a substance that simulates the action of sarin nerve gas.

Frenkel, who is a senior chemist at Brookhaven National Laboratory and a professor in the Department of Materials Science and Chemical Engineering at Stony Brook University, worked with metal organic frameworks, which contain zirconium cluster nodes that are connected through a lattice of organic linkages.

Anatoly Frenkel with his son, Yoni, at Lake Hopatcong in New Jersey. Photo by Mikhail Loutsenko.

These structures would “do the job even without any catalytic activity,” Frenkel said, because they are porous and capture gases as they pass through them. “It’s like a sponge that can take in moisture. Its high porosity was already an asset.”

Frenkel and his colleagues, which include John Morris and Diego Troya from Virginia Tech, Wesley Gordon from Edgewood Chemical Biological Center and Craig Hill from Emory University, among other contributors, suspected that these frameworks might also decompose the gas.

Theoretically, researchers had predicted this might be the case, although they had no proof. Frenkel and his team used a differential method to see what was left in the structure after the gas passed through. Their studies demonstrated a high density of electrons near the zirconium atoms. “These were like bread crumbs congregated around a place where the zirconium nodes with the connecting linkers were,” Frenkel said.

While this work, which the scientists published in the Journal of the American Chemical Society, has implications for protecting soldiers or civilians in the event of a chemical weapons attack, Frenkel and his colleagues, who received funding from the Defense Threat Reduction Agency, can share their results with the public and scientific community because they are not working on classified materials and they used a substance that’s similar to a nerve gas and not sarin or any other potentially lethal gas.

“This knowledge can be transferred to classified research,” Frenkel said. “This is a stepping stone.” Indeed, Frenkel can envision the creation of a mask that includes a metal organic framework that removes deadly nerve gases from the air and, at the same time, disarms the gas, providing a defense for first responders or the military after a chemical weapons attack. Even though he doesn’t work in this arena, Frenkel also described how manufacturers might use these frameworks in treating the fabric that is used to make clothing that can prevent gases that can be harmful to the skin from making contact.

A physicist by training, Frenkel’s work, which includes collaborations on five other grants, has a common theme: He explores the relationship between structure and function, particularly in the world of nanomaterials, where smaller materials with large surface areas have applications in a range of industries, from storing and transmitting energy to delivering drugs or pharmaceuticals to a targeted site.

Eric Stach, a group leader in electron microscopy at BNL, has collaborated with Frenkel and suggested that his colleague has helped “develop all these approaches for characterizing these materials.” Stach said that Frenkel has “an outstanding reputation internationally” as an expert in X-ray absorption spectroscopy, and, in particular, a subarea that allows scientists to learn about extremely subtle changes in the distance between atoms when they are subjected to reactive environments.

Frenkel said some of the next steps in the work with metal organic frameworks include understanding how these materials might become saturated with decomposed gas after they perform their catalytic function. “It’s not clear what can affect saturation,” he said, and that is something that “needs to be systematically investigated.” After the catalyst reaches saturation, it would also be helpful to know whether it’s possible to remove the remaining compound and reuse the catalyst.

“The next question is whether to discard” the framework after it’s trapped and deactivated the chemicals or regenerate it, Frenkel said. He is also exploring how temperature ranges might affect the performance of the framework. Ideally, it would function as well in an arctic environment as it would in a desert under extreme heat. A commercial application might require the synthesis of a material with different physical characteristics for a range of temperature conditions.

Frenkel has been working on this project for about one and a half years. A colleague approached him to become a part of this new collaboration. “My role was to bring this work to a national lab setting,” where the scientists could use the advanced tools at BNL to study the material as it was working, he said.

A resident of Great Neck, Frenkel, who grew up in St. Petersburg, Russia, lives with his wife Hope Chafiian, a teacher at the Spence School in Manhattan for almost 30 years. He has three children: Yoni lives in Manhattan and works at JP Morgan Chase, Ariela is a student at Binghampton and Sophie is in middle school in Great Neck.

Frenkel appreciates the opportunity to explore the broader world of nanomaterials, which, he said, are not constrained by crystal structures and can be synthesized by design. “They show a lot of mysteries that are not understood fully,” he said. Indeed, Frenkel explained that there are numerous commercial processes that might benefit from design studies conducted by scientists. As for his work with metal organic frameworks, he said “there’s no way to overestimate how important [it is] to do work that has a practical application that improves technology, saves costs, protects the environment” and/or has the potential to save lives.

From left, outgoing Secretary of the Department of Energy Ernest Moniz with BNL Laboratory Director Doon Gibbs taken at the opening of the National Synchrotron Light Source II at BNL. Photo courtesy of BNL

By Daniel Dunaief

Before Ernest Moniz ends his tenure as Secretary of the Department of Energy, he and his department released the first annual report on the state of the 17 national laboratories, which include Brookhaven National Laboratory.

On a recent conference call with reporters, Moniz described the labs as a “vital set of scientific organizations” that are “critical” for the department and the country’s missions. Experts from the labs have served as a resource for oil spills, gas leaks and nuclear reactor problems, including the meltdown at Fukushima in 2011 that was triggered by a deadly tsunami. “They are a resource on call,” Moniz said.

In addition to providing an overview of the benefit and contribution of the labs as a whole, the annual report also offered a look at each of the labs, while highlighting a research finding and a translational technology that has or will reach the market. In its outline of BNL, the report heralded an “exciting new chapter of discovery” triggered by the completion of the National Synchrotron Light Source II, a facility that allows researchers at BNL and those around the world who visit the user facility to explore a material’s properties and functions with an incredibly fine resolution and sensitivity.

Indeed, scientists are already exploring minute inner workings of a battery as it is operating, while they are also exploring the structure of materials that could become a part of new technology. The DOE chose to shine a spotlight on the work Ralf Seidl, a physicist from the RIKEN-BNL Research Center, has done with several collaborators to study a question best suited for answers at the Relativistic Heavy Ion Collider.

Seidl and his colleagues are exploring what gives protons their spin, which can affect its optical, electrical and magnetic characteristics. The source of that spin, which researchers describe not in terms of a top spinning on a table but rather as an intrinsic and measurable form of angular momentum, was a mystery.

Up until the 1980s, researchers believed three subatomic particles inside the proton created its spin. These quarks, however, only account for a third of the spin. Using RHIC, however, scientists were able to collide protons that were all spinning in a certain direction when they smash into each other. They compared the results to protons colliding when their spins are in opposite directions.

More recently, Seidl and his colleagues, using higher energy collisions, have been able to see the role the gluons, which are smaller and hold quarks together, play in a proton’s spin. The gluons hadn’t received much attention until the last 20 years, after experiments at CERN, in Geneva, demonstrated a lower contribution from quarks. “We have some strong evidence that gluons play a role,” Seidl said from Japan, where he’s working as a part of an international collaboration dedicated to understanding spin.

Smaller and more abundant than quarks, gluons are like termites in the Serengeti desert in Africa: They are hard to see but, collectively, play an important role. In the same report, the DOE also celebrated BNL’s work with fuel cell catalysts. A senior chemist at BNL, Radoslav Adzic developed a cheaper, more effective nanocatalyst for fuel cell vehicles. Catalysts for fuel cells use platinum, which is expensive and fragile. Over the last decade, Adzic and his collaborators have developed a one-atom-thick platinum coating over cheaper metals like palladium. Working with BNL staff scientists Jia Wang, Miomir Vukmirovic and Kotaro Sasaki, he developed the synthesis for this catalyst and worked to understand its potential use.

N.E. Chemcat Corporation has licensed the design and manufacturing process of a catalyst that can be used to make fuel cells as a part of a zero-emission car. This catalyst has the ultra low platinum content of about two to five grams per car, Adzic said. Working at BNL enabled partnerships that facilitated these efforts, he said. “There is expertise in various areas and aspects of the behavior of catalysts that is available at the same place,” Adzic observed. “The efficiency of research is much more convenient.”

Adzic, who has been at BNL for 24 years, said he has been able to make basic and applied research discoveries through his work at the national lab. He has 16 patents for these various catalysts, and he hopes some of them will get licensed. Adzic hopes this report, and the spotlight on his and other research efforts, will inspire politicians and decision makers to understand the possibility of direct energy conversion. “There are great advances in fuel cell development,” Adzic said. “It’s at the point in time where we have to do some finishing work to get a huge benefit for the environment.”

At the same time, the efficiency of fuel-cell-powered vehicles increases their economic benefit for consumers. The efficiency of an internal combustion engine is about 15 percent, whereas a fuel cell has about 60 percent efficiency, Adzic said.

BNL’s Laboratory Director Doon Gibbs welcomed the DOE publication. “This report highlights the remarkable achievements over the past decade of our national lab system — one that is unparalleled in the world,” he said. Gibbs suggested that the advanced details in the report, including the recognition for the NSLS II, span the breadth of BNL’s work. “They’re just a snapshot of what we do every day to make the world a better place,” Gibbs said.

While the annual report is one of Moniz’s final acts as the secretary of the agency, he hopes to communicate the vitality and importance of these labs and their work to the next administration.“I will be talking more with secretary nominee [Richard] Perry about the labs again as a critical jewel and resource,” Moniz said. “There’s a lot of support in Congress.” Moniz said the DOE has had five or six lab days, where labs share various displays with members of the legislative body. Those showcases have been “well-received” and he “fully expects the labs to be vital to the department.”

Shinjae Yoo with his son Erum

By Daniel Dunaief

He works with clouds, solar radiation and nanoparticles, just to name a few. The subjects Shinjae Yoo, a computational scientist at Brookhaven National Laboratory, tackles span a broad range of arenas, primarily because his focus is using large pieces of information and making sense of them.

Yoo helps refine and make sense of searches. He develops big data streaming algorithms that can apply to any domain where data scalability issues arise. Integrating text analysis with social network analysis, Yoo did his doctoral research at Carnegie Mellon University, where he also earned a master’s degree, on creating systems that helped prioritize these electronic messages.

“If you are [traveling and] in the airport, before you get into your plane, you want to check your email and you don’t have much time,” he said. While this isn’t the main research work he is doing at the lab, this is the type of application for his work. Yoo developed his technical background on machine learning when he was at Carnegie Mellon. He said he continues to learn, improve and develop machine learning methods in various science domains. By using a statistical method that combines computational science skills, statistics and applied math, he can offer a comprehensive and, in some cases, rapid analysis of information.

Colleagues and collaborators suggested Yoo has made an impact with his work in a wide range of fields. His “contribution is not only in the academic field, but also means a lot on the industrial and academic field,” Hao Huang, a machine learning scientist at GE Global Research, wrote in an email. “He always focuses on making good use of data mining and machine learning theory on real world [areas] such as biology, renewable energy and [in the] material science domain.”

Yoo explained how a plant biologist can do stress conditioning for a plant with one goal in mind. That scientist can collect data over the course of 20 years and then they can “crunch the data, but they can’t always analyze it,” which might be too unwieldy for a bench scientist to handle. Using research from numerous experiments, scientists can study the data, which can provide a new hypothesis. Exploring the information in greater detail, and with increased samples, can also lead to suggestions for the best way to design future experiments.

Yoo said he can come to the scientist and use machine learning to help “solve their science data problem,” giving the researchers a clearer understanding of the broad range of information they collected. “Nowadays, generated data is very easy,” but understanding and interpreting that information presents bigger challenges. Take the National Synchrotron Light Source II at BNL. The $912 million facility, which went live online earlier this year, holds considerable promise for future research. It can look at the molecules in a battery as the battery is functioning, offering a better understanding of why some batteries last considerably longer than others. It can also offer a look at the molecular intermediaries in biochemical reactions, offering a clearer and detailed picture of the steps in processes that might have relevance for disease, drug interactions or even the creation of biological products like shells. He usually helps automate data analytics or bring new hypotheses to scientists, Yoo said. One of the many challenges in experiments at facilities like the NSLS II and the Center for Functional Nanomaterials, also at BNL, is managing the enormous flow of information that comes through these experiments.

Indeed, at the CFN, the transmission electron microscopy generates 3 gigabytes per second for the image stream. Using streaming analysis, he can provide an approximate understanding of the information. Yoo received a $1.9 million, three-year Advanced Scientific Computer Research grant this year. The grant is a joint proposal for which Yoo is the principal investigator. This grant, which launched this September, is about high-performance computing enabled machine learning for spatio-temporal data analysis. The primary application, he said, is in climate. He plans to extend it to other data later, including, possibly for NSLS II experiments.

Yoo finds collaborators through emails, phone calls, seminars or anywhere he meets other researchers. Huang, who started working with Yoo in 2010 when Huang was a doctoral candidate at Stony Brook, appreciates Yoo’s passion for his work. Yoo is “dedicated to his research,” Huang explained. “When we [ran] our proposed methods and got results that [were] better than any of the existing work, he was never satisfied and [was] always trying to further explore to get even better performance.”

When he works with collaborators in many disparate fields, he has found that the fundamental data analysis methodologies are similar. He needs to do some customization and varied preprocessing steps. There are also domain-specific terms. When Yoo came to BNL seven years ago, some of his scientific colleagues around the country were not eager to embrace his approach to sorting and understanding large pools of data. Now, he said other researchers have heard about machine learning and what artificial intelligence can do and they are eager to “apply those methods and publish new papers.”

Born and raised in South Korea, Yoo is married to Hayan Lee, who earned her PhD at Stony Brook and studies computational biology and specializes in genome assembly. They have a four-year old son, Erum. Yoo calls his son “his great joy” and said he “gives me a lot of happiness. Hanging around my son is a great gift.”

When Yoo was entering college in South Korea, he said his father, who had worked at the National Institute of Forest Science, played an important role. After his father consulted with people about different fields, he suggested Yoo choose computer science over chemistry, which would have been his first choice. “He concluded that computer science would be a new field that would have a great future, which is true, and I appreciate my dad’s suggestion,” Yoo said.

Athi Varuttamaseni. Photo couresty of BNL

By Daniel Dunaief

Athi Varuttamaseni is like an exterminator, studying ways pests can gain entry into a house, understanding the damage they can cause and then coming up with prevention and mitigation strategies. Except that, in Varuttamaseni’s case, the house he’s defending is slightly more important to most neighborhoods: They are nuclear power plants.

The pests he’s seeking to keep out or, if they enter, to expel and limit the damage, are cyberattackers, who might overcome the defenses of a plant’s digital operating system and cause a range of problems.

Varuttamaseni, an assistant scientist in the Nuclear Science & Technology Department at Brookhaven National Laboratory, started his career at BNL by modeling the failure of software used in nuclear power plant protection systems. Last year, he shifted toward cybersecurity. “We’re looking at what can go wrong with nuclear power plants” if they experience an attack on the control and protection systems, he said.

Varuttamaseni is part of a team that received a grant from the Department of Energy to look at the next generation of nuclear power plants, which are controlled and managed mostly by digital systems. A few existing plants are also looking to replace some of their analog systems with digital. “We asked what can go wrong if a hacker somehow managed to breach the outer perimeter and get in to control the system, or even if that is possible at all,” he said. By looking at potential vulnerabilities in the next generation of power plants, engineers can find a problem or potential problem ahead of time and can “go back to the drawing board to put in additional protection systems that could save the industry significant cost in the long run,” Varuttamaseni said.

Robert Bari, a physicist at BNL and a collaborator on the cybersecurity work, said Varuttamaseni, who is the lead investigator on the Department of Energy project, played “a major role” in putting together a recent presentation Bari gave at UC Berkeley that outlined some of the threats, impacts and technical and institutional challenges. The presentation included a summary and the next steps those running or designing nuclear power plants can take. Bari said it was a “delight” to collaborate with Varuttamaseni.

A colleague, Louis Chu, had recruited Varuttamaseni to work at BNL in another program, and Bari said he “recognized his abilities” and “we started to collaborate.” Varuttamaseni and Bari are going through a systematic analysis using logic trees and other approaches to explore vulnerabilities. The BNL team, which is collaborating with scientists at Idaho National Laboratory, shared the information and analysis they conducted with the Department of Energy and with an industrial collaborator.

In his second year of the work, Varuttamaseni said he is looking at the system level and is pointing out potential weaknesses in the design. He then shares that analysis with designers, who can shore up any potential problems. In the typical analysis of threats to nuclear power plants, the primary concern is of the release of radioactive material that could harm people who work at the plants or live in the communities around the facility.

Varuttamaseni, however, is exploring other implications, including economic damage or a loss of confidence in the industry. That includes the headline risk attached to an incident in which an attacker controlled systems other than a safety function and that are not critical to the operation of a plant. In addition to exploring vulnerabilities, Varuttamaseni is studying a plant’s response. Most of the critical systems are air-gapped, which means that the computer has no physical or wireless connection. While this provides a layer of protection against cyberattacks, it isn’t flawless or impenetrable. An upgrade of the hardware or patching of a hardware system might create just the kind of opening that would enable a hacker to pounce.

The Nuclear Regulatory Commission and the industry are “aware of those scenarios,” Varuttamaseni said. “There are procedures in place and mitigation steps that are taken to prevent those kinds of attacks.” Ideally, however, the power plant would catch any would-be attacker early in the process. Varuttamaseni is working on three grants that are related to systems at nuclear power plants. In addition to cyberattacks, he is also analyzing software failures in the protection system and, finally, he’s also doing statistical testing of protection systems.

Varuttamaseni, who was born in Thailand, lives in Middle Island. He appreciates that Long Island is less crowded than New York City and describes himself as an indoor person. He enjoys the chance to read novels, particularly science fiction and mysteries. He also likes the moderate weather on Long Island compared to Bangkok, although threats from hurricanes are new to him. Next June, Varuttamaseni will present a paper on cybersecurity at the American Nuclear Society’s Nuclear Plant Instrumentation, Control & Human-Machine Interface Technology Conference in San Francisco.

Varuttamaseni is “always on the lookout for insights into possible attack pathways that an attacker could come up with,” he said. “The mitigating factor of my work is that we’re looking at a longer-term problem. There’s still time to [work with] many of these potential vulnerabilities.”

Ivan Bozovic. Photo courtesy of BNL

By Daniel Dunaief

How long and how much work does it take to defy conventional wisdom? Often, the prevailing belief about anything has backers who support the idea and aren’t eager to change or replace what they know with something new.

Recognizing this, Ivan Bozovic, the Oxide Molecular Beam Epitaxy (MBE) group leader at Brookhaven National Laboratory, checked and rechecked his work, spending close to a decade for parts of it, repeating his steps and checking the accuracy of his data points to make sure his case, which flew in the face of what so many others believed, was airtight.

Engineers, researchers and corporations have known about so-called high-temperature superconductivity for over a century. Using objects called cuprates, which are oxides of copper, researchers have created substances that can conduct electricity with close to no resistance at temperatures that are well above the requirements for most superconductivity.

While the name high-temperature superconductivity might suggest materials that allow the passage of energy through them in a sauna, the reality is far from it, with the temperatures coming in closer to negative 163 degrees Fahrenheit. While cold by everyday standards, that is still well above the record critical temperature before cuprates, which stood at – 418 degrees F.

Up until Bozovic’s study, which was recently published in Nature, scientists believed superconductivity in these cuprates occurred because of the strength of electron pairing. Carefully and in great detail, Bozovic demonstrated that the key factor in leading to this important property was the density of electron pairs, which are negatively charged particles.

Other scientists suggested Bozovic’s study was an important result that flew against the prevailing explanation for a phenomenon that holds promise for basic science and, perhaps one day, for the transmission of energy in the future.

Bozovic’s study “shows that [the] standard picture fails quite astonishingly in copper oxides that show high temperature superconductivity,” Davor Pavuna, a professor at the Swiss Federal Institute of Technology at Lausanne, explained in an email. “We are only begining to grasp how dramatic” this latest discovery is.

Pavuna described how he was recently at an event in Corsica, France and that his colleagues believed “this is a clear signal that we will have to develop much more advanced theoretical framework for cooperative phenomena, like superconductivity.”

Bozovic’s work and his latest result “show that our physics understanding and models require some new physics framework,” Pavuna said.

Bozovic and his colleagues studied over 2,150 samples. He explained that cuprates are complex for standards of condensed matter physics because some of them have 20 to 50 atoms in unit cells. That means that when engineers synthesize them, cuprates can have a mixture of unwanted secondary phases that could “spoil the experiment.”

Ivan Bozovic with his granddaughter Vivien at Vivien’s first birthday party last year in California. PhotoPhoto by Julie Hopkins, cameracreations.net
Ivan Bozovic with his granddaughter Vivien at Vivien’s first birthday party last year in California. Photo by Julie Hopkins, cameracreations.net

The number of samples necessary to demonstrate this property is a matter of personal standards, Bozovic suggested. He made sure he kept “checking and double checking and triple checking to be sure that what we had closed all the loopholes,” Bozovic said. He wanted “no possibility of an alternative explanation.”

The way Bozovic and his colleagues approached the problem was to start with a cuprate composition. They then replaced one atom at a time by another, which provided a series of samples that were almost identical, but slightly different in chemical composition. He was able to show how the critical temperature changes with electron density in small increments.

“What’s really impressive here is [Bozovic’s] ability to use a molecular beam epitaxy system — that he designed — to place single atomic layers on to a substrate, layer by layer,” James Misewich, the associate lab director for Energy & Photon Sciences at BNL explained in an email.

Bozovic’s work is “an exciting finding that could have wide-ranging impacts on how we identify, design, and build new superconducting materials,” continued Misewich.

As with other science, Bozovic said the answer to one question leads to a series of follow up questions, which include why do small pairs of electrons form in cuprates and not in anything else.

A resident of Mount Sinai, Bozovic lives with his wife Natasha, who is a mathematician. The couple has two daughters, Dolores, a professor of Physics and Astronomy at UCLA and Marijeta, an assistant professor of Slavic Languages and Literatures at Yale, where Bozovic is an adjunct professor of Applied Physics.

Born and raised in the former Yugoslavia, Bozovic is the son of two medical doctors. His father, Bosislav Bozovic, was twice nominated for the Nobel Prize for his work on the relation between cancer and the immune system. He was also a major general in the medical corp and the head of the Medical Division of the National Academy of Sciences.

His mother, Sasha Bozovic, wrote a best-selling memoir, devoted to a daughter she lost in World War II. His mother was also a colonel in the medical corps who worked in the army until she retired as the highest ranking woman in the army. “I had some big shoes to fill,” Bozovic acknowledges.

As a teenager, Bozovic played the lead guitar in a rock band. Nowadays, he strums nursery rhymes for his granddaughter Vivien using FaceTime.

A scientist who suggests a sense of humor is extremely important, especially in a field that can include disappointments and setbacks, Bozovic jokes that he speaks “zero” languages, a conclusion he reached after listening to an online description he gave of his recent work. In reality, he can read about four languages, although he has studied more.

As for his work, Bozovic is looking forward to discussing his recent results with theorists like Gabriel Kotliar, a Rutgers Professor of Physics and Astronomy who has a part time position at BNL. Kotliar is leading a new materials theory center at BNL.

“I hope that we’ve given them new pointers about where to look and what to calculate,” Bozovic said. “I’m pretty optimistic that there will be feedback from them.”

From left, postdoctoral associate Yuanheng Cai, biological research associate Xuebin Zhang and plant biochemist Chang-Jun Liu in the BNL greenhouse. Photofrom Brookhaven National Laboratory

By Daniel Dunaief

It provides structural support, allowing gravity-defying growth toward the sky. While it offers necessary strength, it also makes it more difficult to get inside to convert plant biomass into fuel.

Lignin is the major component that makes cell walls harder. Plants can tolerate the loss of lignin, but dramatically reducing it or altering its structure could severely affect its growth, which makes any effort to modify lignin challenging.

Seeking to balance between the plant’s structural needs and the desire to gain access to biofuel, Chang-Jun Liu, a plant biochemist at Brookhaven National Laboratory, added a step in the synthesis of lignin. “Most studies in this field rely on knocking down or knocking out one or two biosynthetic pathway genes,” said Liu. “We added one more reaction” that competes for the precursors of lignin formation. Liu said he and his collaborators figured that adding that last step in the production of lignin, which is a natural part of plant cell walls, would have the least effect on plant growth while it can effectively reduce lignin content or change its structure.

Liu said he redirected the metabolic precursor by using a modified enzyme he created over the course of several years. The enzyme diverts biosynthetic precursors away from making lignin. Plants typically have three types of lignin, called S, G and H lignin. In a wild-type aspen tree, the ratio of S to G is two to one. This change, however, altered that, turning the ratio to one to two. The general perception is that increasing G lignin would make the cell wall structure stronger and harder, making it harder to release simple sugars. The surprising finding, however, was that reducing S and maintaining G greatly enhanced the release of sugar with digestive enzymes from aspen cell walls.

Scientific partners including John Ralph at the University of Wisconsin and the Great Lakes Bioenergy Research Center confirmed the alteration of lignin structure. Liu tested his enzyme in his earlier work on the flowering plant Arabidopsis. When it worked, he moved on to aspen trees, which grow rapidly and can thrive in environments where typical farm crops struggle to grow. The aspen experiments proved more fruitful in part because these trees contained more S lignin, and the enzyme he developed preferentially blocked the S lignin. The aspen trees with the modified enzyme can yield up to 49 percent more ethanol during fermentation, compared to controls.

Using infrared light at the National Synchrotron Light Source, Liu and his collaborators were able to see an increase in the production of cellulose fibers, which are a primary source of sugars in the cell wall. This may contribute to the release of simple sugars. Liu will continue to explore other possibilities. Other lignin researchers applauded these results.

Liu’s “approach will definitely have a great impact on the cost reduction of cellulosic biofuels,” Dominique Loque, the director of Cell Wall Engineering at the Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, explained in an email. “With no impact on biomass yield and a reduction in recalcitrance, it will reduce the conversion costs of biomass to fermentable sugars.”

While this research, which was recently published in Nature Communications, shows potential commercial promise, Liu and his team are working to answer basic questions. He is interested in further testing his approach in grasses and different trees to determine the effects on lignin content, structure, cell wall digestibility and plant growth. The trees in this experiment were grown in a greenhouse, where scientists could control light and temperature and mimic the natural environment without natural stressors, like insects or fungus. Loque suggested that Liu’s approach can be “easily and quickly optimized to alleviate potential issues such as susceptibility to pathogens” if they exist.

Liu has planted 150 of these altered trees in the field. So far, he said, the biomass yield is not compromised with these experimental plants. “Field tests will allow evaluating the impact of engineering on predators, pathogens and other stresses,” Loque said. Liu was able to create this enzyme after developing an understanding of enzyme structures using x-rays at the NSLS. In that research, Liu was able to gain a better knowledge of how the enzymes that occur naturally worked. Once he knew the structure and method of operation of the enzymes in the lignin pathway, he could make changes that would alter the balance of the different types of lignin.

Liu lives with his wife Yang Chen, a teacher’s assistant in Rocky Point Middle School and their two children, 16-year-old Allen and 14-year-old Bryant. For the last few years, Liu and his family have added hiking, table tennis and tennis to their recreational repertoire.

Liu is encouraged by these findings and is extending and expanding his studies and collaborations. He will work with a Department of Energy sponsored Energy Frontier Research Center. He will also pursue more applied studies to explore the more efficient use of cell wall biomass to produce biomaterials or bio-based products. He is forming a collaboration with Stony Brook’s material science team and with the NSLS-II. “Plant cell wall represents the most abundant biomass on Earth,” Liu said. “Understanding its synthesis, structural property and efficient way in its utilization are critical for our future bio-based economy.”

Lee Michel on a Blackhawk helicopter during a training exercise in 2011. Photo by Roger Stoutenburgh

He has been to the Super Bowl, the Boston Marathon, a presidential inauguration, the Baltimore Grand Prix, the Rockefeller Tree Lighting and the ball drop in Times Square on New Year’s Eve. Lee Michel is neither a politician nor an athlete: He is part of a national, first-response team, called the Radiological Assistant Program.

The program is a unit of the Department of Energy, which assists local, state and federal agencies to characterize the environment, assess the impact to the local population and support decision makers on steps to minimize the hazards of a radiological incident.

Michel is the training and outreach coordinator in Region 1 of the program. He works with partner agencies around the country to deal with everything from the discovery of radiological material that someone might have accidentally brought home from a work site to an intentional detonation of a dirty bomb.

His job is a “full soup-to-nuts response to radiological material that shouldn’t be wherever it is,” Michel said.

He trains people at facilities around the country to understand “how to detect [radiation], how to contain it, how to identify it and how to mitigate it,” Michel said.

Kathleen McIntyre, the contractor operations manager for RAP Region 1, said her group is the first on-scene emergency response team representing the Department of Energy. One of nine programs around the country, the BNL team is responsible for a region that stretches from Maine to Maryland and to the Pennsylvania-Ohio border.

In addition to sports events and conventions, the team also assists with other high-profile events. In late September, the BNL RAP team will work with other agencies during Pope Francis’s visit to the United States.

In his job, Michel often travels to ensure he’s appropriately trained so he can teach other first-responder agencies. In the last several months, he’s been to Chicago, Albuquerque, Las Vegas, Boston, Connecticut and New Jersey.

These trips are necessary to create effective collaborations with local partners, said McIntyre. “Part of the thing that [Michel] does and does well is coordinate with our first-responder partners,” McIntyre said. The training and outreach ensure “if we are ever in a situation where we need to work together, this isn’t the first time we’ve met each other.”

At left, Lee Michel’s uncle, Morton Rosen, was a photographer at BNL for more than 35 years. At right, his grandfather, Isadore Rosen, was stationed at Camp Upton during WWI. Photo left from BNL Archives; right from Lee Michel
At left, Lee Michel’s uncle, Morton Rosen, was a photographer at BNL for more than 35 years. At right, his grandfather, Isadore Rosen, was stationed at Camp Upton during WWI. Photo left from BNL Archives; right from Lee Michel

While the mission hasn’t changed for the five years Michel has been in his role, the mechanisms have evolved.

“The equipment we’re using is much more sophisticated than what we had,” Michel said. “The software that runs the system or is used in conjunction with the system is much more advanced.”

Indeed, McIntyre said Michel regularly has to remain updated on the latest software and equipment, in the same way an owner of a laptop has to remain current on electronic updates.

Michel “has to be conversant with all these” systems, she said. “He has to hit the ground running. We don’t own every piece of radiological equipment out there. He needs to understand whatever he’s going to teach.”

McIntyre gives Michel “great kudos” for “rolling up his sleeves” as he tries to stay abreast of the changing technology.

In addition to training, Michel does exercises and drills with response teams, keeping the groups prepared to react to a wide range of potential radiological problems or events.

While the Radiological Assistance Program only has three full-time employees at BNL, the facility includes 26 volunteers.

Michel has been dealing with radiation for over 30 years, starting with eight years in the navy from 1981 to 1989 when he was a nuclear power operator.

Born and raised on Long Island, Michel is the third generation in his family to work at the Upton facility. His grandfather, Isadore Rosen, was stationed at Camp Upton during World War I. His uncle, Morton Rosen, took pictures for BNL for over 35 years. Michel, who lives in Holtsville, has two daughters, 26-year old Heather and 22-year old Michelle.

As for a fourth generation at BNL, Michel holds out some hope. “I would love to have one of them work here,” he said. He’s even entertained the idea of his seven-month old granddaughter Jemma one day contributing to BNL.

While the work involves traveling to high-profile events, it’s sometimes tough to soak in the atmosphere.

The 2009 inauguration involved working 14-hour shifts in single digits, McIntyre said. After their work, they come back for more assignments. These contractors and volunteers “who serve on the RAP teams are dedicated professionals.”

Builds upon revitalization efforts and Connect LI

Suffolk County Executive Steve Bellone, center, along with regional leaders, announced a new regional plan on Tuesday. Photo from the county executive’s office

As the percentage of youth on Long Island declines, regional leaders are determined to entice young people to move in and stay, but their plan comes with a price.

On Tuesday, County Executive Steve Bellone (D) and several regional leaders, including Brookhaven Town Supervisor Ed Romaine (R), announced they are seeking $350 million to fund the Long Island Innovation Zone, I-Zone, plan. I-Zone aims to connect Long Island’s transit-oriented downtown areas, like New Village in Patchogue, the Meadows at Yaphank and the planned Ronkonkoma Hub, to institutions like Stony Brook University, Brookhaven National Laboratory and Cold Spring Harbor Laboratory.

The I-Zone plan emphasizes the use of a bus rapid transit, or BRT, system  that runs north to south and would connect Stony Brook University and Patchogue. There will also be a paralleling hiking and biking trail, and the system will serve as a connection between the Port Jefferson, Ronkonkoma and Montauk Long Island Rail Road lines.

The goal is to make Long Island more appealing to the younger demographic and avoid local economic downturns.

According to the Long Island Index, from 2000 to 2009, the percentage of people aged 25-34 decreased by 15 percent. The majority of these individuals are moving to major cities or places where transportation is readily accessible.

“We must challenge ourselves because if we don’t, we have an Island at risk,” Romaine said. Government officials acknowledged that without younger people living on Long Island the population will be unable to sustain the local economy. Fewer millennials means there are less people who will purchase property and contribute to the success of businesses in the area.

The proposal comes after Governor Andrew Cuomo’s (D) call for regional planning.

The plan also builds upon the Ronkonkoma Hub plan, with the installation of sewers and a new parking area. The I-Zone proposal claims to improve Long Island’s water quality, as funding will help connect sewers through Islip downtown areas to the Southwest Sewer District.

Additionally, the plan calls for the construction of a new airport terminal on the north side of Long Island MacArthur Airport in Islip and for the relocation of the Yaphank train station in closer proximity to Brookhaven National Laboratory.

“We have all that stuff [access to recreational activities, education center and downtown areas] here but we don’t have a connection. We don’t have any linked together,” said Justin Meyers, Suffolk’s assistant deputy county executive for communications.

Bellone and Romaine, as well as Stony Brook University President Samuel Stanley, Islip Town Supervisor Angie Carpenter (R), Suffolk County Legislator Kara Hahn (D-Setauket), Long Island Regional Planning Council Chairman John Cameron, Patchogue Mayor Paul Pontieri, Vice President of Development and Community Relations at CSHL Charles Prizzi, Chief Planning Officer of the Long Island Rail Road Elisa Picca, Director of BNL Doon Gibbs, and founder of Suburban Millennial Institute Jeff Guillot, were involved with the I-Zone proposal.

If funding for the project is received, construction could begin in approximately two years, Meyers said, adding that constructing the BRT and the hiking and biking trial would take as few as five years.

Bellone said that without younger people moving in, the trend could lead to the Island’s economic stagnation.

“We are aging faster than any other region in our country,” he said. “The inevitable result of that will be an ever-growing population that naturally is pulling more social services infrastructure.”