Tags Posts tagged with "Michael Frohman"

Michael Frohman

Michael Frohman. Photo from SBU

By Daniel Dunaief

Bringing together researchers and clinicians from six countries, including scientists scattered throughout the United States, a team of scientists co-led by Stony Brook University’s Michael Frohman linked mutations in a gene to congenital heart disease.

Frohman, Chair of the Department of Pharmacological Sciences in the Renaissance School of Medicine at SBU, has worked with the gene Phospholipidase D1 (or PLD1), for over 25 years. Researchers including Najim Lahrouchi and Connie Bezzina at the University of Amsterdam Heart Center linked this gene to congenital heart disease.

“The current study represents a seminal finding in that we provide a robust link between recessive genetic variants of PLD1 and a rather specific severe congenital heart defect comprising right-side valvular abnormalities,” Bezzina wrote in an email. 

Michael Frohman at Glymur Falls in Iceland.

The international group collected information from 30 patients in 21 unrelated families and recently published their research in the Journal of Clinical Investigation.

A number of other genes are also involved in congenital heart disease, which is the most common type of birth defect. People with congenital heart disease have a range of symptoms, from those who can be treated with medication and/or surgery for pre-term infants to those who can’t survive.

The discovery of this genetic link and congenital heart disease suggests that PLD1 “needs to be screened in cases with this specific presentation as it has implications for reproductive counseling in affected families,” Bezzina explained.

Bezzina wrote that she had identified the first family with this genetic defect about five years ago.

“We had a strong suspicion that we had found the causal gene, but we needed confirmation and for that, we needed to identify additional families,” she said. “That took some time.

Bezzina described the collaboration with Frohman as “critical,” as she and Lahrouchi had been struggling to set up the PLD1 enzymatic assay in their lab, without any success. Lahrouchi identified Frohman as a leading expert in the study of PLD1 and the team reached out to him.

His work was instrumental in determining the effect of the mutations on the enzymatic activity of PLD1, Bezzina explained.

The timing in connecting with Frohman proved fortuitous, as Frohman had been collaborating with Michael Airola, Assistant Professor in the Department of Biochemistry & Cell Biology at Stony Brook University, on the structure of the PLD1 catalytic domain.

“Together, they immediately saw that the mutations found in the patients were located primarily in regions of the protein that are important for catalysis and this provided detailed insight into why the mutations caused the PLD1 enzyme to become non-functional,” Bezzina wrote.

These findings have implications for reproductive counseling, the scientists suggested.

A couple with an affected child who has a recessive variation of PLD1 could alert parents to the potential risk of having another child with a similar defect.

One of the variants the scientific team identified occurs in about two percent of Ashkenazi Jews, which means that 1 in 2,500 couples will have two carriers and a quarter of their conceptions will be homozygous recessive, which virtually guarantees congenital heart disease. This, however, is about three times less frequent than Tay-Sachs. “This has, in our view, clinical implications for assessing the risk of congenital heart defects among individuals of this ancestry,” said Bezzina.

The mutation probably arose among Ashkenazi Jews around 600 to 800 years ago. There are about 20 known disease mutations like Tay-Sachs in this population that are found only rarely in other groups.

Lahrouchi and Bezzina specialize in the genetics of congenital heart disease, which occurs worldwide in 7 out of every 1,000 live births.

With 56 coauthors, Frohman said this publication had the largest number of collaborators he’s ever had in a career that includes about 200 papers. While this is unusual for him, it’s not uncommon among papers in clinical research.

The lead researchers believed a comprehensive report with a uniform presentation of clinical data and biochemical analysis would provide a better resource for the field, so they brought together research from The Netherlands, the Czech Republic, Israel, France, Italy and the United States.

Previous research that involved Frohman revealed other patterns connected to the PLD1 gene. 

About a dozen years ago, Frohman helped discover that mice lacking the PLD1 gene, or that were inhibited by a drug that blocked its function, had platelets that are less easily activated, which meant they were less able to form large blood clots.

These mice had better outcomes with strokes, heart attacks and pulmonary embolisms.

The small molecule inhibitor was protective for these conditions before strokes, but only provided a small amount of protection afterwards. Technical reasons made it difficult to use this inhibitor in clinical trials.

The primary work in Frohman’s lab explores the link between PLD1 and cancer. He has shown that loss of PLD1 decreases breast cancer tumor growth and metastasis.

As for what’s next, Frohman said he has a scientific focus and a translational direction. On the scientific front, he would like to know why the gene is required for heart development. He is launching into a set of experiments in which he can detect what might go wrong in animal models early in the development of the heart. 

Clinically, he hopes to explore how one bad copy of the PLD1 gene combines with other genes that might contribute to cause enough difficulties to challenge the survival of a developing heart.

A resident of Old Field, Frohman lives with his wife Stella Tsirka, who is in the pharmacology department and is Vice Dean for Faculty Affairs in the Renaissance School of Medicine. The couple has two children, Dafni, who is a first-year medical student at Stony Brook and Evan, who is a lawyer clerking with a judge in Philadelphia.

Outside of work, Frohman, who earned MD and PhD degrees, enjoys hikes in parks, kayaking and biking.

Having a medical background helped him learn a “little bit about everything,” which gave him the opportunity to prepare for anything new, which included the medical implications of mutations in the PLD1 gene.

Bezzina hopes to continue to work with Frohman, on questions including how the mutation type affects disease severity. “An interplay with other predisposing genetic factors is very interesting to explore as that could also help us in dissecting the disease mechanism further,” she wrote.

Markus Seeliger with a model of a protein kinase. Photo from SBU

By Daniel Dunaief

They are like couples looking for each other on a dating website. Each side could theoretically find a range of connections. The focus in this dating game, however, has heavily favored understanding the preferences of one side. 

Markus Seeliger, an associate professor in the Department of Pharmacological Sciences at the Stony Brook University Renaissance School of Medicine, has taken important steps to change that, albeit in a completely different area. Instead of working with two people who are searching for a date, Seeliger studies the interactions among protein kinases, which are like switches that turn on or off cellular signals, and inhibitors, which researchers and drug companies are creating to slow down or stop the progression of diseases.

Markus Seliger

Most scientists have looked at the pairing of these molecules and protein kinases from the perspective of the inhibitor, trying to figure out if it would bind to one of the 500 protein kinases in the human body.

Seeliger, however, is exploring the coupling from the other side, looking at the selectivity of the kinases. He published recent research in the journal Cell Chemical Biology.

“People have only ever looked at the specificity from the point of view of an inhibitor,” Seeliger said. “We’ve turned it around. We’re looking at it from the perspective of kinases,” adding that kinases have been important drug targets for decades.

In an email, Michael Frohman, a SUNY distinguished professor and the chair of the Department of Pharmacological Sciences, applauded Seeliger’s efforts and said his research “is representative of the innovative work going on in many of the labs here.” 

On a first level, Seeliger discovered eight kinases that bind to a range of potential inhibitors, while the others are more selective.

Within the smaller group that binds a range of inhibitors, there was no sequence relationship between the base pairs that formed the kinases. The kinases are also not closely related in the cellular functions they regulate. They all trigger similar signaling cascades. 

Seeliger wanted to know why these eight kinases were four to five times more likely to couple with an introduced inhibitor than their more selective kinase counterparts. The Stony Brook scientist performed a three-dimensional analysis of the structure of one of these kinases at Brookhaven National Laboratory.

“They have a very large binding pocket that can accommodate many different inhibitors,” Seeliger said. Indeed, he discovered this higher level of receptivity by separating out this group of eight, which also had more flexible binding sites. If the match between the configuration of the inhibitor and the kinase isn’t perfect, the kinase can still find a way to allow the molecule to connect.

For any potential inhibitor introduced into the human body, this more flexible and accommodating group of kinases could cause unintended side effects regardless of the level of specificity between the inhibitor or drug and other targets. This could have health implications down the road, as other researchers may use the properties of these kinases to switch off programs cancer or other diseases use to continue on their destructive paths.

“Studies point to the roles of protein kinases as driving (to at least allowing and permitting) cancer growth and development,” Yusuf Hannun, the director of the Stony Brook University Cancer Center, explained in an email. “Therefore, one needs to inhibit them.”

Hannun described Seeliger as “very rigorous” and suggested he was an “up and coming scientist” whose “novel approach” shed significant new light on protein kinases.

In his research, Seeliger’s next step is to look at the existing database to see what other groups of kinases he finds and then determine why or how these switches have similarities to others in other systems or regions of the body.

Seeliger likened kinases to a control panel on a space shuttle. “Nothing about the sequence tells you about the role of the switches,” which would make it difficult for astronauts to know which switch to turn and in what order to bring the shuttle home.

Another question he’d like to address involves a greater understanding of the complexity of a living system. So far, he’s looked at properties of these kinases under controlled conditions. When he moves into a more complex environment, the inhibitors will likely interact and yield unexpected binding or connections.

Frohman appreciated Seeliger’s overall approach to his work and his contribution to the field. He cited the popularity of a review article Seeliger wrote that documents how drug molecules find their target binding site. Frohman said this work, which was published in the Journal of the American Chemical Society, was cited over 400 times in other articles.

Seeliger has been “very dedicated to moving this field forward. We were very excited about the topic and have been very pleased with the work he’s done on it since arriving at SBU,” Frohman said.

A resident of Stony Brook, Seeliger lives with his wife Jessica Seeliger, an assistant professor in the Department of Pharmacological Sciences who works on developing drugs for tuberculosis. The couple has two young children.

“We are all very happy they are both here as independent scientists,” Frohman added.

Indeed, Hannun called Jessica Seeliger an “outstanding and highly talented scientist,” as well.

Seeliger grew up in Hanover, Germany. He became interested in science in high school when he watched “The Double Helix,” which showed the development of the structural model of DNA.

His lab currently has two postdoctoral researchers and two doctoral candidates. Ultimately, Seeliger hopes his research helps establish an understanding of the way various kinases are functionally similar in how they interact with drugs.

“We wish we would be able to design more specific inhibitors without having to test dozens and dozens of compounds by trial and error,” he explained. He hopes to continue to build on his work with kinases, including exploring what happens when mutations in these switches cause disease.