Tags Posts tagged with "Daniel Dunaief"

Daniel Dunaief

Above, Leila Esmailzada, executive director of BeLocal observes a traditional charcoal making process in Madagascar. Photo from BeLocal

By Daniel Dunaief

BeLocal has progressed from the drawing board to the kitchen. The nonprofit group, which was started by the husband and wife team of Mickie and Jeff Nagel as well as data scientist Eric Bergerson, has been working to improve and enhance the lives of people living in Madagascar.

BeLocal, which started in 2016, has sent representatives, including Laurel Hollow resident Mickie Nagel and executive director Leila Esmailzada, to travel back and forth to the island nation off the southeast coast of the African continent.

Working with Stony Brook University students who identified and tried to come up with solutions for local challenges, BeLocal has focused its efforts on creating briquettes that use biomass instead of the current charcoal and hardwood, which not only produces smoke in Malagasy homes but also comes from cutting down trees necessary for the habitat and the wildlife it supports.

Biochar briquettes reduce the amount of hardwood Malagasy residents chop down to provide fuel for cooking. Photo from BeLocal

“In the summer of 2018 we figured out that we had something that works,” said Mickie Nagel. “We had all the agricultural waste and could turn it into fuel. Our goal is to start thinking about how to bring it into communities and into the daily lives” of people in Madagascar.

In January of this year, Esmailzada partnered up with Zee Rossi to introduce the new briquettes to residents of three villages, who were interested in the BeLocal process and offered feedback.

Rossi worked in Madagascar for three years as a part of the Agricultural Food Security Advisory Section of the Peace Corps, until he recently joined the staff at BeLocal.

At this point, BeLocal has helped create four working production sites for the briquettes, all of which are on the outskirts of the Ranomofana National Park, which Stony Brook Professor Patricia Wright helped inaugurate in 1991.

The biochar briquettes solve several problems simultaneously. For starters, they reduce the amount of hardwood Malagasy residents chop down to provide fuel for cooking. The biochar briquettes are made from agricultural waste, such as corn husks and cobs, rice stalks, leaves, small sticks and even unusable waste from the production of traditional charcoal.

The briquettes also produce less smoke in the homes of the Malagasy. At this point, BeLocal doesn’t have any data to compare the particulates in the air from the briquettes.

One of the current briquette makers is generating about 2,000 of the circular fuel cells per month. As a start-up effort, this could help with several families in the villages. Nagel estimates that it takes about 12 briquettes to cook a meal for a family of four. The families need to learn how to stoke the briquettes, which are slightly different from the cooking process with the charcoal and hardwood.

Esmailzada and Rossi had planned to return to Madagascar in July, where they hoped to understand how people are using these sources of energy.

Esmailzada has taught and workshopped with the Malagasy on how to make the briquettes. Since returning to the United States, where she recently completed a master’s program in public health with a focus on community health at Stony Brook University, she was eager to see how much progress has been made.

BeLocal has continued to refine the technique for creating these briquettes. Working across the border with Stony Brook graduate student Rob Myrick, Malagasy residents have tried to char the biomass in a barrel, instead of digging a pit.

“Hopefully there will be movement” with the barrel design, Nagel said.

Myrick is working on refining the airflow through the pit, which could enhance the briquette manufacturing process.

Myrick will “work on techniques [at Stony Brook] and [Rossi] will work on the process with the villagers over there,” Nagel explained in an email. Myrick has been “such a helpful and great addition to BeLocal.”

Esmailzada and Nagel are delighted that Rossi joined the BeLocal effort.

“It’s such a natural partnership,” Esmailzada said. “He built this incredible trust with this group of really dynamic people. Having him be the liaison between us and the community really came together nicely.”

Rossi explained some of the challenges in developing a collaboration that works for the Malagasy. “One of the biggest barriers is being a foreigner,” he said. “With any new thing you present to a farmer, you have to sell yourself first. It’s really important that you connect with a farmer on a person-to-person level.”

Numerous farmers are skeptical of the ongoing commitment foreign groups will have. Many of them have experience with a foreigner or a local nongovernmental organization coming in, doing a program and “not following up,” Rossi added.

Nagel is putting together a nongovernmental organization conference to get the organizations “working on projects in the same room,” she said.

Through this effort, BeLocal hopes to create new partnerships. The organization continues to work with Stony Brook’s VIP program, which stands for vertically integrated projects.

Students from sophomore year through graduate school can continue to work on the same projects. The goal is to enable a continued commitment, which the school hopes will lead to concrete results, instead of one-year efforts that often run into obstacles that are difficult to surmount in a short period of time.

Ultimately, Nagel believes the process of building briquettes could translate to other cross-border efforts and suggested that these goals should include the kind of information crowd-sourcing that benefits from other successful projects.

BeLocal is receptive to support from Long Islanders and elsewhere.

Nagel added that projects like the briquette effort keep the context and big picture in mind.

“Helping Patricia Wright save this rain forest and the lemurs will always be a goal and we know the only way to do that is to help with alternatives to food and fuel sources, and better farming techniques so they don’t have a need to slash and burn more rain forest to add more farming fields,” Nagel said.

By Daniel Dunaief

Daniel Dunaief

You know Murphy’s law, right? Whatever can go wrong will go wrong. Well, it seems that we need to update Murphy’s law. To that end, please find a few of my experiential and observational corollaries.

• Your kids know more about electronics than you do. Yes, I know there are information technology people who are keeping up with the latest apps, some of whom may actually write the apps. But most of those people stop using their phones or looking at their work when they go home. Your kids are using them all the time. They are professional app users, while you likely know one app extremely well.

• You will receive a message from your airline when it doesn’t help. I appreciate how airlines, and even Expedia, offer to send you updates on your flights. Most of the time, however, the text that the plane is delayed two hours will arrive just after the car that’s brought you to the airport pulls away from the curb.

• Following the rules at the doctor’s office, the DMV or anywhere else you might be a captive audience rarely works. I recently went to a doctor’s office half an hour early because the email requested that I arrive then for my first appointment. I waited more than an hour for a consultation that lasted a few minutes.

• You’re likely to leave out a critical word at a critical time in a critical email. Let’s say someone proposes an idea at work that you find wholly objectionable and unworkable. You respond: “I can agree with this idea.” Forgetting the word “not” then means that your boss, who proposed the idea in the first place, now gives you ownership of a process that is even worse than it seemed when you first read the email through your sleep-deprived eyes.

• The cute baby that made you smile in the airport or the bus station will be sitting behind you for hours. In the few moments when he’s not screaming, he’s kicking your chair right behind your head, rendering the noise cancellation headphones you bought utterly useless.

• In the world of TMI (too much information), you’re likely to hear something that makes you wish you had a plastic bubble. Someone near you on a subway will be talking to his friend on the phone about a strange rash that’s spreading everywhere while coughing violently into the air.

• The cable or appliance repair person who gave you a four-hour window when he might arrive at your house will come at the beginning of the window, the end of the window or in those three minutes you stepped out to get a cup of coffee just down the street. When you return to find the note indicating how sorry he was that he missed you, you have an adult tantrum which terrifies the neighbors and their kids, who will no longer come to your house during Halloween.

• Complaining about the performance of an athlete who never seems to live up to his or her potential means that athlete will do something incredible within moments of your most vocal complaint. That will be the case unless you’re complaining because you secretly believe that will lead to a winning effort. In that case, the athlete will meet your low expectations.

• The year you move to a place where you’re assured there are no hurricanes, you watch the familiar sight of wind tearing through your backyard, as a hurricane fells trees you have owned for all of two weeks. Ah, cypress tree, we hardly knew you.

Peter Van Nieuwenhuizen

By Daniel Dunaief

Peter van Nieuwenhuizen was sitting at the kitchen table, paying an expensive dental bill, when he received an extraordinary phone call. After he finished the conversation, he shared the exciting news — he and his collaborators had won a Special Breakthrough Prize in Fundamental Physics for work they’d done decades earlier — with his wife, Marie de Crombrugghe.

The prize, which is among the most prestigious in science, includes a $3 million award, which he will split with Dan Freedman, a retired professor from the Massachusetts Institute of Technology and Stanford University, and Sergio Ferrara from CERN.

De Crombrugghe suggested he could use the money “for a whole new set of teeth,” if he chose.

Van Nieuwenhuizen, Freedman and Ferrara wrote a paper in 1976 that extended the work another famous physicist, Albert Einstein, had done. Einstein’s work in his theory of general relativity was incomplete in dealing with gravity.

Freedman, who was at Stony Brook University at the time, van Nieuwenhuizen and Ferrara tackled the math that would provide a theoretical framework to include a quantum theory of gravity, creating a field called supergravity.

From left, Peter van Nieuwenhuizen, Sergio Ferrara, and Dan Freedman in 1980.

After 43 years, “I didn’t expect” the prize at all, said van Nieuwenhuizen. It’s not only the financial reward but the “recognition in the field” that has been so satisfying to the physicist, who continues to teach as a Toll Professor in the Department of Physics at SBU at the age of 80.

“To have one’s work validated by great leaders has just been wonderful,” added Freedman, who worked at SBU through the 1980s until he left to join MIT. He treasures his years at Stony Brook.

Freedman believes a seminal trip to Paris, where he discussed formative ideas that led to supergravity with Ferrara, was possible because of Stony Brook’s support.

The physics trio approached the problem of constructing a way to account for gravity by combining general relativity and particle physics, which were in two separate scientific communities at the time. Even the conferences between the two types of physics were separate.

Einstein’s theory of general relativity has infinities when scientists add quantum aspects to it. As a result, it becomes an inconsistent theory. “Supergravity is not a replacement of Einstein’s theory, it is an extension or a completion if one is bold,” van Nieuwenhuizen explained.

The Stony Brook professor suggested that supergravity is an extension of general relativity just as complex numbers are an extension of real numbers. He added that it’s unlikely that there are other extensions of general relativity that theoretical physicists have yet to postulate.

Supergravity is “confirmed by its finiteness,” he said, adding that it suggests the existence of a gravitino, which is a partner to the graviton or the gravity-carrying boson. At this point, scientists haven’t found the gravitino.

“Enormous groups have been looking” for the gravitino, but, so far, “haven’t found a single one,” van Nieuwenhuizen said. The search for such a particle isn’t a “problem for me. That’s what experimental physicists must solve,” he said.

The work has already had implications for numerous other fields, including superstring theory, which attempts to provide a unified field theory to explain the interactions or mechanics of objects. Even if the search for a gravitino doesn’t produce such a particle, van Nieuwenhuizen suggested that supergravity still remains a “tool able to solve problems in physics and mathematics.”

Indeed, since the original publication about supergravity, over 11,000 articles have supergravity as a subject.

Collaborators and fellow physicists have reached out to congratulate the trio on winning the Special Breakthrough Prize, which counts the late Stephen Hawking among its previous winners.

The theoretical impact of supergravity “was huge,” said Martin Roček, a professor in the Department of Physics at Stony Brook who has known and worked with van Nieuwenhuizen for decades.

Whenever interest in the field wanes, Roček said, someone makes a new discovery that shows that supergravity is “at the center of many things.”

He added that the researchers are “very much deserving” of the award because the theory “offers such a rich framework for formulating and solving problems.”

Roček, who worked as a postdoctoral researcher in Hawking’s laboratory, said other researchers at Stony Brook are “all delighted” and they “hope some of the luster rubs off.”

Van Nieuwenhuizen’s legacy, which is intricately linked with supergravity, extends to the classroom, where he has invested considerable time in teaching.

Van Nieuwenhuizen is a “wonderful teacher,” Roček said. Indeed, he received the Dean’s Award for Excellence in Graduate Teaching in 2010 based on teaching evaluations from graduate students. Roček has marveled at the way van Nieuwenhuizen prepares for his lectures, adding, “He doesn’t give deep statements and leave you bewildered. He explains things explicitly and he does a lot of calculations without being dull.”

Van Nieuwenhuizen recalled the exhilaration, and challenge, that came from publishing their paper in 1976. “We knew right away” that this was a seminal paper, he said. “The race was on to discover its consequences.”

Prior to the theory, the three could work in relative calm before the physics world followed up with more research. After their discovery, they knew the “happy, isolated life is over,” he said..

Van Nieuwenhuizen has no intention to retire from the field, despite the sudden funds from the prize, which is sponsored by Sergey Brin, Priscilla Chan, Mark Zuckerberg, Pony Ma, Yuri and Julia Milner and Anne Wojcicki.

“The idea that I would stop abhors me,” he said. “I wouldn’t know what on earth I would be doing. I consider it a privilege to give these courses, to work and be paid to do my hobby. It’s really unheard of.”

By Daniel Dunaief

Daniel Dunaief

Am I going to cry? That’s the question I get so often when I talk to other parents who, like me, are about to send their first child off to college.

I’m sure I’ll be more reflective than teary-eyed. I’ll probably think about expected and unanticipated milestones. Like a montage or a video, pictures and memories of my daughter at various ages will pass through my head.

I keep thinking about her fourth birthday. The night before her party, she could barely sleep. She came into our room several times to ask if it was time to get up yet. I told her to look out the window, past the streetlights of Manhattan, into the sky, where it was pitch dark. When it was lighter, she could get up and start preparing for the party.

As soon as we got to Jodi’s Gym, which was a wonderful padded room filled with age-appropriate apparatuses, my daughter raced around the room. The party planner asked us to wait in the entrance so we could greet her guests. While we were waiting, I chased her around the table, listening to the wonderful, happy screeches that came each time I either caught up to her or got close to her.

“You know,” the party planner said, “you might want to save some energy for the party.”

My daughter smiled at me, shook her head and ran away, expecting me to follow her. I continued to play the pre-party game, even as the party planner shrugged. After everyone arrived, my daughter led the way on every piece of equipment, delighted that she had the chance to run, jump and scream without waking Maryann and Frank, who lived beneath us in our apartment. Even though she can’t picture Maryann and Frank today, she knows that those were the names we used whenever she got too loud early in the morning or late at night.

I also think about how enchanted my daughter was by her first grade teacher. Mrs. Finkel delighted her students and their parents with her soft voice, her ability to focus on each student individually and the class as a whole at the same time, and her control of the classroom. While Mrs. Finkel died incredibly young after a short battle with cancer, I know her legacy lives on with the students who are preparing for college and with her husband and daughter.

I am also recalling the many moments when a book captivated my daughter’s attention, causing her to read late into the night; when she caught blue claw crabs at a dock; or when she played board games with her brother and cousins at my mother’s house during Thanksgiving.

Perhaps the most recurring memory, however, goes back to when she was learning to ride a bicycle. I pushed the bike for several seconds, let go, and watched her wobble unsteadily until she either fell or put her feet to the sides. Eventually, my back hurt so much that I couldn’t bend and run anymore.

“Let’s stop for now,” I gasped. “You don’t need to do it now. When you’re ready, you’ll do it.”

She paused and asked me to push her one more time. When I did, she slowly circled the parking lot and stopped, a triumphant smile plastered across her face. On the walk back home, I asked her how she was able to conquer the bike.

She told me she thought about how she wanted to be ready, so she did it.

While I probably won’t cry when I turn around and leave her at college, I will hope that she feels as ready as she did when she conquered her bike.

A. Laurie Shroyer File photo

By Daniel Dunaief

Annie Laurie Shroyer isn’t standing on a podium somewhere, listening to the national anthem with tears in her eyes and a hand over her heart as she mouths familiar words. She hasn’t won a Nobel Prize or some other distinction that will add to a medal count or that will rise to the top of her resume.

Shroyer is, however, standing tall in an arena that matters to her and to her colleagues, mentors and collaborators.

A professor and vice chair for research in the Department of Surgery at the Stony Brook Renaissance School of Medicine and the without compensation health science officer in the Research and Development Office at the Northport VA Medical Center, Shroyer recently learned that two of her research papers on coronary artery bypass surgery made an impressive and important list.

Her papers were ranked 8th and 28th among a review by the Journal of Cardiac Surgery of the top 11,500 papers in her field, making Shroyer one of only two senior investigators in the world with two citations in the top 50.

Researchers often work in obscurity, toiling in a lab or on a computer late into the night, analyzing data, applying for grants and receiving constructive but sometimes critical comments from peer reviewers. What many of them hope for, apart from the stability of tenure or the opportunity to provide a breakthrough discovery that alters the way other researchers or clinicians think about a disease or condition, is to make a lasting impact with their work.

In many ways, this ranking suggests that Shroyer has accomplished that with research into a surgical procedure that is increasingly common.

Shroyer is “one of the most influential cardiovascular researchers of our era,” Faisal Bakaeen, the staff surgeon and professor of surgery at the Heart and Vascular Institute in Cleveland, Ohio, explained in an email. Shroyer’s leadership in her research is “proof of her deep intellect and genius.”

Learning that her research, which Shroyer explained was interdisciplinary, collaborative and team-based, was among the most cited in the field was “really an honor,” she said. “I was very pleasantly surprised.”

Shroyer heard about the distinction from the VA Hospital, which noticed her prominent place in the realm of coronary artery bypass surgery research. She conducted one of her studies, called the ROOBY trial for Randomized On/Off Bypass, through the Northport hospital.

That research, which was published in the New England Journal of Medicine and benefited from the support of the VA Cooperative Studies Program Coordinating Center and the Research and Development Offices at the Northport and Denver VA Medical centers, compared the short-term and intermediate outcomes evaluating the impact of using a heart-lung machine versus operating on a beating heart.

That trial asked focused research questions about the comparative benefits of using the machine.

Shroyer concluded that there was “no off pump advantage” across a diversity of clinical outcomes and likened the process of performing this surgery without a pump to sewing a patch onto blue jeans while a child is walking up the stairs, making the stitching process more technically demanding.

Shroyer recognizes that some doctors prefer to do the procedure without the pump. Many of them suggest they have the surgical expertise to make the process a viable one for patients.Some patients may also have specific reasons to consider off pump procedures.

As for the second highly cited paper, Shroyer worked with the STS National Adult Cardiac Surgery Database Committee team and published that in the Annals of Thoracic Surgery. That paper identified the most important preoperative risk factors associated with major morbidities after surgery.

“This paper described a broad-based analytical approach which was originally developed in the VA” by Drs. Karl Hammermeister, Fred Grover, Guillermo Marshall and Shroyer working together, she explained in an email. Given that the Society of Thoracic Surgery’s database has subsequently been used to address other research questions, this early statistical modeling approach has attracted considerable interest.

In terms of the overall list, Shroyer expressed a few surprises. For starters, she noticed a larger than anticipated proportion of articles focused on the surgical procedure’s clinical outcomes. In her view, the topic is important, but not to the exclusion of research focused on evaluating the process of care and the structures of care. These include actions that care providers take on behalf of their patients, the actions patients take for themselves, and the nature of the environment where patients seek out care.

“Identifying the adverse outcomes post-CABG informs you that there is a problem, but clinical outcomes research doesn’t provide guidance on how to solve” the problem or problems identified, she said, adding that she hopes future research evaluates the processes and structures of care that may affect risk-adjusted clinical outcomes.

Shroyer also expected that the findings of several trials published in the New England Journal of Medicine would have ended the debate about off-pump versus on-pump benefits. The debate, however, is “still active,” she said.

Five years from now, Shroyer anticipates changes in the list. She hopes these high impact journals will include evaluations of novel treatments and surgeon-based characteristics, which may influence risk-adjusted outcomes.

Shroyer is pleased with the collaborators who have worked with her, as well as with the information from which she has drawn her conclusions.

“This high level of citation represents a tribute to the entire VA ROOBY trial team as well as to the STS Adult Cardiac Surgery Database and National Database Committees’ members,” she said. “In addition to terrific collaborators, I feel very blessed to have had several great mentors,” which includes Gerald McDonald and Fred Grover.

She also appreciates that she has had appointments at Stony Brook and at the Northport VA Medical Center that support her research projects.

Stock photo

By Daniel Dunaief

Daniel Dunaief

How do you compete with the Big Mac and plastic straw?

That’s the dilemma facing the Democratic Party. You see, beyond squaring off against the tweets and the sideshows, the Democrats are hoping to win the hearts and minds of voters against a billionaire president who endorses products and ideas that carry broad appeal for his base and for some voters on the fence.

People don’t want to be told how to live their lives. They don’t want a government to say, “Hey, red meat isn’t good for you. Stop eating it and focus on the foods that will keep you healthy and be good for the Earth.” They also don’t want to give up something, like a plastic straw, that has been a part of their lives forever.

Now, there are plenty of solid arguments for reducing red meat and for cutting back on plastic straws. Those straws, among many other forms of plastic, are killing marine life. Plastics are so prevalent in marine waters that whales are dying of starvation because they have more than 80 pounds of plastic in their stomachs.

But that’s not what some voters think or care about. That dead whale probably didn’t eat the plastic straw that the voter used. And, even if it did, the plastic straw is only one of many other plastics that the mammal ate. Besides, it was probably a plastic straw that someone in China threw into the ocean or that an illegal immigrant used and discarded. I recycle my plastics, so why shouldn’t I use them as often as I’d like?

The problem for Democrats is simpler than that, though. It’s really a question of the present versus the future. As we are currently constructed, we, the American people, aren’t accustomed to sacrifice. It’s not considered a modern virtue by a president who says what he thinks and does what he likes. We want what we want when we want it. We are the culture of instant gratification. Someone says something awful about us, we want to hit back.

It’s why some people adore the president. He is the ultimate counterpuncher, he says what he thinks and he always wants the last word. Misspelling that word is irrelevant and, in its own way, it appeals to some people because proper spelling seems so elitist.

It’s also why he can roll back environmental laws designed to protect endangered species. Sure, long term, we might lose a few snakes, birds or trees, but we will also be able to make more money from the land, create more jobs and live for the present.

The great, big, beautiful tax cut helped boost the stock market. Why? Companies used that extra money to buy back their stock. That didn’t do much to help the economy or create jobs. It didn’t enhance the companies’ revenues or encourage corporations to take risks to fund important research or pursue innovative ideas. It was a for-the-present gift to companies which boosted their current bottom lines.

Conspiracy theories fit into the mold of a present focus. Until irrefutable facts come to the public’s attention, these theories — including some about how or even whether disgraced financier Jeffrey Epstein died — burn like a bonfire, without requiring a discussion or even a preparation for an unknown future.

Looking past the present to the future that will affect our children and grandchildren is difficult. Besides, instead of worrying about what the world will look like in 20, 30 or 50 years’ time, we can sit down with the younger generation, pull up a chair, and eat a Big Mac and drink a sugar-filled soda through a plastic straw. Democrats need to create a picture that makes whatever changes they seek understandable, worthwhile and palatable.

By Daniel Dunaief

Screws can’t be the best and only answer. That was the conclusion neurosurgeon Daniel Birk at the Stony Brook Neurosciences Institute came to when he was reconsidering the state-of-the-art treatment for spinal injuries. The screws, which hold the spine in place, create problems for patients in part because they aren’t as flexible as bone.

That’s where Stony Brook University’s College of Engineering and Applied Sciences, headed by Fotis Sotiropoulos, plans to pitch in. Working with Kenneth Kaushansky, dean of Stony Brook University’s Renaissance School of Medicine, the two Stony Brook leaders have been immersed in uniting their two disciplines to find ways engineers can improve medical care.

Fotis Sotiropoulos

The two departments have created the Institute for Engineering-Driven Medicine, which will address a wide range of medical challenges that might have engineering solutions. The institute will focus on developing organs for transplantation, neurobiological challenges and cancer diagnostics.

The institute, which already taps into the medical and engineering expertise of both departments, will move into a new $75 million building at the Research and Development Park, in 2023.

The original investment from New York State’s Economic Development Council was for an advanced computing center. The state, however, had given Buffalo the same funds for a similar facility, which meant that former Stony Brook President Sam Stanley, who recently became the president of Michigan State University, needed to develop another plan.

Sotiropoulos and Kaushansky had already created a white paper that coupled engineering and medicine. They developed a proposal that the state agreed to fund. In return for their investment, the state is looking for the development of economic activity, with spin-off companies, jobs, new industries and new ideas, Kaushansky said.

The two leaders are developing “a number of new faculty recruits to flesh out the programs that are going in the building,” Kaushansky added.

Sotiropoulos, who has conducted research in the past on blood flow dynamics in prosthetic heart valves, believes in the potential of this collaboration. “This convergence of engineering and medicine is already doing what it was intended to do,” he said. Clinicians can get “crazy sci-fi ideas, talk to engineers and figure out a way to make it happen.”

In addition to spinal cord support, researchers in engineering and medicine are working on developing algorithms to make decisions about surgical interventions, such as cesarean sections. 

A recent project from principal investigator Professor Petar Djurić, chair of SBU’s Department of Electrical and Computer Engineering, and Gerald Quirk, an obstetrician and gynecologist at Stony Brook Medicine, recently received $3.2 million from the National Institutes of Health. The goal of the project is to use computer science to assist with the decisions doctors face during childbirth. A potential reduction in C sections could lower medical costs. 

“This is a fantastic example of this type of convergence of engineering and medicine,” said Sotiropoulos.”

Dr. Kenneth Kaushansky. Photo from SBU

While the building will host scientists across a broad spectrum of backgrounds, researchers at Stony Brook will be able to remain in their current labs and coordinate with this initiative. Combining all these skills will allow researchers to apply for more grants and, Stony Brook hopes, secure greater funding.

“For a number of years now, the [National Institutes of Health have] really favored interdisciplinary approaches to important medical problems,” Kaushansky said. “Science is becoming a team sport. The broader range of skills on your team, the more likely you’ll be successful. That’s the underlying premise behind this.”

The notion of combining medicine and engineering, while growing as an initiative at Stony Brook, isn’t unique; more than a dozen institutions in the country have similar such collaborations in place.

“We’re relatively early in the game of taking this much more holistic approach,” said Kaushansky, who saw one of the earlier efforts of this convergence when he was at the University of California at San Diego, where he worked with the Founding Chair of the Department of Bioengineering Shu Chien. 

The Stony Brook institute has created partnerships with other organizations, including Albert Einstein College of Medicine and Montefiore Medical Center.

“The more clinical people we engage, the better it is for the institute,” Sotiropoulos said.

As for the bionic spine, Kaushansky has familial experience with spinal injuries. His mother suffered through several spinal surgeries. “There’s a need for much, much better mechanical weight-bearing device that will help people with back problems,” he said.

At this point, Stony Brook has gone two-thirds of the way through the National Science Foundation process to receive a $10 million grant for this spinal cord research. Sotiropoulos suggested that a bionic spine could be “a game changer.”

While the institute will seek ways to create viable medical devices, diagnostics and even organs, it will also meet the educational mandate of the school, helping to train the next generation of undergraduate and graduate students. The school already has a program called Vertically Integrated Projects, or VIPs, in place, which offers students experiential learning over the course of three or four years. The effort combines undergraduates with graduates and faculty members to work on innovative efforts.

“These projects are interdisciplinary and are all technology focused,” Sotiropoulos said. “We bring together students” from areas like engineering, computer science and medicine, which “go after big questions,” and that the VIP efforts are structured to unite engineers and doctors-in-training through the educational process.

Through the institute, Stony Brook also plans to collaborate with other Long Island research teams at Cold Spring Harbor Laboratory and Brookhaven National Laboratory, Sotiropoulos said, adding that the scientists are “not just interested in doing blue sky research. We are interested in developing services, algorithms, practices, whatever it is, that can improve patient care and costs.”

Indeed, given the translational element to the work, the institute is encouraging a connection with economic development efforts at Stony Brook, which will enable faculty to create spin-off companies and protect their ideas. The institute’s leadership would like to encourage the faculty to “create companies to market and take to market new products and developments,” said Sotiropoulos.

Photos from SBU

American Gun Laws

By Daniel Dunaief

Daniel Dunaief

I have an obvious question for the National Rifle Association: Why fight gun control?

Yeah, yeah, I get it. You and many others don’t want a repeal of the Second Amendment, which was written well before the creation of assault weapons that enabled deranged Americans to kill their fellow citizens
at an unfathomable rate.

But don’t gun manufacturers want gun control? After all, wouldn’t it be better to produce a product that stayed out of the wrong hands?

Let’s take a look at the difference between gun manufacturers and car manufacturers. On the one hand, you have companies producing vehicles where safety is a top priority. In addition to meeting the stringent requirements of the law, some car manufacturers add features like a way to block text or phone signals from getting into a car while someone is driving.

Wow, what a concept. The car manufacturers don’t make the phones. People have died doing all kinds of activities with their phones, taking selfies in dangerous locations and not paying attention to their environment in general because they are so focused on their phones.

And yet, some of these car manufacturers are protecting drivers from their own unsafe impulses that could harm them and others — sounds familiar? — by preventing the dangerous combination of phone use and driving. If we buy into the notion that “guns don’t kill people, people kill people,” shouldn’t gun manufacturers make an effort to find out which people are more likely to kill other people, and not sell these destructive weapons to them?

In 1996, three years before the Columbine, Colorado, shooting became one of the first in what has now become a painful and familiar collection of mass murders in locations ranging from schools to houses of worship to malls during back-to-school sales, Congress passed a budget that included the Dickey Amendment, named after U.S. Rep. Jay Dickey (R-Arkansas). That amendment prevented the government from funding research that might lead to the conclusion that gun control was necessary.

Say what? Yeah, but, in light of recent tragedies, a law was passed last year clarifying that the Centers for Disease Control can actually fund research about guns. And, yet, the CDC still can’t lead to any advocacy for gun control.

If guns make most people safer, why don’t gun manufacturers want to know which people, specifically, shouldn’t have a gun? The idea of background checks and red flags are all fine, but they may not be sufficient.

If a virus broke out anywhere in the country that threatened to kill a room full of people in minutes, we would want the CDC not only to understand how to treat those who might have that virus immediately, but also to provide warning signs to others about any symptoms that might lead to an outbreak of that virus.

The CDC is way behind in its research in part because that 1996 amendment effectively dampened any effort to conduct the kind of studies that would lead to a greater understanding of gun violence.

Sure, the Federal Bureau of Investigation could and should find people who might be a threat to society. With the help of the CDC, the FBI might have a better idea of where to look. 

The well-funded NRA, however, would do itself — and society — a huge favor if it put its considerable financial muscle behind an independent effort to understand how to recognize those people who shouldn’t have any kind of gun, let alone an assault rifle capable of mass murder in a minute. The NRA doesn’t even need to call it gun control, just firearms research.

We the people may have a right to own guns, but we also have a right to life, liberty and the pursuit of happiness. Wouldn’t gun control research, supported by the NRA, ensure that we could live our lives without fear of the wrong people owning the wrong guns?

Stock photo

By Daniel Dunaief

Daniel Dunaief

Before the summer ends, go to the beach and close your eyes. Most of us are visually dominant, so we go somewhere like West Meadow Beach and look at everything from the boats and ferries out on the Long Island Sound to the young children running back and forth in and out of the water to the light sparkling across the waves.

While all of those are spectacular sensory stimuli, they are only a part of experiences we might otherwise take for granted at a local beach. Our ears can and do pick up so many seasonal cues. We might hear a seagull calling from the top of a bathroom hut to birds flying along the shore. Apart from the music that emanates from phones and radios along the crowded beach, we can hear the wind rustling through umbrellas, the sound of a young couple laughing about the ridiculous thing their friend did the night before, or the splashes a skimming rock makes as it gets farther away from shore. On a day with limited visibility, we can listen to boats calling to each other with their deep horns.

Our skin is awash in cues. As clouds float overhead, we appreciate the incredible temperature difference between the sun and the shade. Combined with a sudden gust of wind, our skin feels unexpectedly cool as we wait for that same wind to escort the cloud away. We take off our shoes and allow our feet, which carry the rest of our bodies hither and yon, to appreciate other textures. We dig our toes into the warm sand and lift our heels, allowing the grains of sand to trickle back to join their granule brethren.

We walk to the edge of the water and feel as if we’ve left the office, the shop, the lawn or the screaming kids far away. The lower water temperature draws away the heat that’s built up inside of us. If the surf kicks up, we can slide into the soft sand, sinking up to our ankles in the moistness.

Our feet can appreciate the fixed ripples on a sandbar that are smooth, soft and uneven.

As we walk up the beach, we can test the ability of our soles to manage through rocks often smoothed over by years of wave and water. We bend our knees more than normal to cushion the impact of a hard or uneven rock.

Our noses anticipate the beach before we leave the house. We lather coconut-scented sunscreen on our bodies and across our faces. As we get closer to the beach, we may pick up the marshy whiff of low tide. When we pull into a hot parking lot, the sweet and familiar ocean spray fills our lungs.

Once we’re swimming, our taste buds recognize the enormous difference between the waters of the Sound and a chlorinated pool. When we leave the sea, we head to the warm blanket or towel to partake of foods we associate with the beach, like the sandwiches we picked up at the deli on the way over, the refreshing iced tea or the crispy potato chips.

We saunter over to the ice cream truck, looking at a menu we’ve known for years. While we scan the offerings, we lick our lips and imagine the taste of the selections, trying to get those small bumps on our tongues to help us with the decision. We know how fortunate we are when the most difficult decision we have to make resolves around choosing the right ice cream to cap off a day that reminds us of the pleasures of living on Long Island.

Timothy Glotch. Photo from BNL

By Daniel Dunaief

Several Stony Brook University scientists are studying the health effects of lunar dust on the human body. The accompanying article describes a recent $7.5 million, five-year award that the researchers, led by Tim Glotch in the Department of Geosciences, recently won from the National Aeronautics and Space Administration. See below for email exchanges with some of the other researchers.

Fifty years after astronauts Neil Armstrong and Buzz Aldrin left those fateful first footprints on the moon, a team of scientists is hoping to ensure the safety of future astronauts who remain on the moon for longer periods of time.

Led by Tim Glotch, a professor in geosciences at Stony Brook University, the research team was awarded $7.5 million in funds over five years from the National Aeronautics and Space Administration. The funding will begin this fall. The goal of the multinational team, which includes researchers from Brookhaven National Laboratory, NASA Johnson Space Center, the American Museum of Natural History, among many others, is to explore the health effects of lunar dust.

Different from the dust on Earth, which tends to be more rounded and small, where the sharp edges have been weathered away, lunar dust has jagged edges because the lack of atmosphere prevents the same erosion.

The group, whose work is called the Remote, In Situ, and Synchrotron Studies for Science and Exploration 2 (or RISE2) will determine the effects on exposure on cell death and genetic damage.

Glotch’s team will follow up on an earlier five-year effort that just concluded and will coordinate with seven research groups that received similar funding from the space agency.

Astronauts who were on the moon for a matter of hours sometimes developed a respiratory problem called lunar hay fever, which came from the introduction of these particles into their lungs. In preparing for missions to the moon, asteroids or other planets, NASA is preparing for considerably longer term voyages, which could increase the intensity and accumulation of such dust.

At the same time, NASA is working on dust mitigation strategies, which will hopefully prevent these particles from becoming a problem, Glotch explained.

Joel Hurowitz, an assistant professor in the Department of Geosciences at SBU, is leading the reactivity study. He will take simulated minerals that are common on the moon and put them in simulated lung fluids. He and the RISE2 team may be able to provide a better understanding of the risks and preclinical symptoms for astronauts.

Hurowitz is working with Hanna Nekvasil, a professor and the director of undergraduate studies in the Department of Geosciences at SBU. Nekvasil is synthesizing pure minerals in the lab, which are analogs to the materials people would encounter on the moon.

“One of the problems we counter when trying to assess the toxicity of lunar materials to astronauts is that Earth materials” don’t have the same structure or properties, explained Nekvasil in an email. “For this reason, we plan to make new materials under conditions that more closely simulate the conditions under which the materials formed at depth and were modified at the lunar surface.”

On the medical school side, the researchers will use human lung and brain cell cultures and mouse lung cells to see how the minerals and regolith affects cell viability and cell death, Glotch said.

Nekvasil explained that the research team will also explore the effects of the function of mitochondria, which can have acute and long-term health effects.

Stella Tsirka, a professor in pharmacological sciences at Stony Brook, is leading the cytotoxicity studies and will continue to look at what happens to the lungs and the central nervous system when they are exposed to lunar dust. “What we see is some transient increase in inflammatory markers, but, so far, we have not done chronic exposures,” Tsirka said. The new study will aim to study chronic exposure.

Bruce Demple, a professor in pharmacological sciences at the Renaissance School of Medicine at SBU, is leading the genotoxicity efforts.

In addition to the jagged pieces of lunar dust, astronauts also may deal with areas like the dark spots on the moon, or lunar mare, which has minerals with higher amounts of iron, which can lead to the production of acidity in the lungs.

Ideally, the scientists said, NASA would design airlock systems that remove the dust from spacesuits before they come into the astronaut’s living spaces. The work on RISE2 will help NASA “understand just how big a health problem these astronauts will face if such engineering controls cannot be put into place, and develop reasonable exposure limits to the dust,” Hurowitz explained in an email.

The most likely landing spot for the next exploration is the south pole, which is the largest impact basin in the solar system. That area may have clues that lead to a greater understanding of the chronology of events from the beginning of the solar system.

“I hope future missions will help answer questions about the timing and processes through which the moon formed and evolved,” Deanne Rogers, an associate professor of geosciences at SBU, explained in an email. Rogers, who also participated in the first RISE research effort and is married to Glotch, will conduct thermal infrared spectral imaging and relate the spectral variations to chemistry and mineral variations in surface materials.

Additionally, the south pole holds volatile elements, like ice deposits. Finding ice could provide other missions with resources for a future settlement on the moon. Water on the moon could provide hydration for astronauts and, when split into its elements, could create hydrogen, which could be used for fuel, and oxygen, which could create air.

In addition to working with numerous scientists, including coordinating with the other current NASA research efforts, Glotch is pleased that RISE2 continues to fund training for undergraduates and graduate students.

The current effort is also coordinating with the School of Journalism at Stony Brook. Science journalism classes will involve writing stories about the research, profiling the scientists and going into the field for two weeks.

Glotch, who thought seriously about becoming an astronaut until he was about 23 years old, explained that he is pleased that there appears to be a “real push to go back to the moon. I have hoped to see a new human mission to the moon or beyond since I was a kid.”

————————————————————————————————Q & A with Associate Professor of Geosciences Deanne Rogers:

What role will you play in this work? Is this similar to the contribution you made to the original RISE project?

My contribution is very similar to my role in in the original RISE project. I will be participating in Theme 2, conducting thermal infrared spectral imaging and relating the spectral variations to chemistry and mineral variations in surface materials. A major new component is developing rapid analysis algorithms and pipelines, and evaluating strategies for how to best organize and integrate the various data sets.

How much of your research time will you dedicate to RISE2?
About 15% of my research time. But there will be a graduate student who will be doing the heavy lifting (collecting, processing and analyzing the data, correlating the data with surface materials and chemistry, developing the processing algorithms).
Have you and Tim spent considerable time discussing RISE2 and did you go through numerous drafts of the proposal?
Yes.
Will you also be involved in working with undergraduates and graduate students, as well as journalism school students, through the RISE2 efforts?
Yes, I will be mentoring undergrads and grads and working with the journalism students.
Are you excited to be a part of efforts to ensure the safety of astronauts on future extended trips to the moon, asteroids and/or other planets?
Yes, I am honored and excited.
Is it especially exciting/ compelling to be working on a  NASA funded effort around the 50th anniversary of the first steps on the moon?
Yes!
Are there scientific questions you hope future lunar missions answer? Do you think future expeditions will help ask new research questions?
Yes. I hope future missions will help answer questions about the timing and processes through which the moon formed and evolved to its present state. I am also interested in hydrogen sources and hydrogen mobility on the moon. History shows that we always end up with new questions whenever we send a mission to answer existing questions.

Q and A with Assistant Profess or Geosciences Joel Hurowitz:

Will you be working with Hanna Nekvasil to take minerals she produced and put them in simulated lung fluid. Is that correct? Is this simulated lung fluid a novel concept or have other research efforts taken a similar approach to understanding the effect of exposure to elements or chemicals on the lungs?

Yes, I will be working with Hanna.  Our plan is to produce a suite of high-fidelity lunar regolith simulant materials in her laboratory, characterize them extensively to ensure that they are a good chemical and mineralogical match to the different types of soil on the Moon, and then assess how toxic they are.  Some of those toxicity experiments will involve immersing the materials she creates in simulated lung fluid and assessing what chemical reactions take place between the solid regolith simulants and the lung fluid.  Other experiments will be done in collaboration with our partners in the Stony Brook medical school, and will involve, e.g., assessing how cells, DNA, and lung tissue react to these regolith simulants.  These experiments build on work that has been done by the previous iteration of RISE (1.0), but have the added benefit that we can apply the lessons learned for assessing toxicity from our first round of research, as well as making use of this new suite of very high-fidelity simulants.

Does this work have the potential to provide future missions with early warning signs of exposure, while also generating potential solutions to lunar dust driven lung damage?

This is a question that is probably better posed to our medical school colleagues on the team, Stella Tsirka and Bruce Demple.  They could speak in a much more informed way about what types of signals we might be able to recognize from, e.g., a blood test, that an astronaut is beginning to show signs of a toxicological response to regolith.

Ultimately, I think that the best solution to lunar dust driven lung damage is to engineer the exposure problem away – NASA needs to design airlock systems that remove regolith from spacesuits before they come into the astronaut’s living spaces.  Our work will help NASA to understand just how big a health problem these astronauts will face if such engineering controls cannot be put into place, and develop reasonable exposure limits to the dust.

Is there considerable excitement at Stony Brook about the RISE2 effort? Do you have, if you’ll pardon the pun, high hopes for the research and do you think this kind of effort will prove valuable for astronauts on future long term missions to the moon, asteroids or other planets?
Absolutely – we couldn’t be more excited about all of the new research we’ll be able to perform as part of RISE 2.0, in so many areas, including better understanding the origin of the Moon and asteroids from remote and laboratory analyses, and learning how to live safely and explore efficiently on the surfaces of these solar system bodies.
 Are there novel elements to the work you’re doing?
To me, the real novelty of our part of the RISE 2.0 research lies in the combination of really disparate areas of expertise to produce a very useful research outcome for NASA.  Our team combines the expertise of: (1) geologists who understand the conditions deep within the Moon that result in the formation of the rocks and regolith that are present there today, thus enabling us to better simulate the properties of lunar soil, (2) geochemists who understand how to execute experiments between fluids and soil materials to extract the maximum information about potentially toxic compounds that result from that interaction, and (3) medical scientists who can take the geological materials we make in our labs and apply them to relevant biological materials that are the best models to understand the toxic effect of lunar soil on astronauts.  It’s a truly cross-disciplinary approach that few other groups are taking.
Could this approach also have implications for people working in areas like coal mines or regions where particulates cause lung damage?
Yes – absolutely.  So much of the science we are performing is actually grounded (if you’llpardon the pun) in earlier work that has been done to understand diseases like coal miners lung, silicosis, and asbestosis.  We’re building on that foundation of research and taking it off-Earth to understand if astronauts have to be as worried about their lung health as someone donning a mining hat and heading underground.
Given that it’s been 47 years since the last manned trip to the moon, is it exciting to contribute to efforts that will allow for future safe and extended trips back to the moon?
Of course!  These issues really need to be sorted out if we’re going to ensure that the astronauts traveling to moons, asteroids, and other planets are safe, and I’m really happy to be a part of that effort.
Are there specific geologic questions you hope future missions to the moon answer? Will future samples lead to new questions?
I think one of the biggest questions that future missions that return samples from the Moon can address will relate to the timing of formation of the largest impact basins on the Moon and whether or not they record evidence for a cataclysmic “spike” in the rate of meteorite impacts in the early history of the inner Solar System.  So much of our current thinking about when life on Earth (or anywhere else in the inner Solar System) arose is tied to the idea that it must have happened after this cataclysmic “late heavy bombardment”, and yet, we aren’t completely sure whether this spike actually happened.  If it didn’t, it might force us to rethink what conditions were like on the surface of the Earth early in its geological history and when life could’ve first began.
How much of your time (as a percentage of your research time) will you dedicate to the RISE2 work?

It will vary from year to year.  Early on, I’ll be heavily invested in starting the program of research up, but then starting in 2021, I’ll hand off some of my duties in order to work on mission operations on the Mars 2020 rover mission.  I’m the deputy principal investigator for one of the instruments that is flying aboard that rover, so the year 2021 is going to be consumed with my Mars-related work.  As things start to settle down a bit on Mars (in 2022), I’ll be able to return to my RISE research.  It’ll be really exciting to see how much progress will have been made by that time, but I’ll be planning to keep tabs on the RISE research even when I’m spending more time on the Mars 2020 mission.

Q & A with Hanna Nekvasil, Director of Undergraduate Studies and Professor of Geosciences:

Will you be synthesizing pure minerals in the lab, which are analogs to the materials  astronauts would encounter on the moon?

One of the problems that we encounter when trying to assess the toxicity of lunar materials to astronauts, is that Earth materials make poor analogs, as we know from the materials brought back to Earth from the Apollo missions.  For this reason we plan to make new materials under conditions that more closely simulate the conditions under which the materials formed at depth and were modified on the lunar surface. For this work we use the experimental equipment that we normally use to simulate the processes that form and modify igneous rocks on Earth modified for the special low oxygen conditions of the Moon.  The materials produced will simulate more closely both the compositional and textural characteristics of dust that we expect will be encountered in future manned lunar missions.
Will Joel Hurowitz use these minerals to expose them to lung fluids? 
The RISE4E team will expose cells to the new lunar regolith simulants and assess the molecular effects to understand the cytotoxic and genotoxic potential of the new, more relevant simulants. Beyond the cell-killing and DNA-damaging capacity of the materials, we will also examine their effects on the function of mitochondria: dysfunction in that organelle can have both acute and long-term health effects.
Are you excited to be a part of an effort that may one day help ensure the safety of astronauts who spend considerable time on a lunar habitat? 
I am very excited about this and I think that the diverse team that we have assembled has great potential to really move our understanding of the potential toxicity of lunar materials forward.
Is there a specific question or mission objective you hope future trips to the moon addresses?
My greatest hope is that we encounter a diverse set of new rocktypes as each new rocktype will provide a wealth of information on the origin and evolution of the Moon’s surface and interior.