Brookhaven National Laboratory

Daniel Marx in front of one of the magnets at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. Photo courtesy of BNL

By Daniel Dunaief

In a world filled with disagreements over everything from presidential politics to parking places, numbers — and particularly constants — can offer immutable comfort, as people across borders and political parties can find the kind of common ground that make discoveries and innovations possible.

Many of these numbers aren’t simple, as anyone who has taken a geometry class would know. Pi, for example, which describes the ratio of the circumference of a circle to its diameter, isn’t just 3 or 3.14.

In classes around the world, people challenge their memory of numbers and sequences by reciting as many digits of this irrational number as possible. An irrational number can’t be expressed as a fraction.

These irrational numbers can and do inform the world well outside of textbooks and math tests, making it possible for, say, electromagnetic radiation to share information across a parallel world or, in earlier parlance, the ether.

“All electronic communication is made up of waves, sines and cosines, that are defined and evaluated using pi,” said Alan Tucker, Toll Distinguished Teaching Professor in the Department of Applied Mathematics and Statistics at Stony Brook University. The circuits that send and receive information are “based on calculations using pi.”

Scientists can receive signals from the Voyager spacecraft, launched in 1977 and now over seven billion miles away, thanks to the ability to tune a circuit using math that relies on pi and numerous mathematical formulas where the sensitivity to the signal is infinite.

The signal from the spacecraft, which is over 16 years older than the average-aged person on the planet, takes about 10 hours to travel back and forth.

“Think of 1/x, where x goes to 0,” explained Tucker. “Scientists have taken that infinity to be an infinite multiplier of weak signals that can be understood.”

Closer to Earth, the internet, radio waves and TV, among myriad other electronic devices, all use generated and decoded calculations using pi.

“All space has an unseen mathematical existence that nobody can see,” said Tucker. “These are heavily based on calculations involving pi.”

Properties of nature

Constants reflect the realities of the world. They have “a property that is fundamental and absolute and that no one could change,” said Steve Skiena, Distinguished Teaching Professor of Computer Science at Stony Brook University. “The reason people discovered these constants as being important is because they are relating things that arise in the world.”

While pi may be among the best known and most oft-discussed constant, it’s not alone in measuring and understanding the world and in helping scientists anticipate, calculate and understand their experiments.

Chemists, for example, design reactions using a standard unit of measure called the mole, which is also called Avogadro’s number for the Italian physicist Amedeo Avogadro.

The mole provides a way to balance equations, enabling chemists to determine exactly how much of each reactant to combine to get a specific amount of product.

This huge number, which is often expressed as 6.022 times 10 to the 23rd power, represents the number of atoms in 12 grams of carbon 12. The units can be electrons, ions, atoms or molecules.

“Without Avogadro’s number, it would be impossible to determine the ratio of particular reactants,” said Elliot Smith, a postdoctoral researcher at Cold Spring Harbor Laboratory who works in John Moses’s lab. “You could take an educated guess, but you wouldn’t get good results.”

Smith often uses millimoles, or 1/1000th of a mole, in the chemical reactions he does.

“If we know the millimoles of each reactant, we can calculate the expected yield,” said Smith. “Without that, you’re fumbling in the dark.”

Indeed, efficient chemical reactions make it possible to synthesize greater amounts of some of the pharmaceutical products that protect human health.

Moles, or millimoles, in a reaction also make it possible to question why a result deviated from expectations. 

Almost the speed of light

Physicists use numerous constants.

“In physics, it is inescapable that you will have to deal with some of the fundamental constants,” said Alan Calder, Professor of Physics and Astronomy at Stony Brook University.

When he models stellar explosions, he uses the speed of light and Newton’s gravitational constant, which relates the gravitational force between two objects to the product of their masses divided by the square of the distance between them.

The stars Calder studies are gas ball reactions that also involve constants.

Stars have thermonuclear reactions going on in them as they evolve. Calder uses reaction rates that depend on local conditions like temperature, but there are constants in these.

Calder’s favorite number is e, or Euler’s constant. This number, which is about 2.71828, is useful in calculating interest in a bank account as well as in understanding the width of successive layers in a snail shell among many other phenomena in nature.

Electron Ion Collider

The speed of light figures prominently in the development and calculations at Brookhaven National Laboratory as the lab prepares to build the unique Electron Ion Collider, which is expected to cost between $1.7 billion and $2.8 billion.

The EIC, which will take about 10 years to construct, will collide a beam of electrons with a beam of ions to answer basic questions about the atomic nucleus.

“It’s one of the most exciting projects in the world,” said Daniel Marx, an accelerator physicist in the Electron Ion Collider accelerator design group at BNL.

At the EIC, physicists expect to propel the electrons, which are 2,000 times lighter than protons, extremely close to the speed of light. In fact, they will travel at 99.999999 (yes, that’s six nines after the decimal point) of the speed of light, which, by the way, is 186,282 miles per second. That means that light can circle the globe 7.48 times per second.

The EIC will increase the energy of ions to 99.999% of the speed of light. With only three nines after the decimal, the protons will be traveling at a slower enough speed that the designers of the collider will make the proton ring about 4 inches shorter over 2.4 miles to ensure that the protons and electrons arrive at exactly the same time.

The EIC will attempt to answer questions about the mass and spin of the nucleus. They hope to understand what happens with dense systems of gluons. By accelerating nuclei or protons to higher energies, they will get more gluons and will look for evidence of gluon saturation.

“The speed of light is absolutely fundamental to everything we do,” said Marx because it is fundamental to relativity and the particles in the accelerator are relativistic.

As for constants, Marx suggested that its value might look like a row of random numbers, but if those numbers are a bit different, that could “revolutionize” an understanding of physics.

In addition to a detailed understanding of atomic nuclei, the EIC could also lead to new technologies.

When JJ Thomson discovered the electron, he toasted it by saying, “may it never be of use to anyone.” That, however, is far from the case, as the electron is at the heart of electronics.

As for pi, Marx, like many of his STEM colleagues, appreciates this constant.

“Once you look at the mathematical statement of pi, and how it relates in various ways to other quantities in math and physics, it deepens your appreciation of how beautiful the whole universe is,” Marx said.

More than 250 students from 65 Suffolk County schools entered science projects in the 2024 Elementary School Science Fair hosted by the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory on June 8.

Students used the scientific method to explore all kinds of questions about their favorite things and the world around them. The annual fair organized by Brookhaven Lab’s Office of Educational Programs celebrated and showcased all projects submitted, ranging from finding the best detangler for Barbie dolls’ hair to using a hand-crafted wind tunnel to test wing shapes for the best lift.

“Our judges enjoyed reading through the projects and were impressed with questions, ideas, and designs,” Amanda Horn, a Brookhaven Lab administrator who coordinated the science fair, said before announcing the winning projects. “We certainly have some future scientists and engineers here today.”

Local teachers and Lab staff volunteered as judges to pick the top spots and honorable mentions for each grade level, from kindergarten to sixth grade. The competition also included a Judges’ Choice award for creative questions.

Students who earned first place in their grade level received medals and ribbons, along with banners to hang at their school to recognize the achievement. All participants received a ribbon in recognition of having won their grade level competition at their school.

Science Fair awards

The following students earned first place in their grade level: 

◆ Kindergartener Eden Campbell, Ocean Avenue Elementary School in Northport for “Tasting Color.” Eden’s project explored whether the color of food affects its taste. What was her favorite part of the experiment? “Eating the jellybeans,” she said.

◆ First grader Milan Patel, Ocean Avenue Elementary School in Northport for “How Does the Direction of a House Affect the Amount of Heat Absorbed from the Sun?” 

◆ Second grader Advika Arun, Bretton Woods Elementary School in Hauppauge, for “Slower and Steadier the Safer it Will Be.” For her experiment, Advika crafted small parachutes to test which materials fostered a slow and safe landing. She found that nylon worked the best. “I liked the part where we dropped them and we saw the speed they went,” she said. She added of her first-place win, “I’m really excited!”

◆ Third grader Isla Cone, Love of Learning Montessori School in Centerport, for “The Impact of pH on Boba.” Isla tested food-friendly liquids with different pH levels to find out which could form boba, the round and chewy pearls found in bubble tea. She confirmed that boba spheres occurred in liquids with a pH between 4 and 10. “I wanted to do a project that was related to food,” she said. “My favorite part was getting to eat all the stuff!”

◆ Fourth grader Jude Roseto, Cutchogue East Elementary School in Cutchogue, for “Rise of the Machines: AI vs. Human Creativity Writing.” 

◆ Fifth grader Luke Dinsman, Northport Middle School in Northport, for “Maximizing Moisture — Nature Knows Best.” In his project, Dinsman found that homemade, natural moisturizers worked better than store-bought lotions at treating the dry skin he experiences as a swimmer. A shea body butter with beeswax turned out to be the best option. Making the lotions and testing them was the best part of the process, Luke said. He added, “It’s just a really cool project.”

◆ Sixth grader Owen Stone, East Quogue Elementary in East Quogue for “Can Common Foods Help Grow Potatoes?” 

Judges’ choice

Kindergarten: John Jantzen, Sunrise Drive Elementary School in Sayville

First Grade: Julianna Zick, West Middle Island Elementary School in Middle Island

Second Grade: Timothy Donoghue, Riley Avenue Elementary School in Calverton

Third Grade: Charlotte Sheahan, Pulaski Road School in East Northport

Fourth Grade: Dominick Padolecchia, Sunrise Drive Elementary School in Sayville

Fifth Grade: Isabella Maharlouei, Raynor Country Day School in Speonk

Sixth Grade: Zoe Wood, Northport Middle School in Northport

Honorable mentions

Kindergarten: Michael McCarthy, Pines Elementary School in Smithtown; Scarlett Luna, Hampton Bays Elementary School in Hampton Bays; Autumn Vlacci, Riley Avenue Elementary School in Calverton

First Grade: Tyler Paino, Bretton Woods Elementary School in Hauppauge; Logan Pierre, Brookhaven Elementary School in Brookhaven; Nora Boecherer, Edna Louise Spear Elementary School in Port Jefferson

Second Grade: Charlotte Tholl, Forest Brook Elementary School; Gabi Opisso, Cutchogue East Elementary School in Cutchogue; Matthew Ingram, Ocean Avenue Elementary School in Northport; Erios Pikramenos, Frank J. Carasiti Elementary School in Rocky Point; Maya Salman, Edna Louise Spear Elementary School in Port Jefferson

Third Grade: Emma Puccio Edelman, Hiawatha Elementary School in Lake Ronkonkoma; Vincent Calvanese, Pines Elementary School in Smithtown; Kaylee Krawchuck, Ridge Elementary School in Ridge; Isabella Guldi, Joseph A. Edgar Intermediate School in Rocky Point

Fourth Grade: Juliam Gianmugnai, Ridge Elementary School in Ridge; Joseph Frederick, Lincoln Avenue Elementary School in Sayville; Gabriel Affatato, Pulaski Road School East Northport; Levi Beaver, Raynor Country Day School in Speonk

Fifth Grade: Evangeline Jamros, Edna Louise Spear Elementary in Port Jefferson; Colette Breig, RJO Intermediate School in Kings Park; Riona Mittal, Bretton Woods Elementary School in Hauppauge

Sixth Grade: Eamon Ryan, Lindenhurst Middle School in Lindenhurst; Michael Mineo, Silas Wood 6th Grade Center in Huntington Station; Alex Uihlein, Montauk Public School in Montauk.

Science Fair Expo

While their projects were on display, students and their families browsed a Science Fair Expo that featured up-close, hands-on demonstrations guided by Brookhaven Lab staff, interns, and volunteers.

The activities connected to science concepts and tools found across the Lab, from magnets and particle accelerators to electron microscopy and conductors. Students peered through microscopes, learned how fuel cells and solar panels work, became junior beamline operators, and more.

 

F. William Studier, senior scientist emeritus at Brookhaven National Laboratory, in 2004. (Roger Stoutenburgh/Brookhaven National Laboratory)

Prestigious honor recognizes development of widely used protein- and RNA-production platform

F. William Studier, a senior biophysicist emeritus at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, has won the 2024 Richard N. Merkin Prize in Biomedical Technology [https://merkinprize.org/] for his development in the 1980s of an efficient, scalable method of producing RNA and proteins in the laboratory. His “T7 expression” technology can be used to make large quantities of nearly any RNA or protein and has been for decades, and continues to be, a mainstay of biomedical research and pharmaceutical production. Studier’s approach has been used to produce numerous therapeutics, diagnostics, and vaccines — including the COVID-19 mRNA vaccines credited with extending millions of lives in recent years [see: https://www.bnl.gov/newsroom/news.php?a=218806].

“F. William Studier’s brilliant work on the T7 system transformed biomedicine, saving millions of lives globally and improving the chances for further research that will change healthcare delivery,” said Dr. Richard Merkin, CEO and founder of Heritage Provider Network, one of the country’s largest physician-owned integrated health care systems. “His work exemplifies why I created this prize initiative that honors and showcases amazing innovators like Bill. I’m honored to be celebrating his remarkable achievements.”

The Merkin Prize, inaugurated in 2023, recognizes novel technologies that have improved human health. It carries a $400,000 cash award and is administered by the Broad Institute of MIT and Harvard, one of the world’s leading biomedical research institutes. All nominations for the 2024 Merkin Prize were evaluated by a selection committee composed of nine scientific leaders from academia and industry in the U.S. and Europe. Studier will be honored in a prize ceremony held on Sept. 17, 2024.

“The T7 system has been influential in biomedicine and has had important clinical implications for many years, but Bill Studier’s contribution to the field has really not been as celebrated as it ought to be,” said Harold Varmus, chair of the Merkin Prize selection committee. Varmus is also the Lewis Thomas University Professor at Weill Cornell Medicine, a senior associate at the New York Genome Center, and a recipient of the Nobel Prize in Physiology or Medicine for his work on the origins of cancer.

“Bill Studier’s development of T7 phage RNA polymerase for use in preparing RNA templates for multiple uses in research labs worldwide has been a truly revolutionary technical advance for the entire field of molecular biology,” said Joan Steitz, the Sterling Professor of Molecular Biophysics and Biochemistry at Yale University.

“Today, virtually every protein you want to produce in bacteria is made with a T7 system,” said Venki Ramakrishnan of the Medical Research Council Laboratory of Molecular Biology in Cambridge, England, and a winner of the 2009 Nobel Prize in Chemistry. “There’s not a single molecular biology or biochemistry lab I know that doesn’t use T7.”

“This award is a great honor for Bill Studier, recognizing the significance of the research and technology he pioneered. It reinforces how basic research — asking fundamental questions about the way the world and everything in it works — can result in important and unexpected advances that continue to have impact even decades after the initial discoveries,” said Brookhaven National Laboratory Director JoAnne Hewett. “It is fabulous to see Bill recognized for his lifetime of work and the critical role it has played in biotechnology and medicine.”

Studier’s T7 expression system uses the T7 promoter to “turn on” a gene of interest and the T7 RNA polymerase to transcribe that gene into messenger RNA (mRNA) so that E. coli ribosomes can use the RNA-encoded information to synthesize the desired protein. The system can also be used to make desired mRNAs as, for example, was done to make the COVID-19 mRNA vaccines. (Tiffany Bowman/Brookhaven National Laboratory)



Driven by basic biology

Studier grew up in Iowa and became fascinated with biophysics while an undergraduate at Yale University. Then, during graduate school at the California Institute of Technology in the early 1960s, he was introduced to bacteriophage T7, a virus that infects Escherichia coli bacteria. He wondered how T7 could so effectively and quickly take over E. coli, rapidly turning the bacterial cells into factories to produce more copies of itself. That question launched a career focused on the basic biology of T7.

“I’ve always been interested in solving problems,” Studier told Brookhaven National Laboratory in a 2011 profile [https://www.bnl.gov/newsroom/news.php?a=22241]. “The motivation for my research is not commercial application. My interest is in basic research.”

When he joined Brookhaven Lab in 1964, Studier focused on sequencing the genes of the T7 bacteriophage and understanding the function of each of its corresponding proteins during infection of E. coli. By 1984, he and Brookhaven colleague John Dunn successfully identified and cloned the protein within T7 that was responsible for rapidly copying T7 DNA into many corresponding strands of RNA [see: https://www.pnas.org/doi/10.1073/pnas.81.7.2035]. RNA is the molecule that instructs cells which amino acids to link up to build a particular protein — a critical step in protein synthesis and therefore the bacteriophage’s ability to infect E. coli.

Studier realized that the protein, called the T7 RNA polymerase, might be able to quickly and efficiently produce RNA from not only T7 DNA but also from the genes of any organism. If a gene was tagged with a special DNA sequence, known as the T7 promoter, then the T7 RNA polymerase would latch on and begin copying it. In 1986, Studier described this system in the Journal of Molecular Biology [https://pubmed.ncbi.nlm.nih.gov/3537305/].

“His work really illustrates that sometimes a remarkable technology can emerge not only from people trying to build technologies but from someone who is trying to use basic science to understand a fascinating biological phenomenon,” Varmus said.

Speeding science

Before Studier’s development of the T7 system, scientists who wanted to produce RNA or proteins generally inserted the genes into the natural E. coli genome and let the E. coli polymerase produce the corresponding RNA at the same time as the bacteria produced its own RNA and proteins. But the E. coli machinery was relatively slow, and scientists often ran into problems with the bacteria turning off their DNA-reading programs. T7 polymerase overcame both these problems: It was far faster, and E. coli had no built-in way to shut it off.

Within a few years, biologists had rapidly switched from their older methods to the T7 system for producing both RNA and proteins. When proteins are the desired end result, the E. coli molecular machinery for translating mRNA into proteins is used after the T7 system makes the RNA.

Studier continued studying the T7 polymerase and promoter, fine-tuning the system for years and publishing new improved versions as recently as 2018.

As of 2020, the T7 technology had been cited in more than 220,000 published studies, with 12,000 new studies using the technology published each year. There are more than 100 different versions of the T7 technology available commercially and 12 patents in Studier’s name related to the system.

Making medicine

The T7 technology has also had immediate impacts in industry, with more than 900 biotech and pharmaceutical companies licensing it to produce therapeutics and vaccines.

In 2020, scientists used the T7 platform to produce enough mRNA for COVID-19 vaccines to vaccinate millions of people in the U.S. and around the world. With the T7 promoter placed next to the gene for the COVID-19 spike protein, the T7 polymerase could generate many kilograms of mRNA — the active molecule in the vaccines — at a time.

“I think it’s an incredible testament to this technology that, decades after its development, it’s still the go-to method for RNA and protein production,” said John Shanklin, a distinguished biochemist and chair of the Biology Department at Brookhaven National Laboratory, who considered Studier a mentor for many years.

Those who know Studier say the Merkin Prize is well-deserved; Studier changed the course of biomedicine while working quietly on basic science questions that interested him.

“Almost no one has heard of Bill Studier because he is a quiet, modest guy who had a small lab,” said Ramakrishnan, who worked with Studier at Brookhaven in the 1980s. “But he is an absolutely fantastic role model of what a scientist should be like.”

“He has flown under the radar and hasn’t been recognized for his accomplishments very much,” Shanklin agreed. “This is a well-deserved honor.”

Studier was also committed to guaranteeing access to his technology. When Brookhaven was in the process of licensing and commercializing the T7 system shortly after its development, Studier ensured that it remained free for academic labs while charging commercial licensing fees to companies.

F. William Studier earned a bachelor’s degree in biophysics from Yale in 1958, followed by a Ph.D. from the California Institute of Technology in 1963. He worked as a postdoctoral fellow in the Department of Biochemistry at Stanford University School of Medicine, and then he joined Brookhaven Lab’s Biology Department in 1964 as an assistant biophysicist. Over the years, Studier rose through the department’s ranks, receiving tenure in 1971 and becoming a tenured senior biophysicist in 1974.

He served as chair of the Biology Department from 1990 to 1999 and then returned to research. He also served as an adjunct professor of biochemistry at Stony Brook University. His achievements have been recognized by election to the American Academy of Arts and Sciences in 1990, the National Academy of Sciences in 1992, and as a Fellow of the American Association for the Advancement of Science in 2007. He retired from the Lab in 2015 and was named senior scientist emeritus. In 2018, he was elected as a Fellow of the National Academy of Inventors. He holds 15 patents of which nine have been licensed and commercialized, including those on the T7 system.

Studier’s research at Brookhaven Lab was supported by the DOE Office of Science.


From left, Dmitri Denisov and Anatoly Frenkel (Brookhaven National Laboratory)

       Honor recognizes distinguished contributions to particle physics, chemistry, and materials science

The American Association for the Advancement of Science (AAAS) has recognized two staff scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory with the distinction of Fellow: Deputy Associate Laboratory Director for High Energy Physics Dmitri Denisov and Senior Chemist Anatoly Frenkel. Each year, AAAS bestows this honor on select members whose “efforts on behalf of the advancement of science, or its applications, are scientifically or socially distinguished.” Marking the 150th anniversary of the program, new fellows will be honored at a forum on September 21, 2024, at the National Building Museum in Washington, D.C.

AAAS is the world’s largest general scientific society and publisher of the Science family of journals. The tradition of naming Fellows stretches back to 1874. AAAS Fellows are a distinguished cadre of scientists, engineers, and innovators who have been recognized for their achievements across disciplines ranging from research, teaching, and technology, to administration in academia, industry, and government, to excellence in communicating and interpreting science to the public. Denisov and Frenkel are two of 502 scientists, engineers, and innovators spanning 24 scientific disciplines who are being recognized as members of the 2023 class of AAAS Fellows.

Dmitri Denisov

Denisov has been a long-time leader in particle physics, a field in which experiments often run for decades and a discovery can rewrite an entire science program — and therefore, it can be challenging to plan ahead. Denisov’s strategic guidance and many advisory roles have significantly shaped the future of particle physics in the U.S. and around the world.

He was recognized by AAAS for “distinguished contributions to particle physics through experiments at high energy colliders, and for guidance of the field through numerous management and advisory roles.”

“Research in particle physics advances our understanding of the universe at every level, from its smallest particles like quarks and leptons to its largest objects like galaxies,” Denisov said. “My experience leading institutions and experiments that help uncover these mysteries has been deeply rewarding. In addition to developing the unique facilities, accelerators, detectors, and computational techniques that enable this research, I’ve had the pleasure to collaborate with many international partners — and those team efforts are a critical component of the field’s success. I am flattered to be recognized with AAAS fellowship and looking forward to continuing my contributions to the particle physics community and AAAS.”

Currently overseeing Brookhaven’s world-leading high energy physics program as a deputy associate laboratory director, Denisov is responsible for the Lab’s strategic plan for exploring the universe at its smallest and largest scales. Central to the program is close cooperation with other U.S. laboratories, the international particle physics community, and funding agencies. By balancing those complex collaborations with available funding and international priorities set forth by the High Energy Physics Advisory Panel’s P5 report, Denisov ensures Brookhaven contributes its expertise and cutting-edge capabilities to the world’s most pressing particle physics questions in the most valuable ways.

Under Denisov’s leadership, Brookhaven Lab continues the important role as the U.S. host laboratory for the ATLAS experiment at CERN’s Large Hadron Collider (LHC), the world’s highest energy particle accelerator. The Lab participates in many areas of the ATLAS experiment, such as construction, project management, data storage and distribution, and experiment operations. Brookhaven is leading the U.S. contribution to a major upgrade to the ATLAS detector and construction of superconducting magnets in preparation for the LHC’s high-luminosity upgrade.

Denisov also oversees Brookhaven’s important roles in the upcoming Deep Underground Neutrino Experiment (DUNE) based at DOE’s Fermi National Accelerator Laboratory (Fermilab) and the Sanford Underground Research Facility, from design and construction to operations and analyses. DUNE scientists will search for new subatomic phenomena that could transform our understanding of neutrinos.

Denisov provides crucial support for other international experiments that the Lab’s high energy physics program actively participates in. These include the Belle II experiment at Japan’s SuperKEKB particle collider, for which Brookhaven provides critical computing and software, and the Rubin Observatory that is currently under construction in Chile. Once the Rubin Observatory begins capturing the data from the cosmos, physicists in Brookhaven’s high energy program will take on roles involving operations, scientific analysis, and computing.

At home at Brookhaven, Denisov oversees the Physics Department’s contributions toward a new collaborative effort between DOE and NASA that aims to land and operate a radio telescope on the lunar far side. Called LuSEE-Night, the project marks the first step towards exploring the Dark Ages of the universe, an early era of cosmological history that’s never been observed before. LuSEE-Night’s goal is to access lingering radio waves from the Dark Ages — a period starting about 380,000 years after the Big Bang — by operating in the unique environment of radio silence that the lunar far side offers.

All the while, scientists in the Lab’s high energy physics program under Denisov’s leadership are regularly pioneering new detector technologies, software, and computing solutions that could be used for future particle physics facilities and experiments — and other scientific efforts beyond the field of high energy physics.

“We are thrilled by Dmitri’s distinct recognition by the AAAS Fellowship and look forward to his continuing leadership of Brookhaven’s high energy physics program in the coming years following the 2023 P5 recommendations,” said Haiyan Gao, Brookhaven Lab’s associate laboratory director for nuclear and particle physics.

Before arriving at Brookhaven Lab, Denisov contributed 25 years to the high energy physics program at Fermilab. There, he was most prominently known for serving as the spokesperson for the DZero experiment, which used Fermilab’s Tevatron collider to study the interactions of protons and antiprotons. Denisov led the collaboration of scientists from 24 countries and oversaw publication of over 300 scientific papers written by the collaboration. Strong contributions from Brookhaven’s DZero group were critical for the success of the experiment.

Denisov earned his master’s degree in physics and engineering from the Moscow Institute of Physics and Technology in 1984 and a Ph.D. in particle physics from the Institute for High Energy Physics in Protvino in 1991. Before joining Fermilab in 1994, he was a staff scientist at the Institute for High Energy Physics and the SSC Laboratory.

Anatoly Frenkel

Anatoly Frenkel is a senior chemist in the Structure and Dynamics of Applied Nanomaterials group of Brookhaven Lab’s Chemistry Division and a professor in the Department of Materials Science and Chemical Engineering at Stony Brook University (SBU). He is also an affiliated faculty member in SBU’s Department of Chemistry and Institute for Advanced Computational Science.

He was recognized by AAAS for “distinguished contributions to the development and applications of in situ and operando synchrotron methods to solve a wide range of problems in chemistry and materials science.”

“It is an honor to have been nominated and elected to be an AAAS fellow,” Frenkel said. “This recognition reflects on more than two decades of work, going back to the time we first learned how to analyze nanostructures, then properties, and, finally, mechanisms in different types of functional nanomaterials.”

Frenkel’s research focuses on understanding the physicochemical properties of nanocatalysts — materials with features on the scale of billionths of a meter that can speed up or lower the energy requirements of chemical reactions. He’s particularly interested in understanding how materials’ physical structure and other properties relate to their functional performance, the mechanisms of catalytic reactions, and the mechanisms of work in electromechanical materials. He is a long-time user of the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science user facility at Brookhaven Lab that produces bright beams of X-rays and other forms of light that scientists use to learn about material properties.

Over the course of his career, Frenkel has developed new approaches for studying materials while they are operating under real-world conditions — known as in situ/operando research. In this work, he uses synchrotron techniques, such as X-ray absorption spectroscopy (XAS), X-ray imaging, and X-ray diffraction — all at NSLS-II — as well as advanced electron microscopy techniques at Brookhaven Lab’s Center for Functional Nanomaterials (CFN), another DOE Office of Science user facility. These studies provide detailed insight into materials’ performance and may guide the design of new materials with improved functionality for a wide range of applications. Frenkel has also advanced the use of machine learning and other forms of artificial intelligence to discover important material properties purely from their experimental X-ray signatures. Recent examples include studies to understand how catalysts change as they operate under harsh conditions and to discover ones that could potentially convert carbon dioxide (CO2) into useful products.

“Anatoly’s work to probe how catalysts convert waste products, such as the greenhouse gas CO2, into useful products is important to our efforts in clean energy research at Brookhaven, and it is well deserving of this award,” said John Gordon, chair of the Chemistry Division at Brookhaven Lab.

“Anatoly has been a valued member of our faculty,” said Dilip Gersappe, Stony Brook University Materials Science and Chemical Engineering department chair. “We are thrilled that his pioneering work in developing multi-modal methods for nanomaterial characterization, and the use of novel approaches to identifying spectroscopic signatures through machine learning, has been recognized by this honor.”

Frenkel earned a master’s degree in physics from St. Petersburg University in Russia in 1987 and his Ph.D. from Tel Aviv University in Israel in 1995. He pursued postdoctoral research at the University of Washington, Seattle, and then joined the University of Illinois at Urbana-Champaign as a research scientist from 1996 to 2001. He served on the faculty of Yeshiva University as a Physics Department chair from 2001 to 2016 and was a visiting scientist (sabbatical appointment) at Brookhaven Lab in 2009. He’s been a joint appointee at Brookhaven and Stony Brook University since 2016.

At Brookhaven, Frenkel has served as spokesperson and co-director of the Synchrotron Catalysis Consortium since 2004, and he’s arranged a series of courses on X-ray absorption spectroscopy held at Brookhaven Lab continuously since 2005 and at various institutions around the world. He is a fellow of the American Physical Society (2017) and has held a series of visiting professor fellowships at the Weizmann Institute of Science in Israel.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Amanda Liang with the winning bridge design. Photo by Kevin Coughlin/BNL

Amanda Liang, a ninth grader from Paul J. Gelinas Junior High School in Setauket, won first place at the 45th annual Bridge Building Competition hosted by the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory on April 3. 

The competition shows students in grades nine through 12 what it’s like to be an engineer as they attempt to design a strong bridge out of only basswood and glue with a set of challenging specifications in mind. Their structures were put to the test under a crushing machine that slowly added more and more weight from above until the bridges broke or bent more than one inch.

The event is organized by Brookhaven Lab’s Office of Educational Programs (OEP) to advance its mission to cultivate the next generation of STEM professionals.

Julia Pincott won second place for her bridge design. Photo courtesy of John Glenn High School

“I want you to imagine your future selves as professional engineers and you’re contributing something important to society,” Bernadette Uzzi, OEP’s manager for K-12 programs told students at the start of the competition. “Perhaps you’re designing a bridge, and you have to continually refine the structure to adapt to our ever-changing world, or maybe you’re here at Brookhaven involved in constructing our new Electron-Ion Collider, which is a ground-breaking machine that will unravel the mysteries of nature’s strongest force. Regardless of your future career plans, today you are engineering students and you’re part of Brookhaven’s journey.”

Uzzi also reflected on the recent bridge collapse in Baltimore: “I’m reminded why it’s so important to give students real-world, relevant experiential learning experiences like this event.”

This year, students from 14 schools around Long Island submitted 240 bridges — 193 of which met all qualifications for testing such as using a symmetrical design and weighing under 25 grams.

Bridges are ranked based on efficiency scores that are calculated from the load the bridge supports divided by the mass of the bridge — all in grams.

Liang’s design earned the top spot with an efficiency of 3,441.43.

“I looked at a bunch of old national bridges and I took a lot of inspiration from them,” Liang said, adding later, “I was really excited especially because it was my first year. I wasn’t sure how it was going to go. I didn’t expect this.”

Alexander Song and Daniel Liang, both juniors from Ward Melville High School in East Setauket, took second place and third place with efficiencies of 2,536.142 and 2,112.446, respectively.

The top two winners in Brookhaven’s regional competition qualified to compete in the International Bridge Contest on April 27 in New Philadelphia, Ohio.

Competition judges also issued an award for aesthetic bridge design to Julia Pincott, a senior at John Glenn High School in Elwood.

Some of the bridges entered into the competition. Photo from BNL

Throughout the bridge testing day, students had the chance to meet engineers from across the Lab, including longtime contest volunteers and Jordanna Kendrot, a safety engineer at the DOE-Brookhaven Site Office. Kendrot shared how in her own path to becoming a researcher, she found it was important to expand her studies beyond only engineering courses.

“It’s really about broadening your horizons and questioning the norms in engineering that will help us keep moving forward,” Kendrot said.

Amid all the bridge crushing, competition organizers tossed Brookhaven Lab and science trivia questions to students, who had a chance to win Lab merchandise for their correct answers.

Competitors tested their engineering skills in an additional STEM challenge to construct a miniature floating table. Students were also treated to a tour of the National Synchrotron Light Source II, a DOE Office of Science user facility that creates light beams 10 billion times brighter than the sun.

“This year’s bridge contest was a new experience for everyone,” STEM educator and event co-coordinator Theresa Grimaldi said. “It was the first time OEP organized this contest to be during school hours and it was such a pleasure to have the students here for the whole day, getting to know the engineers and touring the site.”

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Brookhaven Lab biologist Meng Xie and postdoctoral fellow Dimiru Tadesse with sorghum plants like those used in this study. Note that these plants are flowering, unlike those the scientists engineered to delay flowering indefinitely to maximize their accumulation of biomass. Photo by Kevin Coughlin/ BNL

By Daniel Dunaief

A traffic light turns green and a driver can make a left turn. Similarly, plants on one path can change direction when they receive a particular signal. In the case of the sorghum plant, the original direction involves growth. A series of signals, however, sends it on a different trajectory, enabling the plant to flower and reproduce, halting the growth cycle.

Brookhaven Lab biologist Meng Xie and postdoctoral fellow Dimiru Tadesse in the lab. Photo by Kevin Coughlin/ BNL

Understanding and altering this process could allow the plant to grow for a longer period of time. Additional growth increases the biomass of this important energy crop, making each of these hearty plants, which can survive in semiarid regions and can tolerate relatively high temperatures, more productive when they are converted into biomass in the form of ethanol, which is added to gasoline.

Recently, Brookhaven National Laboratory biologist Meng Xie teamed up with Million Tadege, Professor in the Department of Plant and Soil Science at Oklahoma State University, among others, to find genes and the mechanism that controls flowering in sorghum.

Plants that produce more biomass have a more developed root system, which can sequester more carbon and store it in the soil.

The researchers worked with a gene identified in other studies called SbGhd7 that extends the growth period when it is overexpressed.

Validating the importance of that gene, Xie and his colleagues were able to produce about three times the biomass of a sorghum plant compared to a control that flowered earlier and produced grain.

The plants they grew didn’t reach the upper limit of size and, so far, the risk of extensive growth  that might threaten the survival of the plant is unknown.

Researchers at Oklahoma State University conducted the genetic work, while Xie led the molecular mechanistic studies at BNL.

At OSU, the researchers used a transgenic sorghum plant to over express the flowering-control gene, which increased the protein it produced. These plants didn’t flower at all.

“This was a dramatic difference from what happens in rice plants when they overexpress their version of this same gene,” Xie explained in a statement. “In rice, overexpression of this gene delays flowering for eight to 20 days — not forever!”

In addition to examining the effect of changing the concentration of the protein produced, Xie also explored the way this protein recognized and bound to promoters of its targets to repress target expression.

Xie did “a lot of molecular studies to understand the underlying mechanism, which was pretty hard to perform in sorghum previously,” he said.

Xie worked with protoplasts, which are plant cells whose outer wall has been removed. He inserted a so-called plasmid, which is a small piece of DNA, into their growth medium, which the plants added to their DNA.

The cells can survive in a special incubation/ growth medium, enabling the protoplasts to incorporate the plasmid.

Sorghum plant. Photo by Kevin Coughlin/ BNL

Xie attached a small protein to the gene so they could monitor the way it interacted in the plant. They also added antibodies that bound to this protein, which allowed them to cut out and observe the entire antibody-protein DNA complex to determine which genes were involved in this critical growth versus flowering signaling pathway.

The flowering repressor gene bound to numerous targets. 

Xie and his BNL colleagues found the regulator protein’s binding site, which is a short DNA sequence within the promoter for each target gene.

Conventional wisdom in the scientific community suggested this regulator protein would affect one activator gene. Through his molecular mechanistic studies, Xie uncovered the interaction with several genes.

“In our model, we found that [the signaling] is much more complicated,” he said. The plant looks like it can “bypass each [gene] to affect flowering.”

Regulation appears to have crosstalk and feedback loops, he explained.

The process of coaxing these plants to continue to grow provides a one-way genetic street, which prevents the plant from developing flowers and reproducing.

These altered plants would prevent any cross contamination with flowering plants, which would help scientists and, potentially down the road, farmers meet regulatory requirements to farm this source of biomass.

Ongoing efforts

The targets he found, which recognize the short sequence of DNA, also appears in many other flowering genes.

Xie said the group’s hypothesis is that this regulator in the form of this short sequence of DNA also may affect flowering genes in other plants, such as maize and rice.

Xie is continuing to work with researchers at OSU to study the function of the numerous targets in the flowering and growth processes. 

He hopes to develop easy ways to control flowering which might include spraying a chemical that blocks flowering and removing it to reactive reproduction. This system would be helpful in controlling cross contamination. He also would like to understand how environmental conditions affect sorghum, which is work he’s doing in the lab. Down the road, he might also use the gene editing tool CRISPR to induce expression at certain times.

Honing the technique to pursue this research took about four years to develop, while Xie and his students spent about a year searching for the molecular mechanisms involved.

Rough beginning

Xie departed from his post doctoral position at Oak Ridge National Laboratory in March of 2020, when he started working at BNL. That was when Covid altered people’s best-laid plans, as he couldn’t come to the lab to start conducting his research for about six months. 

Born in Shanxi province in China, Xie and his wife Jingdan Niu live in Yaphank and have a two-year old son, Felix Xie.

When he was growing up, Xie was interested in math, physics, chemistry and biology. As an undergraduate in Beijing, Xie started to learn more about biology and technology, which inspired him to enter this field.

Biotechnology “can change the world,” Xie said.

Winners in the 3D printed category: pictured from left, Jashmin Futch of TFCU; third place winner Stella Bond, Bridgehampton School; second place winner Landon Tully, Accompsett Middle School; first place winner Srihas Mandava, Accompsett Middle School; and Robert Caradonna of BNL Photo by Jessica Rotkiewicz/Brookhaven National Laboratory

A big blue shark, an array of pirate ships, and a propeller-driven water bottle were among student-made magnetic levitation vehicles that floated down the tracks at the 2024 Maglev Competition hosted by the U.S. Department of Energy’s Brookhaven National Laboratory in Upton on March 20.

Students from middle schools across Long Island became engineers at the annual contest, designing and refining their maglev creations to log their fastest travel time. A total of 150 students from 10 local middle schools including Accompsett Middle School and Great Hollow Middle School of Smithtown submitted vehicles in hopes of earning top spots in eight categories judging speed and appearance.

The competition is inspired by technology pioneered by two Brookhaven Lab researchers, the late Gordon Danby and James Powell, who invented and patented superconducting maglev — the suspension, guidance, and propulsion of vehicles by magnetic forces.

“The Maglev Contest is unique in the way it provides students with an open environment to tinker, tweak, and test their vehicle designs in order to achieve the best possible outcome,” said competition coordinator Jonathan Ullmann, a senior education programs representative for the Lab’s Office of Educational Programs. “This process is very similar to how the scientists and engineers work on big research projects here at Brookhaven Lab.”

During the awards ceremony, the students heard from Robert Caradonna, a federal project manager at the DOE-Brookhaven Site Office, about his role in overseeing large design and construction of scientific research facilities including the current project to construct the Electron-Ion Collider (EIC) — a new discovery machine that physicists will use to explore the building blocks of matter — and the previous effort to construct the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science user facility where interdisciplinary researchers explore materials.

Students use math, science, and technology principles to optimize the design of their vehicles. The competition day also brings out their creativity and resourcefulness on the fly: one student fixed their math homework to their vehicle to use as a sail on the contest’s wind-powered track; another student attempted to fill a disposable glove with air to propel their vehicle down a flat track after their original balloon broke.

“That’s what it’s all about — for them to troubleshoot and figure it out,” said David Driscoll, a technology teacher at Albert G. Prodell Middle School. “They’re learning to have patience, think through things, change things up, and make adjustments.”

Students who opted to compete in this year’s appearance categories went for unique and eye-catching designs that included a leek (the vegetable) used as a vehicle body, hand-painted artwork from a favorite show, and color-changing lights. A host of 3D-printed creations traveled down the tracks, too, including train cars, a racecar, and an intricate lizard.

This was the first year that the Bridgehampton School’s STEAM Team — a before-school club — entered 3D-printed vehicles into the competition after learning how to use 3D printers and a modeling program.

“We’ve been using MakerBot 3D printers and Tinkercad; the kids have been having a blast on it,” said Lou Liberatore, a fifth-grade teacher at Bridgehampton.

Mallory Dougherty, also a fifth-grade teacher at Bridgehampton, added: “We’re really excited to be in that category. They really picked up on it. They impressed us with how they were about to figure out how it all works.”

Congratulations to the following winners:

Speed categories

Self-propelled (balloon)

First place: Andrew Oliveri, Bay Shore Middle School; Second place: Ghaleb Rashid, Bay Shore Middle School; and Third place: Landon Wernersbach, Bay Shore Middle School

Self-propelled (other)

First place: Owen Huber, Bay Shore Middle School; Second place: Caleb Leichtman, Bay Shore Middle School; and Third place: Indigo O’Neill, Bay Shore Middle School

Electrified track

First place: Chase Harrison, Bay Shore Middle School; Second place: Jordan Patron, Bay Shore Middle School; and Third place: Ethan Rodriguez, Bay Shore Middle School

Wind power

First place: Jordyn Lusak, Albert G. Prodell Middle School; Second place: Brody Morgan, Great Hollow Middle School; and Third place: Alex Manessis, Accompsett Middle School

Gravity

First place: Jonah Maraglio, Albert G. Prodell Middle School; Second place: Eva Cabrera, Bay Shore Middle School; and Third place: Doris Lu, Great Neck South Middle School

Appearance categories

Futuristic

First place: Aylin Tucksonmez, Albert G. Prodell Middle School; Second place: Jeremy Schember, Great Hollow Middle School; and Third place: Alexander Radek, Great Hollow Middle School

Scale model

First place: Quentin Lennox, Marcus Chang, & Lucas Chang, Great Neck South Middle School; Second place: Owen Anderson, Albert G. Prodell Middle School; and Third place: Brendan D’Agostino, Berner Middle School

3D printed

First place: Srihas Mandava, Accompsett Middle School; Second place: Landon Tully, Accompsett Middle School; and Third place: Stella Bond, Bridgehampton School

From left, Jack Anderson, former deputy director for Operations, Rep. Nick LaLota and John Hill, deputy director for Science & Technology tour BNL facilities. Photo courtesy office of Rep. Nick LaLota

By Daniel Dunaief

With support from state political leaders and the federal government, Brookhaven National Laboratory is continuing to move forward with its ambitious plans to build the Electron-Ion Collider.

Designed to study strong forces inside the atom, the EIC is set to receive $97.9 million from the federal government as a part of a budget that passed last month.

In addition, the Department of Energy Under Secretary for Science and Innovation approved Critical Decision 3A, which gives the project the formal approval to purchase long-lead procurements such as equipment, services, and materials.

“Passing this milestone and getting these procurements underway will help us achieve our ultimate goal of efficiently delivering a unique high-energy, high-luminosity polarized beam electron-ion collider that will be one of the most challenging and exciting accelerator complexes every built,” EIC Project Director Jim Yeck said in a statement.

Buying materials and equipment for the accelerator, detector, and infrastructure before construction will help the team that includes a partnership with Thomas Jefferson National Accelerator Facility in Virginia adjust for any supply chain issues and work out technical details and challenges.

The government approval will allow for the purchase of about $90 million in superconducting wires and materials for making magnets, cryogenic equipment for superconducting accelerator devices, substations, new power supply and other specialized parts.

The funding for these purchases will come, in part, from the Inflation Reduction Act money awarded to the EIC in 2022 to stimulate economic development and through annual appropriations funding from the DOE Office of Science.

Applications 

Scientists expect the work at the accelerator, which will include a first of its kind 2.4 mile circumference particle collider, to have applications in a wide range of fields, from nuclear physics, to medicine, to energy and national defense.

The work could also help with the study of simulated space radiation that could protect future astronauts. The completion of the EIC could dovetail with upcoming National Aeronautics and Space Administration efforts to send astronauts to Mars in the 2030s.

The collider and the work that leads up to its construction, which is expected to cost between $1.7 billion and $2.8 billion and be completed in the next decade, will provide educational and workforce development opportunities to train experts in a range of fields.

Political support

In addition to government approval to purchase services and equipment from the 2022 Inflation Reduction Act, BNL also received funds earmarked for the EIC from the recent federal budget.

With bi-partisan support of politicians including Senate Majority Leader Chuck Schumer (D) and U.S. Rep. Nick LaLota (R-NY1), the recent budget includes $97.9 million for the collider, $95 million of which will support construction and $2.9 million for other projected costs.

“We appreciate the continued support of Congressman LaLota, Senator Schumer and the entire New York delegation for the U.S. Department of Energy’s Office of Science and Brookhaven National Laboratory,” Lab Director JoAnne Hewett explained in an email. “These funds will support staff working on the EIC project design and developing a baseline schedule and funding profile, allowing us to better plan the future transition of the Relativistic Heavy Ion Collider and its workforce to this new, world-class facility.”

In building the EIC, BNL staff will use infrastructure from RHIC. The majority of EIC accelerator components are designed to fit within the existing RHIC tunnel, and will reuse key infrastructure.

“It’s important that members of Congress use their positions to advocate for important projects and spending in their districts,” LaLota said in an interview. Though he’s a freshman Congressman who was elected in 2022, taking over the seat previously held by Lee Zeldin (R-NY1), LaLota appreciates the support Republican leadership provided during appropriations.

LaLota said procuring the funding “wasn’t easy” given the competitive nature of government spending.

LaLota, who plans to visit BNL every four or five months to receive updates, urges sustained federal government investment in the collider and infrastructure.

BNL provides a “vital role in high quality employment” for Long Islanders, he added.

Long Island will benefit from the EIC in the short term through construction jobs, infrastructure employment and the various applications of research on site to areas including military and commercial applications, the congressman added.

Through taxpayer funding, BNL helps ensure a “stronger military and economy,” LaLota said.

During his visits to the DOE lab, LaLota spoke with Hewett, whom he describes as a “steady hand” who serves as a “real conduit between the lab and Congress” advocating for the lab’s needs.

Solar cells

BNL conducts research in a range of fields, including Energy & Photon Sciences, Environment, Biology, Nuclear Science & Nonproliferation, Computational Sciences, Nuclear & Particle Science and Advanced Technology Research.

LaLota describes himself as an “all-of-the-above energy Republican,” who supports alternative resources, such as the ones BNL scientists are developing and enhancing.

Homeownership problem

Apart from BNL, LaLota addressed broader questions, including the challenge of homeownership for New York residents.

New York has the “dubious distinction of having the highest effective tax rate” when combining property, sales and income taxes, which has led to the highest out of state migration, LaLota said.

Without a better tax policy, New York will continue to hemorrhage people to places like the Carolinas and Florida, he predicted.

“Most of that starts in Albany,” LaLota said. “I would encourage my friends in Albany to figure that out and make life more affordable” by increasing state and local tax deductions.

As for the ability of Speaker of the House Mike Johnson (R-LA) to continue in a role some Republicans are prepared to challenge, LaLota suggested the speaker should play “every game like it’s his last.”

LaLota added that Johnson should “smartly move forward funding the government, as he has,” and “smartly move forward on funding of military aid overseas.”

From left, Juan Jimenez and Sanjaya Senanayake in front of CO2 and Methane Conversion Reactor Units in the Chemistry Division at Brookhaven National Laboratory. Photo by Kevin Coughlin/BNL

By Daniel Dunaief

If we had carbon dioxide glasses, we would see the gas everywhere, from the air we, our pets, and our farm animals exhale to the plumes propelled through the smokestacks of factories and the tail pipes of gas-powered cars.

Juan Jimenez. Photo by Kevin Coughlin/BNL

A waste product that scientists are trying to reduce and remove, carbon dioxide is not only a part of the photosynthesis that allows plants to convert light to energy, but it also can be a raw material to create usable and useful products.

Juan Jimenez, a postdoctoral researcher and Goldhaber Fellow at Brookhaven National Laboratory, has been working with carbon dioxide for the last 10 years, in his undergraduate work at CUNY City College of New York, for his PhD at the University of South Carolina and since he arrived at BNL in 2020. 

Jimenez contributed to a team led by engineers at the University of Cincinnati to create a way to improve the electrochemical conversion of this greenhouse gas into ethylene, which is an important ingredient in making plastics as well as in manufacturing textiles and other products.

University of Cincinnati Associate Professor Jingjie Wu recently published work in the journal Nature Chemical Engineering in which they used a modified copper catalyst to improve the electrochemical conversion of carbon dioxide into ethylene.

“I’m always looking out to collaborate with groups doing cutting edge research,” explained Jimenez, who spearheaded the research at the National Synchrotron Lightsource II. “Since the work on CO2 is a global concern we require a global team” to approach solutions.

Jimenez is fascinated with carbon dioxide in part because it is such a stable molecule, which makes reacting it with other elements to transform it into something useful energy intensive.

A modified copper catalyst helped convert more carbon dioxide, which breaks down into two primary carbon-based products through electrocatalysis, into ethylene, which has been called the “world’s most important chemical.”

“Our research offers essential insights into the divergence between ethylene and ethanol during electrochemical CO2 reduction and proposes a viable approach to directing selectivity toward ethylene,” UC graduate student Zhengyuan Li and lead author on the paper, said in a statement.

A previous graduate student of Wu, Li helped conduct some of the experiments at BNL.

This modified process increases the selective production of ethylene by 50 percent, Wu added.

The process of producing ethylene not only increases the production of ethylene, but it also provides a way to recycle carbon dioxide.

In a statement, Wu suggested this process could one day produce ethylene through green energy instead of fossil fuels.

Jimenez’s role

Scientists who want to use the high-tech equipment at the NSLS-II need to apply for time through a highly competitive process before experimental runs.

Jimenez led the proposal to conduct the research on site at the QAS and ISS beamlines.

Several of the elements involved in this reaction are expensive, including platinum, iridium, silver and gold, which makes them prohibitively expensive if they are used inefficiently. By using single atoms of the metal as the sites, these scientists achieved record high rates of reaction using the least possible amount of material.

The scientists at BNL were able to see the chemistry happening in real time, which validated the prediction for the state of the copper.

Jimenez’s first reaction to this discovery was excitement and the second was that “you can actually take a nap. Once you get the data you’re looking for, you can relax and you could shut your eyes.”

Working at NSLS-II, which is one of only three or four similar such facilities in the United States and one of only about a dozen in the world, inspires Jimenez, where he appreciates the opportunity to do “cutting edge” research.

“These experiments are only done a few times in the career of the average scientist,” Jimenez explained. “Having continuous access to cutting edge techniques inspires us to tackle bigger, more complicated problems.”

In the carbon dioxide research, the scientists drilled down on the subject, combining the scope of what could have been two or three publications into a single paper.

Indeed, Nature Chemical Engineering, which is an online only publication in the Nature family of scientific journals, just started providing scientific papers in the beginning of this year.

“Being part of the inaugural editions is exciting, specifically coming from a Chemical Engineering background” as this work was published along with some of the “leading scientists in the field,” said Jimenez.

New York state of mind

Born in Manhattan, Jimenez lived in Queens near Jamaica until he was 11. His family moved into Nassau County near the current site of the UBS Arena.

During his PhD at the University of South Carolina, Jimenez spent almost a year in Japan as a visiting doctoral student, where he learned x-ray absorption spectroscopy from one of the leading scientists in the field, Professor Kiyotaka Asakura. Based in Hokkaido University in Sapporo, Japan, Jimenez enjoyed touring much of the country.

A resident of Middle Island, Jimenez likes to run and swim. He enjoys cooking food from all over the world, including Spanish, Indian and Japanese cuisines.

As a scientist, he has the “unique luxury” of working with an international audience, he said. “If you are having lunch and you see someone eating amazing Indian food, you can talk to them, learn a bit about their culture, how they make their food, and then you can make it.”

As for his work, Jimenez explains that he is drawn to study carbon dioxide not just for the sake of science, but also because it creates a “pressing environmental need.”

He has also been looking more at methane, which is another potent greenhouse gas that is challenging to activate.

Ideally, at some point, he’d like to contribute to work that leads to processes that produce negative carbon dioxide use.

First-place teams advance to the National Science Bowl finals in April

Students from Hunter College Middle School and Ward Melville High School are headed to the U.S. Department of Energy’s (DOE) National Science Bowl this spring after earning the top spots in the Long Island Regional Middle School and High School Science Bowl competitions hosted by DOE’s Brookhaven National Laboratory on Feb. 1 and 2.

These are repeat wins for both schools, who were named regional champions in the fast-paced question-and-answer academic tournament last year. The Science Bowl tests students’ split-second knowledge on a range of science disciplines including chemistry, biology, physics, mathematics, astronomy, and general, earth, and computer science.

“We love hosting the Science Bowl competitions and welcoming the top STEM students from our region,” said Amanda Horn, a Brookhaven Lab educator who coordinated the events. “We are always impressed by the level of competition for both competitions. It was especially exciting to welcome many additional students and new teams this year for our biggest Science Bowl ever. We couldn’t do it without our amazing volunteers!”

The first-place teams win an all-expense paid trip to the National Science Bowl where they will face teams from around the country, plus a trophy and banner to display at their schools. All prizes and giveaways are courtesy of the event’s sponsors, Brookhaven Science Associates and Teachers Federal Credit Union.

The National Science Bowl finals are scheduled to take place April 25-29 near Washington, D.C.

“I really do love this event and each and every year I’m just overwhelmed and amazed at how much you guys know,” Brookhaven Lab Director JoAnne Hewett, who addressed high schoolers before their competition kicked off on Feb. 2.

While this marked Hewett’s first Science Bowl at Brookhaven since joining the Lab last summer, she noted that she previously participated in DOE’s SLAC National Accelerator Laboratory’s regional competition each year since it began in 2010 and proudly donned last year’s t-shirt to prove it.

“It’s just wonderful the education that you’re getting, and more importantly, the interest in learning, because that’s the thing that will carry you though life, is if you never give up that interest in learning and being brave and going out and answering questions that you may or may not know the answer to,” Hewett said. Horn presented Hewett with Brookhaven’s 2024 Science Bowl t-shirt to welcome her to the Lab’s Science Bowl team.

Middle School Regional Champions: Hunter College Middle School (from left to right) Benjamin Muchnik, Andres Fischer, Camille Pimentel, Aria Kana, Hudson Reich. (David Rahner/Brookhaven National Laboratory)
Middle School Top Four

The Middle School competition hosted teams from Long Island and New York City, with 100 students representing 20 teams and 16 middle schools.

Hunter College Middle School earned the regional champion title for the third year in a year, with zero losses throughout the competition day.

“Last year, going to nationals really motivated me to keep going and study for regionals,” Hunter College co-captain Andres Fischer said, “I’m really glad that we got to make here and do well. I’m proud of the rest of us who weren’t here last year—I think we make a really good team.”

Lots of preparation, plus a supportive team, helped secure the win, according to co-captain Camille Pimentel.

“We studied a lot, so we read lots of books and stuff—it was a lot of work,” Pimentel said. “We also meet weekly to practice.”

The team will again study hard for nationals, where they will have another chance to compete and enjoy its famous free soft-serve ice cream machine.

1st Place: Hunter College Middle School — Andres Fischer, Camille Pimentel, Hudson Reich, Aria Kana. Benjamin Muchnik

2nd Place: Great Neck South Middle School — Aaron Son, Eric Zhuang, Andy Zhuang, Jayden Jiang, Michael Sun

3rd Place: Paul J. Gelinas Junior High School — Valentina Trajkovic, Aydin Erdonmez, Tony Xu, Terrence Wang, Victoria Chen

4th Place: NYC Lab Middle School for Collaborative Studies – Ameena Elshaar, Ryan Casey, Qi Lin Wu, Nikki Perlman, Ayden Jiang

Middle School Regional Champions: Hunter College Middle School (from left to right) Benjamin Muchnik, Andres Fischer, Camille Pimentel, Aria Kana, Hudson Reich. (David Rahner/Brookhaven National Laboratory)
High School Top Four

This year’s high school Science Bowl shaped up to be the largest ever hosted by Brookhaven Lab with 30 teams and 150 students.

“We were fortunate to kind of have the stars aligned with our team composition,” Ward Melville captain Michael Melikyan said. The team had members who specialized in two science subjects at once,

“I’d like to thank our coach, he’s been absolutely amazing, and this has been a phenomenal thing,” Melikyan added. “We’re grateful to Brookhaven Lab for hosting this.”

1st Place: Ward Melville High School — Rithik Sogal, Harry Gao, Anna Xing, Michael Melikyan, Sean Skinner

2nd Place: Great Neck South High School — Brandon Kim, Erin Wong, Laura Zhang, Luke Huang, Allen Vee

3rd Place: Half Hollow Hills High School East — Aidan Joseph, Stasya Selizhuk, Rishi Aravind, Jack Goldfried, Alexandra Lerner

4th Place: William Floyd High School — Alice Chen, Anjel Suarez, Jason Alexopoulos, Joshua Schultzer, Zariel Macchia

STEM Challenge, Expo, and Tour

The science fun didn’t stop throughout the competition days—with a STEM Expo tour, and science challenge organized by the Lab’s Office of Educational Programs. 

Staff and students from across Brookhaven Lab’s departments offered hands-on science demonstrations that included a look at how particles are kept in a circular path in accelerators, a cloud chamber that revealed charged particle tracks, an overview of medical isotopes, machine learning techniques, and more.

Teams that did not advance to the double elimination rounds enjoyed a tour of the National Synchrotron Light Source II—a DOE Office of Science user facility that creates light beams 10 billion times bright than the sun, directing them towards specialized beamlines that reveal material structures and chemical changes.

Students also joined a timed STEM Challenge in which they solved tricky science and math puzzles to break several locks on boxes filled with treats.

Middle School STEM Challenge winners: 1st place: Stimson Middle School Team 1, 2nd place: Sayville Middle School, 3rd place: R.C. Murphy Junior High School Team 1

High School STEM Challenge winners: 1st place: Jericho Senior High School, 2nd place: Plainedge Senior High School, 3rd place: Bellport High School

An Introduction to a National Lab

The regional Science Bowl is one of many ways Brookhaven Lab introduces students to its science goals, researchers, facilities, and learning opportunities each year—in hopes that they will return to the national lab system one day as the next generation of scientists.

“We really need an energetic new generation workforce to come to Brookhaven and bring us all the talent that you have and all your inquisitiveness—that’s what we need in science, inquisitiveness,” Hewett said.

At the start of both competition days Gary Olson, deputy site manager at the Brookhaven Site Office, shared an overview of Brookhaven’s world-class science tools, discoveries, and research.

“This could be the start of a STEM journey for you,” Olson said, adding that there are also training opportunities available for teachers.

On Feb. 1, middle schoolers heard from Brookhaven Lab physicist Mary Bishai about her own STEM journey. Bishai is a co-spokesperson for the Deep Underground Neutrino Experiment (DUNE)—an experimented based at DOE’s Fermi National Accelerator Laboratory that will send intense beams of neutrinos through 800 miles of Earth’s crust to capture signals that may reveal neutrino characteristics. Bishai shared her career path in particle physics and the Lab’s work, past and present, to better understand neutrinos—ghostlike particles that travel at nearly the speed of light.

Students also met Lab science and support staff from across departments, retirees, and former Science Bowl competitors who served as volunteers—many of whom return year after year. Approximately 90 volunteers joined the two competition days in roles as judges, scorekeepers, and support.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.