Tags Posts tagged with "Power of 3"

Power of 3

Ijeoma Opara. Photo by Emmanuel Igbokwe of Emman Photography

By Daniel Dunaief

The daughter of Nigerian immigrants, Ijeoma Opara was born in Jersey City, New Jersey. Her first name means “safe journey” in Igbo, the language of Nigeria, and is something people say when they wish each other a good trip.

For Opara, her first name has proven prophetic, as this social worker is determined to help youth in Paterson make a safe journey through the challenges of substance abuse and mental health issues.

Recently, Opara became the first social worker to receive a $1.84 million Early Independence Award from the National Institutes of Health.

Apart from her unusual scientific background in a field dominated by award recipients who work in the natural sciences, like biochemistry and physics, Opara also stands out for her background.

Ijeoma Opara. Photo by Emmanuel Igbokwe of Emman Photography

“At the National Institutes of Health, there’s been a lot of discussion about how black scientists don’t get as much funding as [their] white counterparts,” Opara said. Black scientists don’t often receive early competitive grants.

Michelle Ballan, Associate Dean for Research in the School of Social Welfare at Stony Brook University, recruited Opara. She appreciated Opara’s “grit and tenacity.”

Ballan encouraged Opara to apply for the Early Intervention Award. With Ballan in her corner, Opara put that determination to work.

Ballan described how readily Opara responded to guidance.

“She not only accepted constructive feedback, she built upon it,” Ballan said.

When Opara applied for the award, she suspected she had little chance of receiving it. “Someone like me, who went to a state school in Montclair, New Jersey” writing about urban, black and hispanic youth has never receiving this kind of funding support, she said.

Opara received a score in March that she didn’t understand. She sent her score to her two mentors, Ballan and director of the REIDS program at Yale Dr. Trace Kershaw, and asked what it meant. Dr. Kershaw said it was almost a perfect score and told her she would likely receive the grant.

In July, she received an email congratulating her on her selection.

“I started screaming,” Opara said. She told her close friends and colleagues, but she couldn’t share the news on social media until the NIH press release came out in October.

She was so excited about the opportunity that she celebrated with a large order of food and ate herself into oblivion that first weekend. Her indulgent feast included Oreo cheesecake from The Cheesecake Factory and chicken and waffles from her favorite brunch place.

“I got so sick,” Opara laughed.

While Opara was thrilled that the award came, she felt another emotion mixed in with her elation. She said part of her felt guilty because she and other black researchers would like to see more representation in these awards and grant mechanisms.

Opara has appreciated the support she has received from other scientists.

“So many black colleagues, even people I didn’t know, saw this as a win not just for me but for all of us,” Opara said. Other graduate students and postdocs have reached out to her since the press release came out, asking for advice on applying for high reward and high risk awards and other NIH grants.

Opara is grateful for the confidence and support from Ballan.

Indeed, Ballan believes Opara is a “role model for all women, especially women of color in research intensive fields.”

When Opara interviewed at Stony Brook, Ballan told her that she “wanted to make sure you are very successful.”

Even early in her tenure at Stony Brook, which will start with extensive work in Paterson, New Jersey, Opara feels Ballan has “lived up to that promise.”

At an Oct. 19 press conference announcing a new study to help youth in Paterson, New Jersey, from left, Paterson Mayor André Sayegh; Antoine Lovell; Director of Paterson Youth Services Bureau Christina Barnes Lee; Ijeoma Opara; Program Coordinator at Municipal Alliance Prevention Program Tenee Joyner; Councilman Luis Velez and Chief Operating Officer of OASIS Paterson Jim Walsh. Photo from Ijeoma Opara

By Daniel Dunaief

Stony Brook University’s Ijeoma Opara, a new Assistant Professor in the School of Social Welfare, is starting her promising early scientific career by making history, becoming the first social worker to receive an Early Independence Award from the National Institutes of Health.

Opara, who hopes the award opens doors to other social workers and to other scientists of color, plans to use the funds to create a research study and intervention program that will make a difference.

Opara will study the link between mental heath and substance abuse in Paterson, New Jersey, where she conducted her PhD training while attending Montclair State University and where she hopes to help youth who may not attend school often enough to benefit from programs in academic settings. She also hopes to understand issues that youth may be facing that lead to substance abuse and poor mental health.

Opara plans to use the $1.84 million, five-year grant to conduct venue-based sampling, where she will search for at-risk youth and where she can tailor mental health and substance abuse questions that are relevant to the experience of the children she hopes to help.

“A lot of youth that needed these services, who had substance abuse and serious issues with mental health, weren’t going to school,” said Opara. “They weren’t in locations [where] a lot of researchers collect data.”

It didn’t make sense to collect the survey information from students in school when the people who need these services are not present in the system. “Meeting them where they are to figure out how to get them engaged” became a critical element to conceptualizing this study, said Opara. “There is no such thing as hard-to-reach populations.”

The NIH award Opara received encourages young researchers who recently completed their graduate work to engage in high-risk, high-return studies.

The risk in Opara’s work is that she won’t be able to recruit enough youth. She is, however, is convinced that her past experience in Paterson, a city filled with communities she’s grown to love, will enable her to find and reach out to targeted youth.

She’s currently in the first phase of her two-part effort; finding staff, figuring out ways to find people for her studies and designing questions relevant to them and their lives. In the second part of her research, she plans to provide mental health and substance abuse services.

Michelle Ballan, Associate Dean for Research in the School of Social Welfare, applauded Opara’s approach to her research.

“Venue-based sampling takes considerable work,” Ballan said. “It’s much easier to send a survey to schools.”

Indeed, this kind of effort “takes time, manpower and a tremendous understanding of how [Opara’s] inter-disciplinary focus is intertwined,” Ballan said. “She’s a family studies researcher, a social worker, and a public health researcher. Having those three areas of expertise, it’s not surprising that venue-based sampling was the one she chose.”

Opara is turning to some of the leaders in Paterson to advise her during this effort. She has created a community advisory board that represents youth and includes community leaders.

One of the challenges this year is that some of the sites where these youth might typically congregate may have fewer people during the pandemic. “It’s something we’re really focusing on in our first couple of meetings: where are the youth going?” Opara asked. She suggested sites could include basketball courts and parks. She is also exploring ways to recruit youth (between ages 13 and 21) online.

Opara is hoping to understand how the environment may impact people in the community as either a protective or a risk factor for substance abuse and mental health.

“What are some structures that could be serving as a protective buffer for kids who aren’t engaging in substance abuse and who don’t have negative mental health symptoms?” she asked.

On the other hand, she would like to identify those buildings or features that increase the trauma or risk and that might cause youth to mask their symptoms.

Once she finds these at-risk youths, Opara will ask about drug and alcohol use, lifetime drug use, their feelings about mental health and their levels of anxiety and depression. She also expects to ask about suicidal ideation.

When she understands the challenges and stressors, she hopes to create a culturally relevant, community based and neighborhood focused intervention. For this to work, she plans to recruit some of the people involved in the study to inform these solutions.

Opara is determined to make a difference for the city of Paterson.

“I don’t want to leave the community with nothing,” she said. “I don’t want to come in, collect data and leave. It’s important to create a sustainable change” that will “empower the community and empower youth.”

In Paterson, Opara recognizes the diversity of different neighborhoods, with people from different backgrounds, experiences and languages living in different blocks.

As a research assistant at Montclair, Opara said she encountered resistance at efforts to change neighborhoods, particularly when she was involved in programs to reduce the hours when liquor stores were open. She said youth mobilization, which included speaking about their experiences witnessing alcoholism in their neighborhoods, helped encourage the city council to pass the ordinance.

People came from other neighborhoods, bought alcohol, drank until they passed out and created a “really dangerous environment” as youth and teenagers were afraid to walk home past people who were drunk in the streets.

Opara appreciates the support of educators in the Paterson School District and the mayor, André Sayegh. She said her efforts may be particularly important in this environment, as New Jersey has cut funding from school-based youth services amid a declining budget caused by a slowing economy triggered by the pandemic.

If the program Opara creates works, she hopes other researchers can extend it to other communities.

 

By Daniel Dunaief

Noah Strycker once made a bet with a cruise ship full of passengers: if any of them spotted him without binoculars at any point during a 14-day trip, he would buy them all drinks. Even with that incentive, no one won a free drink, in large part because Strycker’s passion for birds means his binoculars are never out of arm’s reach.

A master’s candidate in Heather Lynch’s lab at Stony Brook University, Strycker, who has turned his world travels in search of his feathered friends into books, is working through the second year on Lynch’s specialty: penguins.

As a part of the team, Strycker is contributing to a population analysis of chinstrap penguins. Last year, he ventured to Antarctica with a field team for several months to count colonies of these six-to-ten pound birds.

The “piece de resistance” of that journey was a trip to Elephant Island, which is where, over 100 years earlier, Ernest Shackleton and his crew were marooned for several months before their rescue.

During Strycker’s journey to the famous but uninhabited island, the team counted the number of chinstrap and compared the population to the last known count, which occurred 50 years ago.

They determined that the chinstrap has had a significant decline, in some cases losing more than half its population in some areas. After a survey of Elephant Island and Low Island, the research team suggested that the decline in the chinstrap’s main source of food, krill, likely caused this reduction.

As for this year, Strycker had planned to travel back to Antarctica until the pandemic caused the cancellation of the trip. He is conducting a literature search to find previous chinstrap penguin counts. In the final part of his master’s program, he will help provide an updated assessment for the International Union for the Conservation of Nature.

While the IUCN provides information on threatened or endangered species, Strycker recognizes that the chinstrap won’t likely be on that list. “There are many millions of them,” he explained in a recent interview. “[But] they are declining. We are trying to give the IUCN updated information.”

Lynch’s lab will provide information for IUCN’s green list, which is for species that aren’t endangered. Species on this list might benefit from additional information that could help shape a future conservation strategy.

Strycker, who traveled to 41 countries in 2015 to count as many birds as possible in a year, appreciated and enjoyed his interaction with penguins. These flightless birds have no fear of humans so they waddled up to him and untied his shoelaces. They also fell asleep next to his boot and preened the side of his black wind pants.

Strycker landed in the world of penguins when he was working as a naturalist guide on a cruise ship and met Lynch, whose team was on the same boat.

Lynch was delighted with the chance to add Strycker to her team. “One of the most difficult things about our work is that there is such a steep learning curve for doing Antarctic field research,” Lynch explained in an email. “To grab someone like [Strycker] with so much Antarctic experience under his belt was just fantastic.”

Lynch appreciates how Strycker led the chinstrap survey work, not just in collecting the data but also in analyzing and writing it up. Strycker is “a terrific writer (and very fast, too) and his finesse with writing helped us get our research out for review faster than would normally be possible,” she said.

After seeing and hearing birds around the world, Strycker has an unusual favorite — the turkey vulture. When he was in high school in Eugene, Oregon, Strycker watched a nature documentary with David Attenborough in which the host put rotting meat out in a forest. In no time at all, turkey vultures discovered the feast. “That is the coolest thing I’ve seen,” Strycker recalls thinking.

Months later, he discovered a road kill deer while he was driving. He put the dead animal in the trunk of his ’88 Volvo Sedan and dumped it in his front yard, waiting to see if he could duplicate Attenborough’s feast. Fairly soon, 25 turkey vultures arrived and were sitting on the roof of his house. The neighbors didn’t complain because Strycker grew up on a dead end, 20 acres from the nearest house.

Fortunately for him, his parents didn’t seem too upset, either. “When they realized that their only child had become addicted to birds at a young age, they rolled their eyes and said that there’s much worse things that he could become addicted to,” Strycker recalled.

As for Long Island, Strycker said the area is currently in fall migration season. All the birds that nested in Canada are passing through New York on their way to spend the winter in warmer climates.

The migration patterns typically start with shorebirds in August, transition to warblers in September and to waterfowl, such as ducks and geese, which appear in October and November.

“This fall has also been exciting because several species of northern songbirds have ‘irrupted’ south, so we’re seeing unusually high numbers of them on Long Island,” said Strycker. This month, red-breasted nuthatches, purple finches, and pine siskins have appeared in large numbers, which doesn’t happen every year.

At this time of year, birds sometimes get lost outside their usual range. Last week, a painted redstart, which should be in Arizona, arrived in Floyd Bennett Field in Brooklyn.

“I was out there at dawn the next morning, along with half the birder population of New York, but unfortunately it had already moved on,” said Strycker.

People interested in tracking bird migration by radar can use the website birdcast.info, which can predict bird migration like the weather using radar data. Strycker advises interested birders to type “Stony Brook” into their local Bird Migration Alert tool.

Once he earns his degree, Strycker plans to build on and share his experiences.

He would like to write books, give presentations and “generally inspire the world about birds.”

Partha Mitra at the Shanghai Natural History Museum in China where he was giving a talk to children on how birds learn to sing.

By Daniel Dunaief

Throw a giant, twisted multi-colored ball of yarn on the floor, each strand of which contains several different colored parts. Now, imagine that the yarn, instead of being easy to grasp, has small, thin, short intertwined strings. It would be somewhere between difficult and impossible to tease apart each string.

Instead of holding the strings and looking at each one, you might want to construct a computer program that sorted through the pile.

That’s what Partha Mitra, a professor at Cold Spring Harbor Laboratory, is doing, although he has constructed an artificial intelligence program to look for different parts of neurons, such as axons, dendrites and soma, in high resolution images.

Partha Mitra at the Owl Cafe in Tokyo

Working with two dimensional images which form a three dimensional stock, he and a team of scientists have performed a process called semantic segmentation, in which they delineated all the different neuronal compartments in an image.

Scientists who design machine learning programs generally take two approaches: they either train the machine to learn from data or they tailor them based on prior knowledge. “There is a larger debate going on in the machine learning community,” Mitra said.

His effort attempts to take this puzzle to the next step, which hybridizes the earlier efforts, attempting to learn from the data with some prior knowledge structure built in. “We are moving away from the purely data driven” approach, he explained.

Mitra and his colleagues recently published a paper about their artificial intelligence-driven neuroanatomy work in the journal Nature Machine Intelligence.

For postmortem human brains, one challenge is that few whole-brain light microscopic data sets exist. For those that do exist, the amount of data is large enough to tax available resources.

Indeed, the total amount of storage to study one brain at light microscope resolution is one petabyte of data, which amounts to a million megapixel images.

“We need an automated method,” Mitra said. “We are on the threshold of where we are getting data a cellular resolution of the human brain. You need these techniques” for that discovery. Researchers are on the verge of getting more whole-brain data sets more routinely.

Mitra is interested in the meso-scale architecture, or the way groups of neurons are laid out in the brain. This is the scale at which species-typical structures are visible. Individual cells would show strong variation from one individual to another. At the mesoscale, however, researchers expect the same architecture in brains of different neurotypical individuals of the same species.

Trained as a physicist, Mitra likes the concreteness of the data and the fact that neuroanatomical structure is not as contingent on subtle experimental protocol differences.

He said behavioral and neural activity measurements can depend on how researchers set up their study and appreciates the way anatomy provides physical and architectural maps of brain cells.

The amount of data neuroanatomists have collected exceeds the ability of these specialists to interpret it, in part because of the reduction in cost of storing the information. In 1989, a human brain worth of light microscope data would have cost approximately the entire budget for the National Institutes of Health based on the expense of hard disk storage at the time. Today, Mitra can buy that much data storage every year with a small fraction of his NIH grant.

“There has been a very big change in our ability to store and digitize data,” he said. “What we don’t have is a million neuroanatomists looking at this. The data has exploded in a systematic way. We can’t [interpret and understand] it unaided by the computer.”

Mitra described the work as a “small technical piece of a larger enterprise,” as the group tries to address whether it’s possible to automate what a neuroanatomist does. Through this work, he hopes computers might discover common principals of the anatomy and construction of neurons in the brain.

While the algorithms and artificial intelligence will aid in the process, Mitra doesn’t expect the research to lead to a fully automated process. Rather, this work has the potential to accelerate the process of studying neuroanatomy.

Down the road, this kind of understanding could enable researchers and ultimately health care professionals to compare the architecture and circuitry of brains from people with various diseases or conditions with those of people who aren’t battling any neurological or cognitive issues.

“There’s real potential to looking at” the brains of people who have various challenges, Mitra said.

The paper in Nature Machine Intelligence reflected a couple of years of work that Mitra and others did in parallel with other research pursuits.

A resident of Midtown, Mitra, his wife Tatiana and their seven-year-old daughter have done considerable walking around the city during the pandemic.

The couple created a virtual exhibit for the New York Hall of Science in the Children’s Science Museum in which they described amazing brains. A figurative sculptor, Tatiana provided the artwork for the exhibition.

Mitra, who has been at Cold Spring Harbor Laboratory since 2003, said neuroanatomy has become increasingly popular over the last several years. He would like to enhance the ability of the artificial intelligence program in this field.

“I would like to eliminate the human proofreading,” he said. “We are still actively working on the methodology.”

Using topological methods, Mitra has also traced single neurons. He has published that work through a preprint in bioRxiv.

Christina Joselevitch

By Daniel Dunaief

Children knock on the door of 1313 Gluto Lane, a favorite house for Halloween. The resident, known for providing coveted confections at a rapid rate, immediately comes to the door, asks no questions about the Halloween costumes that might slow the process down and, with almost super-human speed, dumps candy into open bags and closes the door.

Word spreads about the house on Gluto Lane. Soon, the doorbell rings at a furious pace, with children eager to get the best candy of this difficult year and move on to the next house.

At first, with Trick or Treaters coming at a regular pace, the process works, but then, something goes awry, creepy music begins and the door doesn’t open.

That’s what’s happening in bipolar retinal cells in the goldfish Christina Joselevitch, a Postdoctoral Associate in the Neurobiology and Behavior Department at Stony Brook University’s Renaissance School of Medicine, is studying.

Known for their incredible speed at releasing neurotransmitters stored in circular vesicles, these bipolar retinal cells go through a depression in which they can’t release the neurotransmitter glutamate despite repeated signals for the release of the neurotransmitter.

“When you stimulate those cells very strongly, with two stimuli close apart, they suffer depression,” Joselevitch said. “Nobody knew why, if they’re able to signal constantly, they should suffer from depression.

To be sure, Joselevitch was working with extreme stimulation to probe the limits of the system and understand its underpinnings. This is not necessarily how these cells work. She said the researchers don’t know if retinal neurons experience synaptic depression under normal conditions and what function depression would have in bipolar cell physiology, in vision or in signaling processing in general.

In a recent publication in the Journal of Neuroscience, Joselevitch described at least two processes that contribute to this slowdown, which she describes as the rate limiting steps. The vesicles need to get to the membrane and they need to get ready to mature before they are release. Once vesicles move towards the cell membrane, they don’t immediately fuse and send their neurotransmitter into the synapse between cells. In some cells, such as the retinal photoreceptors and bipolar cells and in hair cells of the ear and lateral line in fish and in cells of the pineal gland, they gather in a ribbon close to calcium entry points.

Scientists have two theories of the ribbon function. The first is that it could act as a conveyor belt and speed up vesicle priming and delivery to the membrane and the second is that it could set a constant pace for vesicle delivery.

Joselevitch’s results suggest that the vesicles attach to the ribbon, where they go through a maturation process. These paired-pulse depressions don’t just occur in fish: they also affect the ability of mammalian cells to respond to a second stimulus.

These cellular phenomena show the limits of the system. Indeed, Joselevitch likened the process to a car that has reached its maximum speed. Pushing down harder or more on the accelerator won’t enable further acceleration.

The impact of this work is “broad,” she said. Studying this process could enable a stronger awareness of the steps in fast-acting processes in the nervous system. Such research could also provide an understanding about processes that go awry in various neurological diseases.

In an email, Professor Lonnie Wollmuth, who is the principal investigator for the Stony Brook lab in which Joselevitch works, described Joselevitch as “invaluable to our on-going efforts to study presynaptic mechanisms in the retina.” He wrote that she was an “outstanding and very careful scientist” who is “passionate” about her research and has served as a mentor for others in the lab.  Joselevitch has been working in Wollmuth’s lab for about 16 months.

Synaptic transmission is fundamental to all brain function, Wollmuth explained. “Changes in the strength of synaptic transmission underlie basic higher order brain functions like learning and memory,” the Stony Brook Professor wrote. Joselevitch’s experiments “reveal mechanisms of presynaptic vesicle release at all synapses and provide novel insights into the processing of vesicles at ribbon synapses.”

Based on Joselevitch’s work, Wollmuth’s lab has submitted a large National Institutes of Health grant to the National Eye Institute to study the molecular components of presynaptic release in the retina. She has also started to integrate her work with Alzheimer’s Disease, as proteins found in that disease disrupt the molecular machinery involved in presynaptic release.

A native of Brazil, Joselevitch has been at Stony Brook University since last July. She is on sabbatical with the University of São Paulo. She is hoping to participate in these studies in New York for a few more years.

She said she was “always a nerd,” and liked to study languages. With varying levels of proficiency, she speaks five languages: Portuguese, English, German, Dutch, and Spanish. At one point, she wanted to be an astronaut, but her mother Carmen dissuaded her from pursuing that interest.

Joselevitch had planned to return to Brazil to see her family in April, but had to cancel that plan because of a travel ban from the COVID-19 pandemic. She said her parents have been “good sports” and her father has bought a smartphone so he can talk through Skype or WhatsApp with his scientist daughter.

Joselevitch enjoys biking, hiking, singing and playing guitar and has been productive during the pandemic, writing papers and proposals. Stony Brook is nominating her work for consideration for the Warren Alpert Distinguished Scholar Award.

Wollmuth wrote that Joselevitch’s research forms “the foundation for future experiments to address the molecular components of vesicle dynamics.” Once they are identified, researchers can modulate and protect them in brain diseases.

Citing author James Joyce, Joselevitch explained her focus on neurons in the fish eye, which, she hopes, may lead to a broader understanding of neurology and disease. When asked why he wrote about Dublin when he could describe other places he’s visited, Joyce responded, “In the particular is contained the universal.”

Jeremy Borniger. Photo from CSHL

By Daniel Dunaief

Much as New Yorkers might want to minimize sleep, even during the pandemic when the need to be active and succeed is hampered by limited options, the body needs rest not only for concentration and focus, but also for the immune system.

Recently, Assistant Professor Jeremy Borniger, who joined Cold Spring Harbor Laboratory in January, collaborated with his former colleagues at Stanford University to publish research in the journal Science Advances that sheds light on the mechanism involved in this linkage.

Doctors and researchers had known for a long time that the release of glucocorticoids like cortisol, a stress hormone, can suppress the ability to fight off an infection. “That happens in people that are chronically stressed, even after surgery,” said Borniger in a recent interview.

A comprehensive understanding of the link between neuronal cells that are active during stress and a compromised immune system could help develop new ways to combat infections. The Stanford-led study provides evidence in a mouse model of the neuronal link between stress-induced insomnia and a weakened immune system.

Ideally, scientists would like to understand the neural pathways involved, which could help them design more targeted approaches for controlling the immune system using natural circuitry, according to Borniger.

Scientists could take similar approaches to the therapies involved with Parkinson’s, depression and obesity to increase or decrease the activity of the immune system in various disease states, instead of relying on a broader drug that hits other targets throughout the body.

In theory, by controlling these neurons, their gene products or their downstream partners, researchers could offer a way to fight off infections caused by stress.

While their studies didn’t look at how to gauge the effect of various types of sleep, such as napping or even higher or lower quality rest, their efforts suggest that sleep can help protect against stress-triggered infections.

The total amount and the structure of sleep play roles in this feedback loop. The variability among people makes any broad categorization about sleep needs difficult, as some people function well with six hours of sleep, while others need closer to eight or nine hours per day.

“Scientists are still working out how the brain keeps track of how much sleep it needs to rest and recover,” Borniger explained. “If we can figure this out, then, in principle, we could mess with the amount of sleep one needs without jeopardizing health.”

Researchers don’t know much about the circuitry controlling sleep amount. Borniger recognizes that the conclusions from this study are consistent with what doctors and parents have known for years, which is that sleep is important to overall health. The research also identifies a brain circuit that may be responsible for the way sleep buffers stress and immune responses.

People who have trouble sleeping because of elevated stress from an upcoming deadline often have a flare up of diseases they might have had under control previously, such as herpes viruses or psoriasis. These diseases opportunistically reemerge when the immune system is weakened.

The major finding in this study is not that the connection exists, but that the researchers, including principal investigator Luis de Lecea and first author Shi-Bin Li at Stanford, found the neural components.

While the studies of these linkages in the hypothalamus of mice were consistent across individuals, the same can’t be said for anecdotal and epidemiological evidence in humans, in part because the mice in the study were genetically identical.

For humans, age, sex, prior experiences, diet, family history and other factors make the linkage harder to track.

Even though researchers can’t control for as many variables with humans as they can with mice, however, several other studies have shown that stress promotes insomnia and poor immune function.

Borniger emphasized that he is the second author on the paper, behind Li and was involved in tracking the immune system component of the work.

Borniger and de Lecea are continuing to collaborate to see if drugs that target the insomnia neurons block the effect of stress on the immune system.

Now that he has moved into the refurbished Demerec Laboratory at CSHL, Borniger plans to work on projects to investigate how to use the nervous system to control anti-tumor immunity in models of breast and colorectal cancer, among others.

By understanding this process, Borniger can contribute to ways to manipulate these cells and the immune system to combat cancer and other inflammatory diseases.

Ideally, he’d like to be a part of collaborations that explore the combination of manipulating nervous and immune systems to combat cancer.

Borniger came to Cold Spring Harbor Laboratory because he was eager to collaborate with fellow scientists on site, including those who look at the immune system and metabolism. He appreciates how researchers at the famed research center look at how bodies and the brain respond to a growing tumor and would like to explore how tumors “influence nerves and then, reciprocally, how nerves influence tumor progression.”

The first few steps towards working at CSHL started in 2018, when Tobias Janowitz, Assistant Professor at CSHL, saw a paper Borniger published on breast cancer and asked him to give a 15-minute talk as a part of a young scholars symposium.

Borniger grew up in Washington, DC, attended college at Indiana University, went to graduate school at Ohio State and conducted his post-doctoral work at Stanford. Coming to CSHL brings him back to the East Coast.

Borniger and his fiancée Natalie Navarez, Associate Director of Faculty Diversity at Columbia University, met when they were in the same lab at Stanford. The couple had planned to get married this year. During the pandemic, they have put those plans on hold and may get married at City Hall.

Borniger and Navarez, who live on campus at Hooper House at CSHL, look forward to exploring opportunities to run, hike and swim on Long Island.

The new CSHL researcher appreciates the new opportunities on Long Island.

“This sort of collaborative atmosphere is what I would have in my Utopian dream,” Borniger said.

Taken around 1890, the photo above includes Lucas Cheadle’s great, great grandparents Martin Van Buren Cheadle and his wife Mary Vera with their children, from left, Overton, Ellis, Lurena and Thomas (who is Cheadle’s great grandfather).

By Daniel Dunaief

In joining Cold Spring Harbor Laboratory, Lucas Cheadle has continued his professional and personal journey far from his birthplace in Ada, Oklahoma.

Then again, his travels, which included graduate work in New Haven at Yale University and, most recently, post doctoral research in Boston at Harvard Medical School, wasn’t nearly as arduous or life threatening as the forced trip his ancestors had to take.

In 1837, Cheadle’s great, great, great grandparents had to travel from Pontotoc, Mississippi to southern Indian Territory, which is now near Tishomingo, Oklahoma as a part of the Trail of Tears. Native American tribes, including members of Cheadle’s family who are Chickasaw, cleared out of their lands to make way for Caucasian settlers.

Lucas Cheadle

Proud of his biracial heritage, which includes Chickasaw, Choctaw, and Cherokee lineages, Cheadle hopes to make his mark professionally in his studies of the development of the brain (see article on page B). At the same time, he hopes to explore ways to encourage other members of the Chickasaw tribe to enter the fields of science, technology, engineering and mathematics.

One of three sons of a mixed Chickasaw father named Robert Cheadle and a Caucasian mother named Cheryl, Cheadle would eventually like to provide the kind of internship opportunities through his own lab that he had during his high school years.

Indeed, during the summer of his junior year, Cheadle did a health care internship, in which he shadowed different types of physicians. He watched active surgeries and observed a psychiatrist during patient visits. After that summer, Cheadle thought he might become a psychiatrist as well because he knew he was interested in the study of the brain.

Down the road, Cheadle envisions having one or two people learn as interns in the lab during the summer. Longer term, Cheadle hopes other investigators might also pitch in to provide additional scientific opportunities for more Native American high school students.

Growing up in Oklahoma, Cheadle never felt he stood out as a member of the Chickasaw tribe or as a biracial student.

His father, Robert, was active with the tribe, serving as a tribal judge and then as a legislative attorney for the Chickasaw. His grandfather, Overton Martin Cheadle, was a legislator.

Through their commitment to the Chickasaw, Cheadle felt a similar responsibility to give back to the tribe. “It was an incredibly important part of their professional lives and it was a passion” to help others, he said. “I’m driven by that spirit.”

His father took people in who had nowhere to go. In a few cases, people he put up robbed the family. Even after they robbed him, Cheadle’s father took them back. When Robert Cheadle died earlier this year, one of the people whom Cheadle supported helped out with his funeral arrangements.

Driven to accomplish his mission as a scientist, Lucas Cheadle feels he can reach out to help high school students and others interested in science during his research journey.

“The better I can do, the more I can help,” Cheadle said. He hopes to “open doors for other people.”

With some of these efforts to encourage STEM participation among Native Americans, Cheadle hopes to collaborate with John Herrington, a Chickasaw astronaut who took a Native American flute into space during one of his missions. “It would be wonderful to discuss this” with Herrington, “if he has time for me,” said Cheadle.

In modern times, the Chickasaw tribe has made “good strides” in being successful. One challenge to that success, however, is that it has included assimilation.“The main goal is to hold onto the heritage as much as we can,” said Cheadle.

As for now, he plans to honor his heritage in his lab by “working hard to create a safe, respectful environment where people’s unique backgrounds and characteristics are supported and embraced. I try to create a space where diversity can thrive.”

Lucas Cheadle. Photo from CSHL

By Daniel Dunaief

One of the newest additions to Cold Spring Harbor Laboratory’s neuroscience program, Lucas Cheadle, who is an assistant professor, is exploring the early environmental factors at a molecular level that shape the neurological development of the mouse visual system.

While nature and nurture combine to produce the individuals each life form becomes, Cheadle is focused on the ways nurture, specifically, shapes the pathways in the brain that affect the development of sight.

Microglia are an unlikely player in this environmentally-triggered development, as doctors and researchers previously saw these cells primarily as participants in neurinflammation.

That is not the case anymore, with Cheadle and other scientists demonstrating over the past decade or so that microglia play important parts in the healthy brain. Cheadle, specifically, has demonstrated that these cells play a role in experience-dependent circuit development.

Indeed, the process of circuit refinement in the developing brain, which Cheadle describe as being among the “most complex structures in the known universe,” is akin to a room full of half-full boxes, which represent synaptic connections between neurons.

The brain begins with numerous little boxes that make the room difficult to navigate. As the brain consolidates the important items into a smaller number of larger boxes and removes the smaller boxes, the room becomes more manageable.

This is consistent with what Cheadle has seen during refinement. A smaller number of synapses become stronger and are maintained, while others are removed. This promotes the efficiency and precision of neural processing, he explained.

When the contents of some of those boxes disappear, however, the result can lead to neurodegenerative diseases like Alzheimer’s, in which a person struggles to find memories that may have been unwittingly cleared out.

Cheadle, who most recently was a post doctoral researcher at Harvard Medical School, is exploring the way microglia shape the connections between the eyes and the brain between when a mouse is born and when it reaches one month of age.

His work has shown that microglial cells are required for the sensory-dependent phase of visual circuit development. Disrupting signals between microglia and neurons affects synapse elimination, akin to removing the smaller boxes, which is important for circuit function.

Indeed, prior to work Cheadle and others have done in recent years with these cells in the brain, researchers thought microglia in the brain were quiescent, or inactive, after birth, except for their role in brain injury, disease pathology and neuroinflammation.

Until the first week of life, microglia engulf and then digest synaptic connections between some neurons, in a process called phagocytosis. During the sensory-dependent phase of refinement in the third week after birth, which Cheadle demonstrated in a paper published this month in the journal Neuron, microglia stop phagocytosis and rely on cytokines to break down synapses.

The cytokine pathway Cheadle discovered, called TWEAK, which is a ligand expressed by microglia, and Fn14, a receptor expressed by neurons, becomes active between eye opening, which is around two weeks, and peaks at about four weeks old.

When mice don’t have exposure to important visual stimuli during this critical period, the circuit has too many synaptic connections, which reduces the effectiveness of the developing visual system.

While Cheadle is working on visual development, specifically, he is interested in the broader implications of this work in the context of the environmental signals that affect the development of the brain.

In that broader context, the processes involved in autism and schizophrenia could reflect a period in which individuals have an overabundance of synapses that weren’t sufficiently pruned and refined.

Despite the fact that researchers hypothesized that synaptic pruning may lead to these disorders decades ago, they still have a limited awareness of whether and how this might happen. Studying the way microglia contribute to healthy circuit development could provide important clues about these processes.

Some epidemiological evidence points to the linkage between immune activity and neurodevelopmental disorders. In 1918 and 1919, during the Spanish Flu pandemic, children born during that period had a higher incidence of an autism or schizophrenia later in life.

Other evidence shows an interaction between immune activation and neurodevelopmental dysfunction, including the genetic loci associated with such disorders and increased inflammatory markers in the blood and brains of people with such disorders. “There’s really no question that there is a link,” Cheadle explained. “The nature of the link is still poorly understood.”

While earlier epidemiological data raises questions about the current pandemic, it doesn’t provide a definitive answer because “we still don’t quite understand what the nuanced molecular factors are that link the immune activation to the increase in disease prevalence,” Cheadle suggested.

“There’s a real chance that having COVID during pregnancy may impact the development of the offsprings’ nervous systems as has been seen in other infections,” Cheadle wrote. “While it is not the current priority of COVID research, it certainly warrants studying.”

Cheadle hopes to understand the “underlying principals of disorders” he said.

A resident of Huntington, Cheadle lives five minutes from the lab. He plans to rent for now because he didn’t want to start a new lab and move into a new house at the same time.

Cheadle has hired a technician and is in the process of hiring another. A post doctoral scientist will join his lab in November.

Early on in his life, Cheadle said he was fascinated with the interface between the world and biology. He wanted to understand how human brains interpret the information that comes from our senses. Everything culminated, professionally, in his interest in neurobiological mechanisms.

Currently, Cheadle is also interested in the looming behavior of mice. In the field, when mice see a bird that is flying slowly overhead, they are more likely to make a mad dash for safety, running into weeds or for cover from a tree. When the bird, however, is flying too rapidly, the mice freeze.

“I’m intrigued to find out whether the dichotomy of fight or flight could be shifted by the function of microglia,” he said. “I like to understand something at a functional level and dissect it to a molecular level.”

James Misewich Photo from BNL

By Daniel Dunaief

Even as the pandemic continues to cast a pall over the prospects for the economy, the federal government is finding ways to support science. Recently, as a part of a $625 billion award to a host of institutions, the Department of Energy earmarked $115 million over five years for a part of a project led by Brookhaven National Laboratory.

The science, called quantum information systems, could have applications in a wide range of industries, from health care to defense to communications, enabling higher levels of artificial intelligence than the current binary system computers have used for decades. By benefiting from the range of options between the 0s and 1s that typically dictate computer codes, researchers can speed up and enhance the development of programs that use artificial intelligence.

The investment “underscores the confidence the federal government has with respect to how important this technology is,” said James Misewich, the Associate Laboratory Director for Energy and Photon Sciences at BNL. “Despite the challenges of the time, this was a priority.”

Local leaders hailed the effort for its scientific potential and for the future benefit to the Long Island economy.

“I have seen strong support inside of Congress and the administration for funding requests coming out of the Department of Energy for ideas on how to move the DOE’s mission forward,” said U.S. Rep. Lee Zeldin (R-NY-1). “I have also seen a very high level of appreciation and respect for BNL, its leadership, its staff, its mission and its potential.”

Zeldin said the average American spends more time than ever engaging with technologies and other discoveries that were made possible by the first quantum revolution. “Here we are on the verge of a second quantum revolution and BNL is at the forefront of it,” Zeldin said.

Zeldin sees limitless possibilities for quantum information science, as researchers believe these efforts will lead to advancements in health care, financial services, national security and other aspects of everyday life. “This next round of quantum advancements seeks to overcome some of the vulnerabilities that were identified and the imperfections in the first wave,” he said.

State Senator James Gaughran (D-Northport) expects quantum science to provide a significant benefit to the region. “We believe this is going to be a major part of our economic future,” he said. “It is a huge victory for Long Island.”

The return on investment for the state and the federal government will also materialize in jobs growth. This is “going to employ a lot of people,” Gaughran said. “It will help to rebuild the type of economy we need on Long Island. The fact that we are on the front lines of that will lead to all sorts of private sector development.”

While the technology has enormous potential, it is still in early enough stages that research groups need to work out challenges before they can fully exploit quantum technology. BNL, specifically, will make quantum error correction a major part of their effort.

As quantum computers start working, they run into a limitation called a noisy intermediate scale quantum problem, or NISQ. These problems come from errors that lower the confidence of getting the right answer. The noise is a current limitation for the best quantum computers. “They can only go so far before you end up with an error that is fatal” to the computing process, Misewich said.

By using the co-design center for quantum advantage, Misewich and his partners hope to use the materials that “beat the NISQ error by having the combination of folks with a great team that are all talking to one another.”

The efforts will use a combination of classical computing and theory to determine the next steps in the process of building a reliable quantum information system-driven computer.

Misewich’s group is also focusing on communication. The BNL scientists hope to provide a network that enables distributed computing. In classical computing, this occurs regularly, as computer scientists distribute a problem over multiple computers.

Similarly, with quantum computing, scientists plan to distribute the problem across computers that need to talk to each other.

Misewich is pleased with the combination of centers that will collaborate through this effort. “The federal government picked these centers because they are somewhat complementary,” he said. The BNL-led team has 24 partners, which include IBM, Stony Brook University, SUNY Polytechnic Institute, Yale University, Princeton University, the Massachusetts Institute of Technology, Harvard University, Columbia University and Howard University, among others.

“We had to identify the best team and bring in the right people to fill the gaps,” Misewich explained.

Using a combination of federal funds and money from New York State, BNL plans to build a new beamline at the National Synchrotron Lightsource II, which will operate at very low temperatures, allowing scientists to study the way these materials work under real word conditions.

BNL would like the work they are doing to have an application in calculations in three areas: the theory of the nucleus, quantum chemistry, which explores ways to design better materials, and catalysis.

A quantum computer could help make inroads in some challenging calculations related to electron-electron interactions in superconducting materials, Misewich said, adding that the entire team feels a “tremendous sense of excitement” about the work they are doing.”

Indeed, the group has been working together for close to two years, which includes putting the team in place, identifying the problems they want to tackle and developing a compelling strategy for the research to make a difference.

The group is expecting to produce a considerable amount of research and will likely develop various patents that will “hopefully transfer the technology so companies can start to build next generation devices,” Misewich said.

Along with local leaders, Misewich hopes these research efforts will enable the transfer of this technology to a future economy for New York State.

This effort will also train a numerous graduate and post doctoral students, who will be the “future leaders that are going to drive that economy,” Misewich said.

The research will explore multiple levels of improvement in the design of quantum computers which they hope will all work at the same time to provide an exponential improvement in the ability of the computer to help solve problems and analyze data.

Anže Slosar. Photo from BNL

By Daniel Dunaief

Ever since Ancient Romans and Greeks looked to the stars at night, humans have turned those pinpricks of light that interrupt the darkness into mythological stories.

Two years from now, using a state-of-the-art telescope located in Cerro Pachón ridge in Northern Chile, scientists may take light from 12 billion light years away and turn it into a factual understanding of the forces operating on distant galaxies, causing the universe to expand and the patterns of movement for those pinpricks of light.

While they are awaiting the commissioning of the Vera C. Rubin Observatory, researchers including Brookhaven National Laboratory Physicist Anže Slosar are preparing for a deluge of daily data — enough to fill 15 laptops each night.

An analysis coordinator of the Large Synoptic Survey Telescope’s dark energy science collaboration, Slosar and other researchers from around the world will have a unique map with catalogs spanning billions of galaxies.

Anže Slosar

“For the past five years, we have been getting ready for the data without having any data,” said Slosar. Once the telescope starts producing information, the information will come out at a tremendous rate.

“Analyzing it will be a major undertaking,” Slosar explained in an email. “We are getting ready and hope that we’ll be ready in time, but the proof is in the pudding.”

The Vera C. Rubin Observatory is named for the late astronomer who blazed a trail for women in the field from the time she earned her Bachelor’s Degree from Vassar until she made an indelible mark studying the rotation of stars.

Slosar called Rubin a “true giant of astronomy” whose work was “instrumental in the discovery of dark matter.”

Originally called the Large Synoptic Survey Telescope (LSST), the Rubin Observatory has several missions, including understanding dark matter and dark energy, monitoring hazardous asteroids and the remote solar system, observing the transient optical sky and understanding the formation and structure of the Milky Way.

The study of the movement of distant galaxies, as well as the way objects interfere with the light they send into space, helps cosmologists such as Slosar understand the forces that affect the universe as well as current and ancient history since the Big Bang.

According to Slosar, the observatory will address some of its goals by collecting data in five realms including examining large structures, which are clustered in the sky. By studying the statistical properties of the galaxies as a function of their distance, scientists can learn about the forces operating on them.

Another area of study involves weak lensing. A largely statistical measure, weak lensing allows researchers to explore how images become distorted when their light source passes near a gravitational force. The lensing causes the image to appear as if it were printed on a cloth and stretched out so that it becomes visually distorted.

In strong lensing, a single image can appear as two sources of light when it passes through a dense object. Albert Einstein worked out the mathematical framework that allows researchers to make these predictions. The first of thousands of strong lensing effects was discovered in 1979. Slosar likens this process to the way light behind a wine glass bends and appears to be coming from two directions as it passes around and through the glass.

The fourth effect, called a supernova, occurs when an exploding star reaches critical mass and collapses under its own weight, releasing enough light to make a distant star brighter than an entire galaxy. A supernova in the immediate vicinity of Earth would be so bright, “it would obliterate all life on Earth.”

With the observatory scanning the entire sky, scientists might see these supernova every day. Using the brightness of the supernova, scientists can determine the distance to the object.

Scientists hope they will be lucky enough to see a supernova in a strongly lensed galaxy. Strong lensing amplifies the light and would allow scientists to see the supernova that are otherwise too distant for the telescope to observe.

Finally, the observatory can explore galaxy clusters, which are a rare collection of galaxies. The distribution of these galaxies in these clusters and how they are distributed relative to each other can indicate the forces operating within and between them.

The BNL scientist, who is originally from Slovenia, is a group leader for the BNL team, which has seven researchers, including post docs. As the analysis coordinator of the dark energy science collaboration, he also coordinates 300 people. Their efforts, he said, involve a blend of independent work following their particular interests and a collective effort to prepare for the influx of data.

Slosar said his responsibility is to have a big-picture overview of all the pieces the project needs. He is thrilled that this project, which was so long in the planning and development stage, is now moving closer to becoming a reality. He said he has spent five years on the project, while some people at BNL have spent closer to 20 years, as LSST was conceived as a dark matter telescope in 1996.

Scientists hope the observatory will produce new information that informs current understanding and forms the basis of future theories.

As a national laboratory, BNL was involved in numerous phases of development for the observatory, which had several different leaders. The SLAC National Accelerator in Stanford led the development of the camera that will be integrated into the telescope. BNL will also continue to play a role in the data analysis and interpretation.

“Fundamentally, I just want to understand how the universe operates and why it is like this and not different,” said Slosar.