Medical Compass

Cognitive behavioral therapy may improve outcomes

By David Dunaief, M.D.

Dr. David Dunaief

Though statistics vary widely, about 30 percent of Americans are affected by insomnia, according to one frequently used estimate, and women tend to be affected more than men (1). Insomnia is thought to have several main components: difficulty falling asleep, difficulty staying asleep, waking up before a full night’s sleep and sleep that is not restorative or restful (2).

Unlike sleep deprivation, patients have plenty of time for sleep. Having one or all of these components is considered insomnia. There is debate about whether or not it is actually a disease, though it certainly has a significant impact on patients’ functioning (3).

Insomnia is frustrating because it does not necessarily have one cause. Causes can include aging; stress; psychiatric disorders; disease states, such as obstructive sleep apnea and thyroid dysfunction; asthma; medication; and it may even be idiopathic (of unknown cause). It can occur on an acute (short-term), intermittent or chronic basis. Regardless of the cause, it may have a significant impact on quality of life. Insomnia also may cause comorbidities (diseases), including heart failure.

Fortunately, there are numerous treatments. These can involve medications, such as benzodiazepines like Ativan and Xanax. The downside of these medications is they may be habit-forming. Nonbenzodiazepine hypnotics (therapies) include sleep medications, such as Lunesta (eszopiclone) and Ambien (zolpidem). All of these medications have side effects. We will investigate Ambien further because of its warnings.

There are also natural treatments, involving supplements, cognitive behavioral therapy and lifestyle changes.

Let’s look at the evidence.

Heart failure

Insomnia may perpetuate heart failure, which can be a difficult disease to treat. In the HUNT analysis (Nord-Trøndelag Health Study), an observational study, results showed insomnia patients had a dose-dependent response for increased risk of developing heart failure (4). In other words, the more components of insomnia involved, the higher the risk of developing heart disease.

There were three components: difficulty falling asleep, difficulty maintaining sleep and nonrestorative sleep. If one component was involved, there was no increased risk. If two components were involved, there was a 35 percent increased risk, although this is not statistically significant.

However, if all three components were involved, there was 350 percent increased risk of developing heart failure, even after adjusting for other factors. This was a large study, involving 54,000 Norwegians, with a long duration of 11 years.

What about potential treatments?

Ambien: While nonbenzodiazepine hypnotics may be beneficial, this may come at a price. In a report by the Drug Abuse Warning Network, part of the Substance Abuse and Mental Health Services Administration (SAMHSA), the number of reported adverse events with Ambien that perpetuated emergency department visits increased by more than twofold over a five-year period from 2005 to 2010 (5). Insomnia patients most susceptible to significant side effects are women and the elderly. The director of SAMHSA recommends focusing on lifestyle changes for treating insomnia by making sure the bedroom is sufficiently dark, getting frequent exercise, and avoiding caffeine.

In reaction to this data, the FDA required the manufacturer of Ambien to reduce the dose recommended for women by 50 percent (6). Ironically, sleep medication like Ambien may cause drowsiness the next day — the FDA has warned that it is not safe to drive after taking extended-release versions (CR) of these medications the night before.

Magnesium: The elderly population tends to suffer the most from insomnia, as well as nutrient deficiencies. In a double-blinded, randomized controlled trial (RCT), the gold standard of studies, results show that magnesium had resoundingly positive effects on elderly patients suffering from insomnia (7).

Compared to a placebo group, participants given 500 mg of magnesium daily for eight weeks had significant improvements in sleep quality, sleep duration and time to fall asleep, as well as improvement in the body’s levels of melatonin, a hormone that helps control the circadian rhythm.

The strength of the study is that it is an RCT; however, it was small, involving 46 patients over a relatively short duration.

Cognitive behavioral therapy

In a study, just one 2½-hour session of cognitive behavioral therapy delivered to a group of 20 patients suffering from chronic insomnia saw subjective, yet dramatic, improvements in sleep duration from 5 to 6½ hours and decreases in sleep latency from 51 to 22 minutes (8). The patients who were taking medication to treat insomnia experienced a 33 percent reduction in their required medication frequency per week. The topics covered in the session included relaxation techniques, sleep hygiene, sleep restriction, sleep positions, and beliefs and obsessions pertaining to sleep. These results are encouraging.

It is important to emphasize the need for sufficient and good-quality sleep to help prevent, as well as not contribute to, chronic diseases, such as cardiovascular disease. While medications may be necessary in some circumstances, they should be used with the lowest possible dose for the shortest amount of time and with caution, reviewing possible drug-drug and drug-supplement interactions.

Supplementation with magnesium may be a valuable step toward improving insomnia. Lifestyle changes including sleep hygiene and exercise should be sought, regardless of whether or not medications are used.

References:

(1) Sleep. 2009;32(8):1027. (2) American Academy of Sleep Medicine, 2nd edition, 2005. (3) Arch Intern Med. 1998;158(10):1099. (4) Eur Heart J. online 2013;Mar 5. (5) SAMSHA.gov. (6) FDA.gov. (7) J Res Med Sci. 2012 Dec;17(12):1161-1169. (8) APSS 27th Annual Meeting 2013; Abstract 0555.

Walking routinely can reduce your risk of dialysis.Stock photo
Taking an active role can reduce your risk significantly

By David Dunaief, M.D.

Dr. David Dunaief

Heart disease is so pervasive that men who are 40 years old have a lifetime risk of 49 percent. In other words, about half of men will be affected by heart disease. The statistics are better for women, but they still have a staggering 32 percent lifetime risk at age 40 (1).

The good news is that heart disease is on the decline due to a number of factors, including better awareness in lay and medical communities, improved medicines, earlier treatment of risk factors and lifestyle modifications. We are headed in the right direction, but we can do better. Heart disease is something that is eminently preventable.

Heart disease risk factors

Risk factors include obesity, high cholesterol, high blood pressure, smoking and diabetes. Unfortunately, both obesity and diabetes are on the rise. For patients with type 2 diabetes, 70 percent die of cardiovascular causes (2). However, high blood pressure, high cholesterol and smoking have declined (3).

Of course, family history also contributes to the risk of heart disease, especially with parents who experienced heart attacks before age 60, according to the Women’s Health Study and the Physician’s Health Study (4). Inactivity and the standard American diet, rich in saturated fat and calories, also contribute to heart disease risk (5). The underlying culprit is atherosclerosis (fatty streaks in the arteries).

Another potential risk factor is a resting heart rate greater than 80 beats per minute (bpm). In one study, healthy men and women had 18 and 10 percent increased risks of dying from a heart attack, respectively, for every increase of 10 bpm over 80 (6). A normal resting heart rate is usually between 60 and 100 bpm. Thus, you don’t have to have a racing heart rate, just one that is high-normal. All of these risk factors can be overcome, even family history.

The role of medication

Cholesterol and blood pressure medications have been credited to some extent with reducing the risk of heart disease. The compliance with blood pressure medications has increased over the last 10 years from 33 to 50 percent, according to the American Society of Hypertension.

In terms of lipids, statins have played a key role in primary prevention. Statins are effective at not only lowering lipid levels, including total cholesterol and LDL — the “bad” cholesterol — but also inflammation levels that contribute to the risk of cardiovascular disease. The Jupiter trial showed a 55 percent combined reduction in heart disease, stroke and mortality from cardiovascular disease in healthy patients — those with a slightly elevated level of inflammation and normal cholesterol profile — with statins.

The downside of statins is their side effects. Statins have been shown to increase the risk of diabetes in intensive dosing, compared to moderate dosing (7).

Unfortunately, many on statins also suffer from myopathy (muscle pain). I have a number of patients who have complained of muscle pain and cramps. Their goal when they come to see me is to reduce and ultimately discontinue their statins by following a lifestyle modification plan involving diet and exercise. Lifestyle modification is a powerful ally.

Lifestyle effects

There was significant reduction in mortality from cardiovascular disease with participants who were followed for a very long mean duration of 18 years. The Baltimore Longitudinal Study of Aging, a prospective (forward-looking) study, investigated 501 healthy men and their risk of dying from cardiovascular disease. The authors concluded that those who consumed five servings or more of fruits and vegetables daily with <12 percent saturated fat had a 76 percent reduction in their risk of dying from heart disease compared to those who did not (8). The authors theorized that eating more fruits and vegetables helped to displace saturated fats from the diet. These results are impressive and, to achieve them, they only required a modest change in diet.

The Nurses’ Health Study shows that these results are also seen in women, with lifestyle modification reducing the risk of sudden cardiac death (SCD). Many times, this is the first manifestation of heart disease in women. The authors looked at four parameters of lifestyle modification, including a Mediterranean-type diet, exercise, smoking and body mass index. There was a decrease in SCD that was dose-dependent, meaning the more factors incorporated, the greater the risk reduction. There was as much as a 92 percent decrease in SCD risk when all four parameters were followed (9). Thus, it is possible to almost eliminate the risk of SCD for women with lifestyle modifications.

How do you know that you are reducing your risk of heart disease and how long does it take?

These are good questions. We use cardiac biomarkers, including inflammatory markers like C-reactive protein, blood pressure, cholesterol and body mass index. A cohort study helped answer these questions. It studied both high-risk participants and patients with heart disease. The results showed an improvement in biomarkers, as well as in cognitive function and overall quality of life.

Participants followed extensive lifestyle modification: a plant-based, whole foods diet accompanied by exercise and stress management. The results were statistically significant with all parameters measured. The best part is the results occurred over a very short period to time — three months from the start of the trial (10). Many patients I have seen have had similar results.

Ideally, if patient needs to use medications to treat risk factors for heart disease, it should be for the short term. For some patients, it may be appropriate to use medication and lifestyle changes together; for others, lifestyle modifications may be sufficient, as long as patients take an active role.

(1) Lancet. 1999;353(9147):89. (2) Diabetes Care. 2010 Feb; 33(2):442-449. (3) JAMA. 2005;293(15):1868. (4) Circulation. 2001;104(4):393. (5) Lancet. 2004;364(9438):93. (6) J Epidemiol Community Health. 2010 Feb;64(2):175-181. (7) JAMA. 2011;305(24):2556-2564. (8) J Nutr. March 1, 2005;135(3):556-561. (9) JAMA. 2011 Jul 6;306(1):62-69. (10) Am J Cardiol. 2011;108(4):498-507.

Dr. Dunaief is a speaker, author and local lifestyle medicine physician focusing on the integration of medicine, nutrition, fitness and stress management. For further information, visit www.medicalcompassmd.com or consult your personal physician.         

Yoga can be an effective way to increase bone density. Photo from Metro
Overtreatment and undertreatment of osteopenia and osteoporosis are common

By David Dunaief, M.D.

Dr. David Dunaief

As we get older, bone fractures can have potentially life-altering or life-ending consequences. Osteoporosis is a silent disease where there is bone loss, weakening of the bones and small deleterious changes in the architecture of the bone over time that may result in fractures with serious consequences (1). It affects millions of patients, most commonly postmenopausal women.

One way to measure osteoporosis is with a dual-energy X-ray absorptiometry (DXA) scan for bone mineral density. Osteopenia is a slightly milder form that may be a precursor to osteoporosis. However, we should not rely on the DXA scan alone; risk factors are important, such as a family or personal history of fractures as we age. The Fracture Risk Assessment Tool (FRAX) is more thorough for determining the 10-year fracture risk. Those who have a risk of fracture that is 3 percent or more should consider treatment with medications. A link to the FRAX tool can be found at www.shef.ac.uk/FRAX.

Most of us have been prompted all our lives to consume calcium for strong bones. In fact, the National Osteoporosis Foundation recommends that we get 1,000 to 1,200 mg per day of calcium from diet and supplements if we are over age 50, although recommendations vary by sex and age (2). However, research suggests that calcium for osteoporosis prevention may not be as helpful as we thought.

The current treatment paradox

Depending on the population, we could be overtreating or undertreating osteoporosis. In the elderly population that has been diagnosed with osteoporosis, there is undertreatment. One study showed that only 28 percent of patients who are candidates for osteoporosis drugs are taking the medication within the first year of diagnosis (3). The reason most were reluctant was that they had experienced a recent gastrointestinal event and did not want to induce another with osteoporosis medications, such as bisphosphonates. The data were taken from Medicare records of patients who were at least age 66.

On the other hand, as many as 66 percent of the women receiving osteoporosis medications may not have needed it, according to a retrospective study (4). This is the overtreatment population, with half these patients younger, between the ages of 40 and 64, and without any risk factors to indicate the need for a DXA scan. This younger population included many who had osteopenia, not osteoporosis.

Do we all need calcium?

Calcium has always been the forefront of prevention and treatment of osteoporosis. However, two studies would have us question this approach. Results of one meta-analysis of 59 randomized controlled trials showed that dietary calcium and calcium supplements with or without vitamin D did increase the bone density significantly in most places in the body, including the femoral neck, spine and hip (5). Yet the changes were so small that they would not have much clinical benefit in terms of fracture prevention.

Another meta-analysis of 44 observational dietary trials and 26 randomized controlled trials did not show a benefit with dietary or supplemental calcium with or without vitamin D (6). There was a slight reduction in nonsignificant vertebral fractures, but not in other places, such as the hip and forearm. Dietary calcium and supplements disappointed in these two trials.

Does this mean calcium is not useful? Not so fast!

In some individual studies that were part of the meta-analyses, the researchers mentioned that dairy, specifically milk, was the dietary source on record, and we know milk is not necessarily good for bones. But in many of the studies, the researcher did not differentiate between the sources of dietary calcium. This is a very important nuance. Calcium from animal products may increase inflammation and the acidity of the body and may actually leach calcium from the bone, while calcium from vegetable-rich, nutrient-dense sources may be better absorbed, providing more of an alkaline and anti-inflammatory approach.

What can be done to improve the situation?

Yoga has become more prevalent and part of mainstream exercise. This is a good trend since this type of exercise may have a big impact on prevention and treatment of osteoporosis. In a small pilot study of 18 participants, the results showed that those who practiced yoga had an increase in their spine and hip bone density compared to those who did not (7).

The researchers were encouraged by these results, so they performed another study. The results showed that 12 minutes of yoga daily or every other day significantly increased the bone density from the start of the study in both the spine and femur, the thigh bone (8). There was also an increase in hip bone density, but this was not significant. The strength of the study includes its 10-year duration; however, this trial did not include a control group. Also, while 741 participants started the trial, only 227 finished. Of those, 202 were women. 

Significantly, prior to the study there were 109 fractures in the participants, most of whom had osteoporosis or osteopenia, but none had yoga-related fractures by the end of the trial. The “side effects” of yoga included improved mobility, posture, strength and a reduction in anxiety. The researchers provided a road map of specific beneficial poses. Before starting any exercise program, consult your physician.

The moral of the story is that exercise is beneficial. Yoga may be another simple addition to this exercise regimen. Calcium may be good or bad, depending on its dietary source. Be cautious with supplemental calcium; it does have side effects, including kidney stones, cardiovascular events and gastrointestinal symptoms, and consult with your doctor to assess whether you might be in an overtreatment or undertreatment group when it comes to medication.

References:

(1) uptodate.com. (2) nof.org. (3) Clin Interv Aging. 2015;10:1813-1824. (4) JAMA Intern Med. online Jan. 4, 2016. (5) BMJ 2015; 351:h4183. (6) BMJ 2015; 351:h4580. (7) Top Geriatr Rehabil. 2009; 25(3); 244-250. (8) Top Geriatr Rehabil. 2016; 32(2); 81-87.

Dr. Dunaief is a speaker, author and local lifestyle medicine physician focusing on the integration of medicine, nutrition, fitness and stress management. For further information, visit www.medicalcompassmd.com or consult your personal physician.    

Walking for a five-minute duration every 30 minutes can reduce the risk of diabetes. Stock photo
Screening guidelines still miss 15 to 20 percent of cases

By David Dunaief, M.D.

Dr. David Dunaief

Finally, there is good news on the diabetes front. According to the Centers for Disease Control and Prevention, the incidence, or the rate of increase in new cases, has begun to slow for the first time in 25 years (1). There was a 20 percent reduction in the rate of new cases in the six-year period ending in 2014. This should help to brighten your day. However, your optimism should be cautious; it does not mean the disease has stopped growing. It means it has potentially turned a corner in terms of the growth rate, or at least we hope. This may relate in part to the fact that we have reduced our consumption of sugary drinks like soda and orange juice.

Get up, stand up!

It may be easier than you think to reduce the risk of developing diabetes. Standing and walking may be equivalent in certain circumstances for diabetes prevention. In a small, randomized control trial, the gold standard of studies, results showed that when sitting, those who either stood or walked for a five-minute duration every 30 minutes, had a substantial reduction in the risk of diabetes, compared to those who sat for long uninterrupted periods (2).

There was a postprandial, or postmeal, reduction in the rise of glucose of 34 percent in those who stood and 28 percent reduction in those who walked, both compared to those who sat for long periods continuously in the first day. The effects remained significant on the second day. A controlled diet was given to the patients. In this study, the difference in results for the standers and walkers was not statistically significant.

The participants were overweight, postmenopausal women who had prediabetes, HbA1C between 5.7 and 6.4 percent. The HbA1C gives an average glucose or sugar reading over three months. The researchers hypothesize that this effect of standing or walking may have to do with favorably changing the muscle physiology. So, in other words, a large effect can come from a very small but conscientious effort. This is a preliminary study, but the results are impressive.

Do prediabetes and diabetes have similar complications?

Diabetes is much more significant than prediabetes, or is it? It turns out that both stages of the disease can have substantial complications. In a study of those presenting in the emergency room with acute coronary syndrome (ACS), those who have either prediabetes or diabetes have a much poorer outcome. ACS is defined as a sudden reduction in blood flow to the heart, resulting in potentially severe events, such as heart attack or unstable angina (chest pain).

In the patients with diabetes or prediabetes, there was an increased risk of death with ACS as compared to those with normal sugars. The diabetes patients experienced an increased risk of greater than 100 percent, while those who had prediabetes had an almost 50 percent increased risk of mortality over and above the general population with ACS. Thus, both diabetes and prediabetes need to be taken seriously. Sadly, most diabetes drugs do not reduce the risk of cardiac events. And bariatric surgery, which may reduce or put diabetes in remission for five years, did not have an impact on increasing survival (3).

What do the prevention guidelines tell us?

The United States Preventive Services Task Force (USPSTF) renders recommendations on screening for diseases. In 2015, the committee drafted new guidelines suggesting that everyone more than 45 years old should be screened, but the final guidelines settled on screening a target population of those between the ages of 40 and 70 who are overweight or obese (4). They recommend that those with abnormal glucose levels pursue intensive lifestyle modification as a first step.

This is a great improvement, as most diabetes patients are overweight or obese; however, 15 to 20 percent of diabetes patients are within the normal range for body mass index (5). So, this screening still misses a significant number of people.

Potassium’s effect

When we think of potassium, the first things that comes to mind is bananas, which do contain a significant amount of potassium, as do other plant-based foods. Those with rich amounts of potassium include dark green, leafy vegetables; almonds; avocado; beans; and raisins. We know potassium is critical for blood pressure control, but why is this important to diabetes?

In an observational study, results showed that the greater the exertion of potassium through the kidneys, the lower the risk of cardiovascular disease and kidney dysfunction in those with diabetes (6). There were 623 Japanese participants with normal kidney function at the start of the trial. The duration was substantial, with a mean of 11 years of follow-up. Those who had the highest quartile of urinary potassium excretion were 67 percent less likely to experience a cardiovascular event or kidney event than those in the lowest quartile. The researchers suggested that higher urinary excretion of potassium is associated with higher intake of foods rich in potassium.

Where does this leave us for the prevention of diabetes and its complications? You guessed it: lifestyle modifications, the tried and true! Lifestyle should be the cornerstone, including diet and at least mild to moderate physical activity.

References:

(1) cdc.gov. (2) Diabetes Care. online Dec. 1, 2015. (3) JAMA Surg. online Sept. 16, 2015. (4) Ann Intern Med. 2015;163(11):861-868. (5) JAMA. 2012;308(6):581-590. (6) Clin J Am Soc Nephrol. online Nov 12, 2015.

Belly fat can play a critical role in increased risk of pancreatitis. Stock photo
Central obesity is more important than body mass index

By David Dunaief, M.D.

Dr. David Dunaief

Pancreatitis is among the top gastrointestinal reasons for patients to be admitted to a hospital, and its incidence has been growing steadily (1). Typically it’s severe abdominal pain that drives patients to the emergency room, but diagnosis is more complex.

First, let’s define pancreatitis. A rudimentary definition is an inflammation of the pancreas. There are both acute and chronic forms. We are going to address the acute — abrupt and of short duration — form. There are three acute types: mild, moderate and severe. Those with the mild type don’t have organ failure, whereas those with moderate acute pancreatitis experience short-term or transient (less than 48 hours) organ failure. Those with the severe type have persistent organ failure. One in five patients presents with moderate or severe levels (2).

What are the symptoms?

To diagnosis this disease, the American College of Gastroenterology guidelines suggest that two of three symptoms be present. The three symptoms include severe abdominal pain; enzymes (amylase or lipase) that are at least three times greater than normal; and radiologic imaging that shows characteristic disease findings (3). Most of the time, the abdominal pain is in the central upper abdomen near the stomach, and it may also present with pain in the right upper quadrant of the abdomen (4). Approximately 90 percent of patients also experience nausea and vomiting (5). In half of patients, there is also pain that radiates to the back.

What are the risk factors?

Acute pancreatitis risk factors include gallstones, alcohol, obesity and, to a much lesser degree, drugs. Gallstones and alcohol may cause up to 75 percent of the cases (2). Many other cases of acute pancreatitis are considered idiopathic (of unknown cause). Although medications are potentially responsible for between 1.4 and 5.3 percent of cases, making it rare, the number of medications implicated is diverse (6, 7). These include certain classes of diabetes therapies, some antibiotics — metronidazole (Flagyl) and tetracycline — and immunosuppressive drugs used to treat ailments like autoimmune diseases. Even calcium may potentially increase risk.

Obesity effects

In a study using the Swedish Mammography Cohort and the Cohort of Swedish Men, results showed that central obesity is an important risk factor, not body mass index or obesity overall (8). In other words, it is the fat in the belly that is very important, since this may increase risk more than twofold for the occurrence of a first-time acute pancreatitis episode. Those who had a waist circumference of greater than 105 cm (41 inches) experienced this significantly increased risk compared to those who had a waist circumference of 75 to 85 cm (29.5 to 33.5 inches). The association between central obesity and acute pancreatitis occurred in both gallbladder-induced and non-gallbladder-induced disease. There were 68,158 patients involved in the study, which had a median duration of 12 years. Remember that waistline is measured from the navel, not from the hips.

Mortality risks

What makes acute pancreatitis so potentially dangerous is the surprisingly high rate of organ failure and mortality. A prospective (forward-looking) observational trial involving 1,005 patients found that the risk of mortality was 5 percent overall. This statistic broke out into a smaller percentage for mild acute pancreatitis and a greater percentage for severe acute pancreatitis, 1.5 and 17 percent, respectively (9). However, in another study, when patients were hospitalized, the mortality rate was higher, at 10 percent overall (10).

Diabetes risks

The pancreas is a critical organ for balancing glucose (sugar) in the body. In a meta-analysis (24 observational trials), results showed that more than one-third of patients diagnosed with acute pancreatitis went on to develop prediabetes or diabetes (11). Within the first year, 15 percent of patients were newly diagnosed with diabetes. After five years, the risk of diabetes increased 2.7-fold. By reducing the risk of pancreatitis, we may also help reduce the risk of diabetes.

Surgical treatments

Gallstones and gallbladder sludge are major risk factors, accounting for 35 to 40 percent of acute pancreatitis incidences (12). Gallstones are thought to cause pancreatitis by temporarily blocking the duct shared by the pancreas and gallbladder that leads into the small intestine. When the liver enzyme ALT is elevated threefold (measured through a simple blood test), it has a positive predictive value of 95 percent that it is indeed gallstone-induced pancreatitis (13). 

If it is gallstone-induced, surgery plays an important role in helping to resolve pancreatitis and prevent recurrence. In a retrospective study with 102 patients, results showed that surgery to remove the gallbladder was better than medical treatment when comparing hospitalized patients with this disease (14). Surgery trumped medical treatment in terms of outcomes, complication rates, length of stay in the hospital and overall cost for patients with mild acute pancreatitis.

Can diet have an impact?

The short answer is: Yes. What foods specifically? In a large, prospective observational study, results showed that there was a direct linear relationship between those who consumed vegetables and a decreased risk of non-gallstone acute pancreatitis (15). For every two servings of vegetables, there was 17 percent drop in the risk of pancreatitis. Those who consumed the most vegetables — the highest quintile (4.6 servings per day) — had a 44 percent reduction in disease risk, compared to those who were in the lowest quintile (0.8 servings per day). There were 80,000 participants involved in the study with an 11-year follow-up. The authors surmise that the reason for this effect with vegetables may have to do with their antioxidant properties, since acute pancreatitis increases oxidative stress on the pancreas.

References:

(1) Gastroenterology. 2012;143:1179-1187. (2) www.uptodate.com. (3) Am J Gastroenterol. 2013;108:1400-1415. (4) JAMA. 2004;291:2865-2868. (5) Am J Gastroenterol. 2006;101:2379-2400. (6) Gut. 1995;37:565-567. (7) Dig Dis Sci. 2010;55:2977-2981. (8) Am J Gastroenterol. 2013;108:133-139. (9) Dig Liver Dis. 2004;36:205-211. (10) Dig Dis Sci. 1985;30:573-574. (11) Gut. 2014;63:818-831. (12) Gastroenterology. 2007;132:2022-2044. (13) Am J Gastroenterol. 1994;89:1863-1866. (14) Am J Surg online. 2014 Sept. 20. (15) Gut. 2013;62:1187-1192.

Dr. Dunaief is a speaker, author and local lifestyle medicine physician focusing on the integration of medicine, nutrition, fitness and stress management. For further information, visit www.medicalcompassmd.com or consult your personal physician.  

Gluten is found mainly in wheat, rye and barley. Stock photo
Antibiotics may contribute to celiac disease

By David Dunaief, M.D.

Dr. David Dunaief

Gluten-free diets are a hot topic. When we hear someone mention a gluten-free diet, we may automatically think that this is a healthy diet. However, gluten-free is not necessarily synonymous with healthy. There are many beneficial products containing gluten.

Still, we keep hearing how more people feel better without gluten. Could this be a placebo effect? What is myth and what is reality in terms of gluten? In this article I will try to distill what we know about gluten and gluten-free diets, who may benefit and who may not.

But first, what is gluten? Gluten is a plant protein found mainly in wheat, rye and barley.

While more popular recently, going gluten-free is not a fad, since we know that patients who suffer from celiac disease, an autoimmune disease, benefit tremendously when gluten is removed (1). In fact, it is the main treatment.

But what about people who don’t have celiac disease? There seems to be a spectrum of physiological reaction to gluten, from intolerance to gluten (sensitivity) to gluten tolerance (insensitivity). Obviously, celiac disease is the extreme of intolerance, but even these patients may be asymptomatic. Then, there is nonceliac gluten sensitivity (NCGS), referring to those in the middle portion of the spectrum (2). The prevalence of NCGS is half that of celiac disease, according to the NHANES data from 2009-2010 (3). However, many disagree with this assessment, indicating that it is much more prevalent and that its incidence is likely to rise (4). The term was not even coined until 2011.

What is the difference between full-blown celiac disease and gluten sensitivity? They both may present with intestinal symptoms, such as bloating, gas, cramping and diarrhea, as well as extraintestinal (outside the gut) symptoms, including gait ataxia (gait disturbance), malaise, fatigue and attention deficit disorder (5). Surprisingly, they both may have the same results with serological (blood) tests, which may be positive or negative. The first line of testing includes anti-gliadin antibodies and tissue transglutaminase. These measure a reaction to gluten; however, they don’t have to be positive for there to be a reaction to gluten. HLA–DQ phenotype testing is the second line of testing and tends to be more specific for celiac disease.

What is unique to celiac disease is a histological change in the small intestine, with atrophy of the villi (small fingerlike projections) contributing to gut permeability, what might be called “leaky gut.” Biopsy of the small intestine is the most definitive way to diagnose celiac disease. Though the research has mainly focused on celiac disease, there is some evidence that shows NCGS has potential validity, especially in irritable bowel syndrome.

Before we look at the studies, what does it mean when a food says it’s “gluten-free”? Well, the FDA has weighed in by passing regulation that requires all gluten-free foods to have no more than 20 parts per million of gluten (6).

Irritable bowel syndrome

Irritable bowel syndrome (IBS) is a nebulous disease diagnosed through exclusion, and the treatments are not obvious. That is why the results from a 34-patient, randomized controlled trial, the gold standard of studies, showing that a gluten-free diet significantly improved symptoms in IBS patients, is so important (7). Patients were given a muffin and bread on a daily basis.

Of course, one group was given gluten-free products and the other given products with gluten, though the texture and taste were identical. In six weeks, many of those who were gluten-free saw the pain associated with bloating and gas mostly resolve; significant improvement in stool composition, such that they were not suffering from diarrhea; and their fatigue diminished. In fact, in one week, those in the gluten group were in substantially more discomfort than those in the gluten-free group.

As part of a well-written March 4, 2013 editorial in Medscape by David Johnson, M.D., a professor of gastroenterology, questions whether this beneficial effect from the IBS trial was due to gluten withdrawal or to withdrawal of fermentable sugars because of the elimination of some grains themselves (8). In other words, gluten may be just one part of the picture. He believes that nonceliac gluten sensitivity is a valid concern.

Antibiotics

The microbiome in the gut may play a pivotal role as to whether a person develops celiac disease. In an observational study using data from the Swedish Prescribed Drug Register, results indicate that those who were given antibiotics within the last year had a 40 percent greater chance of developing celiac disease and a 90 percent greater risk of developing inflammation in the gut (9). The researchers believe that this has to do with dysbiosis, a misbalance in the microbiota, or flora, of the gastrointestinal tract. It is interesting that celiac disease may be propagated by change in bacteria in the gut from the use of antibiotics.

Not everyone will benefit from a gluten-free diet. In fact, most of us will not. Ultimately, people who may benefit from this type of diet are those patients who have celiac disease and those who have symptomatic gluten sensitivity. Also, patients who have positive serological tests, including tissue transglutaminase or anti-gliadin antibodies, are good candidates for gluten-free diets.

There is a downside to a gluten-free diet: potential development of macronutrient and micronutrient deficiencies. Therefore, it would be wise to ask your doctor before starting gluten withdrawal. The research in patients with gluten sensitivity is relatively recent, and most gluten research has to do with celiac disease. Hopefully, we will see intriguing studies in the near future.

References:

(1) Am J Gastroenterol. 2013;108:656-676. (2) Gut 2013;62:43–52. (3) Scand J Gastroenterol. (4) Neurogastroenterol Motil. 2013 Nov;25(11):864-871. (5) medscape.com. (6) fda.gov. (7) Am J Gastroenterol. 2011; 106(3):508-514. (8) medscape.com. (9) BMC Gastroenterol. 2013:13(109).

Dr. Dunaief is a speaker, author and local lifestyle medicine physician focusing on the integration of medicine, nutrition, fitness and stress management. For further information, visit www.medicalcompassmd.com or consult your personal physician.

Lyme disease starts with a circular rash where the ticks bite. Stock photo

By David Dunaief, M.D.

Dr. David Dunaief

Ah, summer is upon us. Unfortunately, this means that tick season is getting into full swing.Thus, it is good timing to talk about Borrelia burgdorferi, better known as the bacterium that causes Lyme disease. This bacterium is from the spirochete class and is typically found in the deer tick, also known as the blacklegged tick.

What do deer ticks look like? They are small and can be as tiny as a pencil tip or the size of a period at the end of a sentence. The CDC.gov site is a great resource for tick images and other information related to Lyme disease.

If you have been bitten by a tick, the first thing you should do is remove it with forceps, tweezers or protected fingers (paper) as close to the skin as possible and pull slow and steady straight up. Do not crush or squeeze the tick, for doing so may spread infectious disease (1). In a study, petroleum jelly, fingernail polish, a hot kitchen match and 70 percent isopropyl alcohol all failed to properly remove a tick. The National Institutes of Health recommend not removing a tick with oil (2).

When a tick is removed within 36 to 48 hours, the risk of infection is quite low (3). However, a patient can be given a prophylactic dose of the antibiotic doxycycline, one dose of 200 mg, if the erythema migrans, or bulls-eye rash — a red outer ring and red spot in the center — has not occurred, and it is within 72 hours of tick removal (4). Those who took doxycycline had significantly lower risk of developing the bulls-eye rash and thus Lyme disease; however, treatment with doxycycline did have higher incidence of nausea and vomiting than placebo.

What are the signs and symptoms of Lyme disease? There are three stages of Lyme disease: early stage, where the bacteria are localized; early disseminated disease, where the bacteria have spread throughout the body; and late stage disseminated disease. Symptoms for early localized stage and early disseminated disease include the bulls-eye rash, which occurs in about 80 percent of patients, with or without systemic symptoms of fatigue (54 percent), muscle pain and joint pain (44 percent), headache (42 percent), neck stiffness (35 percent), swollen glands (23 percent) and fever (16 percent) (5).

Early disseminated disease may cause neurological symptoms such as meningitis, cranial neuropathy (Bell’s palsy) and motor or sensory radiculoneuropathy (nerve roots of spinal cord). Late disseminated disease can cause Lyme arthritis (inflammation in the joints), heart problems, facial paralysis, impaired memory, numbness, pain and decreased concentration (2).

How do we prevent Lyme? According to the Centers for Disease Control and Prevention, we should wear protective clothing, spray ourselves with insect repellent that includes at least 20 percent DEET and treat our yards (3). Always check your skin and hair for ticks after walking through a woody or tall grassy area. Many of us on Long Island have ticks in the yard, so remember to check your pets; even if treated, they can carry ticks into the house.

Diagnosis of Lyme disease

Many times Lyme disease can be diagnosed within the clinical setting. When it comes to serologic or blood tests, the CDC recommends an ELISA test followed by a confirmatory Western blot test (3). However, testing immediately after being bitten by a tick is not useful, since the test will tend to be negative, regardless of infection or not (4). It takes about one to two weeks for IgM antibodies to appear and two to six weeks for IgG antibodies (5). These antibodies sometimes remain elevated even after successful treatment with antibiotics.

The cardiac impact

Lyme carditis is a rare complication affecting 1.1 percent of those with disseminated disease, but it can result in sudden cardiac death due to second- or third-degree atrioventricular (AV) node conduction (electrical) block. Among the 1.1 percent who had Lyme carditis, there were five sudden deaths (6). If there are symptoms of chest pain, palpitations, light-headedness, shortness of breath or fainting, then clinicians should suspect Lyme carditis.

Does chronic Lyme disease exist?

There has been a debate about whether there is something called “chronic Lyme” disease. The research, unfortunately, has not shown consistent results that indicate that it exists. In one analysis, the authors note that the definition of chronic Lyme disease is obfuscated and that extended durations of antibiotics do not prevent or alleviate post-Lyme syndromes, according to several prospective trials (7). The authors do admit that there are prolonged neurologic symptoms in a subset population that may be debilitating even after the treatment of Lyme disease. These authors also suggest that there may be post-Lyme disease syndromes with joint pain, muscle pain, neck and back pain, fatigue and cognitive impairment.

Ultimately, it comes down to the IDSA (Infectious Diseases Society of America) arguing against chronic Lyme but in favor of post-Lyme disease syndromes, while the ILADS (International Lyme and Associated Diseases Society) believes chronic Lyme exists.

Regardless, the lingering effects of Lyme can be debilitating. This may be as a result of systemic inflammation (8). Systemic inflammation and its symptoms can be improved significantly with dietary and other lifestyle modifications.

But to throw one more wrench in the mix, the CDC recommends that physicians look beyond Lyme for other possible diagnoses before diagnosing someone with chronic Lyme disease (9).

Prevention is key to helping stem Lyme disease. If this is not possible, treating prophylactically when pulling off a tick is an important step. Contact your physician as soon as you notice a tick. If you have a bulls-eye rash and it is early, then treatment for two to three weeks needs to be started right away. If it is prolonged and disseminated, then treatment should be for approximately three to four weeks with antibiotics. If it has affected the central nervous system, then IV antibiotics could be needed.

References:

(1) Pediatrics. 1985;75(6):997. (2) nlm.nih.gov. (3) cdc.gov. (4) Clin Infect Dis. 2008;47(2):188. (5) uptodate.com. (6) MMWR. 2014;63(43):982-983. (7) Expert Rev Anti Infect Ther. 2011;9(7):787-797. (8) J Infect Dis. 2009;199(9:1379-1388). (9) JAMA Intern Med. online Nov. 3, 2014.

Dr. Dunaief is a speaker, author and local lifestyle medicine physician focusing on the integration of medicine, nutrition, fitness and stress management. For further information, visit www.medicalcompassmd.com or consult your personal physician.  

Stock photo
Toenail fungus can have medical implications

By David Dunaief, M.D.

Dr. David Dunaief

Summer is almost here, and millions of Americans are beginning to expose their toes. Some are more self-conscious about it because of a disease called onychomycosis, better known as nail fungus.

Nail fungus usually affects toenails but can also affect fingernails. It turns the nails yellow, makes them potentially brittle, creates growth underneath the nail (thickening of the nails) and may cause pain.

Many consider getting treatment for cosmetic reasons, but there are also medical reasons to treat, including the chronic or acute pain caused by nail cutting or pressure from bedsheets and footwear. There is also an increased potential risk for infections, such as cellulitis, in those with compromised immune systems (1).

Onychomycosis is not easy to treat, although it affects approximately 8 percent of the population (2). The risk factors are unclear but may relate to family history, tinea pedis (athlete’s foot), older age, swimming, diabetes, psoriasis, suppression of the immune system and/or living with someone affected (3).

Many organisms can affect the nail. The most common class is dermatophytes, but others are yeast (Candida) and nondermatophytes. A KOH (potassium hydroxide) preparation can be used to differentiate them. This is important since some medications work better on one type than another. Also, yellow nails alone may not be caused by onychomycosis; they can be a sign of psoriasis.

When considering treatment, there are several important criteria, including effectiveness, length of treatment and potential adverse effects. The bad news is that none of the treatments are foolproof, and the highest “cure” rate is around two-thirds. Oral medications tend to be the most efficacious, but they also have the most side effects. The treatments can take from around three months to one year. Unfortunately, the recurrence rate of fungal infection is thought to be approximately 20 to 50 percent with patients who have experienced “cure” (4).

Oral antifungals

There are several oral antifungal options, including terbinafine (Lamisil), fluconazole (Diflucan) and itraconazole. These tend to have the greatest success rate, but the disadvantages are their side effects. In a small but randomized controlled trial (RCT), terbinafine was shown to work better in a head-to-head trial than fluconazole (5). Of those treated, 67 percent of patients experienced a clearing of toenail fungus with terbinafine, compared to 21 and 32 percent with fluconazole, depending on duration. Patients in the terbinafine group were treated with 250 mg of the drug for 12 weeks. Those in the fluconazole group were treated with 150 mg of the drug for either 12 or 24 weeks, with the 24-week group experiencing better results.

The disadvantage of terbinafine is the risk of potential hepatic (liver) damage and failure, though it’s an uncommon occurrence. Liver enzymes need to be checked while using terbinafine.

Another approach to reducing side effects is to give oral antifungals in a pulsed fashion. In an RCT, fluconazole 150 or 300 mg was shown to have significant benefit compared to the control arm when given on a weekly basis (6). However, efficacy was not as great as with terbinafine or itraconazole (7).

Topical medication

A commonly used topical medication is ciclopirox (Penlac). The advantage of this lacquer is that there are minor potential side effects. However, it takes approximately a year of daily use, and its efficacy is not as great as oral antifungals. In two randomized controlled trials, the use of ciclopirox showed a 7 percent “cure” rate in patients, compared to 0.4 percent in the placebo groups (8). There is also a significant rate of fungus recurrence. In one trial, ciclopirox had to be applied daily for 48 weeks in patients with mild to moderate levels of fungus.

Laser therapy

Of the treatments, laser therapy would seem to be the least innocuous. However, there are very few trials showing significant benefit with this approach. A study with one type of laser treatment (Nd:YAG 1064-nm laser) did not show a significant difference after five sessions (9). This was only one type of laser treatment, but it does not bode well. The advantage of laser treatment is the mild side effects. The disadvantages are the questionable efficacy and the cost. We need more research to determine if they are effective.

Alternative therapy

Vicks VapoRub may have a place in the treatment of onychomycosis. In a very small pilot trial with 18 patients, 27.8 percent or 5 of the patients experienced complete “cure” of their nail fungus (10). Partial improvement occurred in the toenails of 10 patients. The gel was applied daily for 48 weeks. The advantages are low risk of side effects and low cost. The disadvantages are a lack of larger studies for efficacy, the duration of use and a lower efficacy when compared to oral antifungals.

None of the treatments are perfect. Oral medications tend to be the most efficacious but also have the most side effects. If treatment is for medical reasons, then oral may be the way to go. If you have diabetes, then treatment may be of the utmost importance.

If you decide on this approach, discuss it with your doctor; and do appropriate precautionary tests on a regular basis, such as liver enzyme monitoring with terbinafine. However, if treatment is for cosmetic reasons, then topical medications or alternative approaches may be the better choice. No matter what, have patience. The process may take a while; nails, especially in toes, grow very slowly.

References:

(1) J Am Acad Dermatol. 1999 Aug.;41:189–196; Dermatology. 2004;209:301–307. (2) J Am Acad Dermatol. 2000;43:244–248. (3) J Eur Acad Dermatol Venereol. 2004;18:48–51. (4) Dermatology. 1998;197:162–166; uptodate.com. (5) Pharmacoeconomics. 2002;20:319–324. (6) J Am Acad Dermatol. 1998;38:S77. (7) Br J Dermatol. 2000;142:97–102; Pharmacoeconomics. 1998;13:243–256. (8) J Am Acad Dermatol. 2000;43(4 Suppl.):S70-S80. (9) J Am Acad Dermatol. 2013 Oct.;69:578–582. (10) J Am Board Fam Med. 2011;24:69–74.

Dr. Dunaief is a speaker, author and local lifestyle medicine physician focusing on the integration of medicine, nutrition, fitness and stress management. For further information, visit www.medicalcompassmd.com or consult your personal physician.       

Being active is the magic pill for a healthy life. Stock photo
Inactivity may increase mortality and disease risk

By David Dunaief, M.D.

Dr. David Dunaief

With the advent of summer weather, with its heat and humidity, who wants to think about exercise? Instead, it’s tempting to lounge by the pool or even inside with air conditioning.

First, let me delineate between exercise and inactivity; they are not complete opposites. When we consider exercise, studies tend to focus on moderate to intense activity. However, light activity and being sedentary, or inactive, tend to get clumped together. But there are differences between light activity and inactivity.

Light activity may involve cooking, writing and strolling (1). Inactivity involves sitting, as in watching TV or in front of a computer screen. Inactivity utilizes between 1 and 1.5 metabolic equivalent units — better known as METS — a way of measuring energy. Light activity, however, requires greater than 1.5 METS. Thus, in order to avoid inactivity, we don’t have to exercise in the dreaded heat. We need to increase our movement.

What are the potential costs of inactivity? According to the World Health Organization, over 3 million people die annually from inactivity. This ranks inactivity in the top five of potential underlying mortality causes (2).

How much time do we spend inactive? In an observational study of over 7,000 women with a mean age of 71 years old, 9.7 waking hours were spent inactive or sedentary. These women wore an accelerometer to measure movements. Interestingly, as body mass index and age increased, the amount of time spent sedentary also increased (3).

Inactivity may increase the risk of mortality and plays a role in increasing risks for diseases such as heart disease, diabetes and fibromyalgia. It can also increase the risk of disability in older adults.

Surprisingly, inactivity may be worse for us than smoking and obesity. For example, there can be a doubling of the risk for diabetes in those who sit for long periods of time, compared to those who sit the least (4).

Let’s look at the evidence.

Does exercise overcome inactivity?

We tend to think that exercise trumps all; if you exercise, you can eat what you want and, by definition, you’re not sedentary. Right? Not exactly. Diet is important, and you can still be sedentary, even if you exercise. In a meta-analysis — a group of 47 studies — results show that there is an increased risk of all-cause mortality with inactivity, even in those who exercised (5). In other words, even if you exercise, you can’t sit for the rest of the day. The risk for all-cause mortality was 24 percent overall.

However, those who exercised saw a blunted effect with all-cause mortality, making it significantly lower than those who were inactive and did very little exercise: 16 percent versus 46 percent increased risk of all-cause mortality. So, it isn’t that exercise is not important, it just may not be enough to reduce the risk of all-cause mortality if you are inactive for a significant part of the rest of the day.

Worse than obesity?

Obesity is a massive problem in this country; it has been declared a disease, itself, and it also contributes to other chronic diseases. But would you believe that inactivity has more of an impact than even obesity? In an observational study, using data from the EPIC trial, inactivity might be responsible for two times as many premature deaths as obesity (6). This was a study involving 330,000 men and women.

Interestingly, the researchers created an index that combined occupational activity with recreational activity. They found that the greatest reduction in premature deaths (in the range of 16 to 30 percent) was between two groups, the normal weight and moderately inactive group versus the normal weight and completely inactive group. The latter was defined as those having a desk job with no additional physical activity. To go from the completely inactive to moderately inactive, all it took, according to the study, was 20 minutes of brisk walking on a daily basis.

So what have we learned about inactivity? If you are inactive, increasing your activity to be moderately inactive by briskly walking for 20 minutes a day may reduce your risk of premature death significantly. Even if you exercise the recommended 150 minutes a week, but are inactive the rest of the day, you may still be at risk for cardiovascular disease. You can potentially further reduce your risk of cardiovascular disease by increasing your activity with small additions throughout the day.

The underlying message is that we need to consciously move throughout the day, whether at work with a walk during lunch or at home with recreational activity. Those with desk jobs need to be most attuned to opportunities to increase activity. Simply setting a timer and standing or walking every 30 to 45 minutes may increase your activity levels and possibly reduce your risk.

References:

(1) Exerc Sport Sci Rev. 2008;36(4):173-178. (2) WHO report: https://bit.ly/1z7TBAF. (3) JAMA. 2013;310(23):2562-2563. (4) Diabetologia 2012; 55:2895-2905. (5) Ann Intern Med. 2015;162:123-132, 146-147. (6) Am J Clin Nutr. online Jan. 24, 2015.

Dr. Dunaief is a speaker, author and local lifestyle medicine physician focusing on the integration of medicine, nutrition, fitness and stress management. For further information, visit www.medicalcompassmd.com or consult your personal physician.   

Hypothyroidism is a condition in which the thyroid gland is not able to produce enough thyroid hormone. Stock photo
Treatment doesn’t always result in weight loss
Dr. David Dunaief

By David Dunaief, M.D.

Many refer to hypothyroidism as a potential cause for weight gain and low energy. But do we really know what it is and why it is important?

The thyroid is a butterfly-shaped organ responsible for maintaining our metabolism. It sits at the base of the neck, just below the laryngeal prominence, or Adam’s apple. The prefix “hypo,” derived from Greek, means “under” (1). Therefore, hypothyroidism indicates an underactive thyroid and results in slowing of the metabolism.

Blood tests determine if a person has hypothyroidism. Items that are tested include thyroid stimulating hormone (TSH), which is usually increased, thyroxine (free T4) and triiodothyronine (free T3 or T3 uptake). Both of these last two may be suppressed (2).

There are two types of primary hypothyroidism: subclinical and overt. In the overt (more obvious) type, classic symptoms include weight gain, fatigue, thinning hair, cold intolerance, dry skin and depression, as well as the changes in all three thyroid hormones on blood tests mentioned above. In the subclinical, there may be less obvious or vague symptoms and only changes in the TSH. The subclinical can progress to the overt stage rapidly in some cases (3). Subclinical is substantially more common than overt; its prevalence may be as high as 10 percent of the U.S. population (4).

Potential causes or risk factors for hypothyroidism are medications, including lithium; autoimmune diseases, whether personal or in the family history; pregnancy, though it tends to be transient; and treatments for hyperthyroidism (overactive thyroid), including surgery and radiation.

The most common type of hypothyroidism is Hashimoto’s thyroiditis, where antibodies attack thyroid gland tissues (5). Several blood tests are useful to determine if a patient has Hashimoto’s: thyroid peroxidase (TPO) antibodies and antithyroglobulin antibodies.

Myths versus realities

I would like to separate the myths from the realities with hypothyroidism. Does treating hypothyroidism help with weight loss? Not necessarily. Is soy potentially bad for the thyroid? Yes. Does coffee affect thyroid medication? Maybe. Let’s look at the evidence.

Medications

Levothyroxine and Armour Thyroid are two main medications for hypothyroidism. The difference is that Armour Thyroid converts T4 into T3, while levothyroxine does not. Therefore, one medication may be more appropriate than the other, depending on the circumstance. T3 can also be given with levothyroxine, which is similar to using Armour Thyroid.

What about supplements?

A study tested 10 different thyroid support supplements; the results were downright disappointing, if not a bit scary (6). Of the supplements tested, 90 percent contained actual medication, some to levels higher than what are found in prescription medications. These supplements could cause toxic effects on the thyroid, called thyrotoxicosis. Supplements are not FDA-regulated; therefore, they are not held to the same standards as medications. There is a narrow therapeutic window when it comes to the appropriate medication dosage for treating hypothyroidism, and it is sensitive. Therefore, if you are going to consider using supplements, check with your doctor and tread very lightly.

Soy impact

In a randomized controlled trial, the treatment group that received higher amounts of soy supplementation had a threefold greater risk of conversion from subclinical hypothyroidism to overt hypothyroidism than those who received considerably less supplementation (7). According to this small, yet well-designed, study, soy has a negative impact on the thyroid. Therefore, those with hypothyroidism may want to minimize or avoid soy.

The reason that soy may have this negative impact was illustrated in a study involving rat thyrocytes (thyroid cells) (8). Researchers found that soy isoflavones, especially genistein, which are usually beneficial, may contribute to autoimmune thyroid disease, such as Hashimoto’s thyroiditis. They also found that soy may inhibit the absorption of iodide in the thyroid.

Weight loss

Wouldn’t it be nice if the silver lining of hypothyroidism is that, with medication to treat the disease, we were guaranteed to lose weight? In a retrospective study, results showed that only about half of those treated with medication for hypothyroidism lost weight (9). This was a small study, and we need a large randomized controlled trial to test it further.

WARNING: The FDA has a black box warning on thyroid medications — they should never be used as weight loss drugs (10). They could put a patient in a hyperthyroid state or worse, having potentially catastrophic results.

Coffee

Taking levothyroxine and coffee together may decrease the absorption of levothyroxine significantly, according to one study (11). It did not seem to matter whether they were taken together or an hour apart. This was a very small study involving only eight patients. Still, I recommend avoiding coffee for several hours after taking the medication.

There are two take-home points, if you have hypothyroid issues: Try to avoid soy products, and don’t think supplements that claim to be thyroid support and good for you are harmless because they are over the counter and “natural.” In my clinical experience, an anti-inflammatory, vegetable-rich diet helps improve quality of life issues, especially fatigue and weight gain, for those with Hashimoto’s thyroiditis.

References:

(1) dictionary.com. (2) nlm.nih.gov. (3) Endocr Pract. 2005;11:115-119. (4) Arch Intern Med. 2000;160:526-534. (5) mayoclinic.org. (6) Thyroid. 2013;23:1233-1237. (7) J Clin Endocrinol Metab. 2011 May;96:1442-1449. (8) Exp Biol Med (Maywood). 2013;238:623-630. (9) American Thyroid Association. 2013;Abstract 185. (10) FDA.gov. (11) Thyroid. 2008;18:293-301.

Dr. Dunaief is a speaker, author and local lifestyle medicine physician focusing on the integration of medicine, nutrition, fitness and stress management. For further information, visit www.medicalcompassmd.com or consult your personal physician.     

٭We invite you to check out our weekly Medical Compass MD Health Videos on Times Beacon Record News Media’s website, www.tbrnewsmedia.com.٭