Tags Posts tagged with "Peng Zhang"

Peng Zhang

Above, an AI-Grid prototype that is being built by the research team. Image courtesy of Stony Brook Power Lab

By Daniel Dunaief

The Department of Energy is energized by the possibility of developing and enhancing microgrids.

What are microgrids? They are autonomous local power systems that have small, independent and often decentralized energy sources. Often, they use renewable energy, like wind or solar power, although some use natural gas or diesel.

The DOE’s dedication to developing these microgrids may cut costs, create efficiencies and enhance energy reliability.

Peng Zhang. Photo from SBU

Peng Zhang, SUNY Empire Innovation Professor in the Department of Electrical and Computer Engineering at Stony Brook University, is leading a diverse team of researchers and industry experts who received $5 million of a $50 million investment the DOE recently made to developing, enhancing and improving microgrid technology.

Bringing together these energy experts, Zhang hopes to use artificial intelligence to create a usable, reliable and efficient source of energy, particularly during periods of power outages or disruption to the main source of energy.

“The traditional microgrid operation is based on models and human operators,” Zhang said. “We developed this data-driven or AI-based approach.”

Artificial intelligence can enhance the safety and reliability of microgrids that can receive and transmit power.

One of the objectives of the systems Zhang and his collaborators are developing will include protecting the power supplies against faults, accidents from natural disasters and cyberattacks.

“This project led by Professor Zhang is a great example demonstrating the impact of this novel research on essential infrastructure that we rely on daily,” Richard Reeder, Vice President for Research at Stony Brook University, said in a statement.

Zhang said he has verified the methods for this AI-driven approach in the lab and in a simulation environment.

“Now, it’s time to demonstrate that in more realistic, microgrid settings,” he said. He is working with microgrid representatives in Connecticut, Illinois and New York City. His team will soon work with a few representative microgrids to establish a more realistic testing environment.

The urgency to demonstrate the feasibility of this approach is high. “We need to kick the project off immediately,” said Zhang, whose team is recruiting students, postdocs, administrative staff and technicians to meet a two-year timeline.

The group hopes AI-grids can be used in different microgrids around the country. If the platform is generic enough, it can have wide applications without requiring significant modifications.

While operators of a microgrid might be able to know the ongoing status, they normally are not able to respond to contingencies manually. “It’s impossible for the operator to know the ongoing status” of power sources and power use that can change readily, Zhang explained. “That’s why we had to rely on a data driven approach.”

Additionally, end users of electricity don’t necessarily want their neighbors to know about their power needs. They may not want others who are using the same microgrid system to know what appliances or hardware are in their homes.

Instead, the system will rely on the data collected within each microgrid, which reflects the behavior at different intervals. Those energy needs can change, as people turn on a TV or unplug a wind turbine.

At the same time, the power system load and generation need to remain in balance. Microgrids that produce more energy than the system or end users need can send them to a utility grid or to neighboring microds or communities. If they don’t send that energy to others who might use it, they can lose some of that energy.

Power needs to be balanced between supply and demand. Storage systems can buffer an energy imbalance, although the cost of such storage is still high. Researchers in other departments at Stony Brook and Brookhaven National Laboratory are pursuing ways to improve efficiencies and reduce energy storage costs.

Balancing energy is challenging in most microgrids, which rely on intermittent and uncertain renewable energy sources such as sunlight. In this project, Zhang plans to connect several microgrids together into a “mega microgrid system,” that can allow any system with a surplus to push extra energy into one with a deficiency.

Microgrids aren’t currently designed to replace utilities. They may reduce electricity bills during normal operations and can become more useful during emergencies when supplies from utilities are lower.

While artificial intelligence actively runs the system, people are still involved in these programmable microgrids and can override any recommendations.

In addition to having an alarm in the event that a system is unsafe or unstable, the systems have controllers in place who can restore the system to safer functioning. The programming is flexible enough to change to meet any utility needs that differ from the original code.

In terms of cybersecurity, the system will have three lines of defense to protect against hacking.

By scanning, the system can localize an attack and mitigate it. Even if a hacker disabled one controller, the control function would pop up in a different place to replace it, which would increase the cost for the attacker.

Stony Brook created a crypto control system. “If an attacker got into our system, all the information would be useless, because he would not understand what this signal is about,” Zhang said.

While he plans to publish research from his efforts, Zhang said he and others would be careful in what they released to avoid providing hackers with information they could use to corrupt the system.

For Zhang, one of the appeals of coming to Stony Brook, where he arrived two years ago and was promoted last month to Professor from Associate Professor, was that the university has one of the best and best-funded microgrid programs in the country.

Zhang feels like he’s settled into the Stony Brook community, benefiting from interacting with his neighbors at home and with a wide range of colleagues at work. He appreciates how top scholars at the Massachusetts Institute of Technology, Harvard and national labs have proactively approached Stony Brook to establish collaborations.

Zhang is currently discussing a Phase II collaboration on a microgrid project with the Navy, which has funded his research since his arrival. “Given the federal support [from the Navy], I was able to recruit top people in the lab,” he said, including students from Columbia and Tsinghua University.

Peng Zhang, center, with four of his students from his power systems class, from left, Marissa Simonelli, Ethan Freund, Kelly Higinbotham and Zachary Sola, who were selected as IEEE Power and Engergy Scholars in 2017. Photo by Mary McCarthy

By Daniel Dunaief

If Peng Zhang succeeds in his work, customers on Long Island and elsewhere will no longer lose power for days or even hours after violent storms.

One of the newest additions to the Department of Electrical and Computer Engineering at Stony Brook University, Zhang, who is the SUNY Empire Innovation associate professor, is enhancing the resiliency and reliability of microgrids that may be adaptable enough to provide energy to heat and light a home despite natural or man-made disruptions. Unlike the typical distributed energy network of most utilities around the country, microgrids are localized and can function on their own.

Peng Zhang. Photo from SBU

A microgrid is a “central theme of our research,” said Zhang, who joined Stony Brook at the beginning of September. “Even when a utility grid is down because of a hurricane or an attack, a microgrid is still able to supply the local customers” with power. He is also using quantum information science and quantum engineering to empower a resilient power grid.

Zhang expects that the microgrid and utility grid will be more resilient, stable and reliable than the current system. A microgrid will provide reliable power even when a main grid is offline. The microgrid wouldn’t replace the function of the grid in the near future, but would enhance the electricity resilience for customers when the central utility is unavailable or unstable.

Part of his motivation in working in this field comes from his own experience with a weather-related loss of power. 

Even though Zhang, who used his training in mathematics to develop an expertise in power systems, had been working on wind farms and their grid integration, he decided after Hurricane Irene and a nor’easter that he should do more research on how to restore power after a utility became unavailable.

Irene hit in August, while the nor’easter knocked out power in the winter. After the storms, Northeast Utilities, which is currently called Eversource Energy, asked him to lead a project to recommend solutions to weather-induced outages.

Zhang plans to publish a book through Cambridge University Press this year called “Networked Microgrids,” which not only includes his previous results but also presents his vision for the future, including microgrids that are self-healing, self-protected, self-reconfiguring and autonomous.

He recognizes that microgrids, which are becoming increasingly popular in the energy community, present a number of challenges for customers. For starters, the cost, at this point, for consumers can be prohibitively high.

Zhang can cut those expenses, however, by replacing hardware upgrades with software, enabling more of the current system to function with greater resilience without requiring as many costly hardware modifications.

His National Science Foundation project on programmable microgrids will last until next year. He believes he will be able to verify most of the prototypes for the programmable microgrid functions by then.

Zhang called advances in energy storage a “key component” that could improve the way microgrids control and distribute power. Energy storage can help stabilize and improve the resilience of microgrids.

He is eager to work with Esther Takeuchi, who has dual appointments at Stony Brook University and Brookhaven National Laboratory, not only on microgrid technologies but also on renewable integration in the transmission grid.

Zhang appreciates SBU’s reputation in physics, applied math, computer science and electrical and computer engineering. When he was young, he said he also heard about and saw Chen-Ning Yang, whom he described as a model and legend.

“I feel proud and honored to be working at Stony Brook where Dr. Yang taught for more than three decades,” he stated in an email.

In his lab, Zhang has six doctoral students, one visiting doctoral student and two master’s students. A postdoctoral researcher, Yifan Zhou, who worked with him at the University of Connecticut, will soon join his Long Island lab.

Zhang, who earned doctorates from Tsinghua University and the University of British Columbia, brought along a few grants from the University of Connecticut where he held two distinguished titles.

Zhang has “high expectations for the people who work for him,” Peter Luh, a board of trustees distinguished professor at the University of Connecticut, explained in an email. “However, he is considerate and helps them achieve their goals.”

Zhou, who comes from Tsinghua University, is working with him on stability issues in microgrids to guarantee their performance under any possible scenario, from a major storm to a cyberattack.

Zhang is working with Scott Smolka and Scott Stoller, both in the Computer Science Department  at Stony Brook, on resilient microgrids

“We are planning to use simulations and more rigorous methods for formal mathematical analysis of cyberphysical systems to verify resiliency properties in the presence of fault or attacks,” said Stoller who described Zhang as a “distinguished expert on electric power systems and especially microgrids. His move to Stony Brook brings significant new expertise to the university.”

The Stony Brook scientists have created an exercise in which they attack his software systems, while he tries to ensure its ongoing reliability. Zhang will develop defense strategies to guarantee the resilience and safety of the microgrids.

Zhang was born in Shandong Province in China. He is married to Helen Wang, who works for a nonprofit corporation as an electrical engineer. The power couple has three sons: William, 13, Henry 10, and Benjamin, 8. They are hoping their sons benefit from the public school system on Long Island.

Zhang’s five-year goal for his work involves building an institute for power engineering, which will focus on microgrids and other future technologies. This institute could have 20 to 30 doctoral students.

An ambitious researcher, Zhang would like to be the leader in microgrid research in the country. “My goal is to make Stony Brook the top player in microgrid research in the U.S.,” he said.

Meng Yue, scientist in the Sustainable Energy Technologies Department at Brookhaven National Laboratory who has been collaborating with Zhang for over five years, anticipates that Zhang’s research will help consumers.

“As New York State has more aggressive renewable portfolio, I believe the research achievements will soon advance technologies in the power grid application,” he said.