Scientists in CERN Geneva find the ‘God particle’

Scientists in CERN Geneva find the ‘God particle’

by -
0 859

Physicists from SBU and BNL comment on finding the ‘missing link’ between theory and reality

A quest over 40 years in the making finally ended recently, as physicists announced they had found a subatomic (read: extremely tiny) particle that had become the missing link between the theory and reality of the origins of mass in the universe.

Billions of years ago, the universe was filled with energy, but not mass. That meant there were plenty of particles racing around, through and past each other, but none of them had the kind of mass that would allow them to become planets, beds or hot fudge sundaes.

In 1964, a group of physicists, led by Peter Higgs, suggested there was an energy field that gave some particles mass, albeit for the briefest of time. Physicists have been slamming highly charged particles into each other, hoping to find this elusive Higgs boson particle.

With the words, “I think we have it,” Rolf-Dieter Heuer, the director-general for the European Organization for Nuclear Research, suggested they’d found what was like looking for the dissolving pieces of a needle in a hay field.

While it’s not exactly as poetic as Neil Armstrong’s “one small step for a man, one giant leap for mankind,” the words heralding the discovery of the so-called “God particle” have generated considerable excitement in the world of science in general and physicists in particular.

Stony Brook physics professor John Hobbs and Brookhaven National Laboratory senior physicist Howard Gordon were watching from their home computers in the early morning hours of July 4 when the official announcement arrived.

When the audience at the CERN Particle Physics Centre near Geneva erupted in applause as scientists described the result as five sigma (a threshold for statistical significance — the equivalent of a mathematical reality test), “I got a tear in my eye,” recalled Gordon.
“I was very satisfied,” explained Hobbs. “This has been the pursuit of many people for a long time.”

The Higgs boson theory, which five other physicists proposed along with Higgs, suggested energy passed through a Higgs field, attracting other particles along the way. Some scientists describe this field as being like molasses that sticks to the particle or like a snowball rolling down a hill, attracting other pieces of snow.

After that particle obtained mass, it quickly reverted to a state of energy, giving it mass for only a short time. To find the so-called Higgs boson particle, scientists needed to look for decaying pieces of it and then put those back together.

“Any time you have a massive particle of any sort, unless there are things which prevent its decaying, it will naturally do so,” explained Hobbs. “In the case of Higgs boson, there are many ways it can decay.”

One of the challenges of finding the Higgs boson particle was that its mass could be in a broad range.

“Previous experiments had ruled out Higgs below 114 GeV (gigaelectronvolts),” explained Gordon, but it could still be anywhere higher than that, up to 600 GeV or more.

Results from CERN found that the elusive particle was at a mass close to 125 GeV.

So, after all these years of searching for something scientists had predicted would be there, does this change the world?
Scientists suggest the answer is: no and yes. It doesn’t affect the cost of gas, speed up a slow Internet connection or lower the unemployment rate — at least, not yet.

Like other basic research, however, it does provide an answer to questions about the universe.

“We have now validated what we think about how the basic building blocks of matter got their mass,” said Barbara Jacak, a distinguished professor of physics at Stony Brook and member of the National Academy of Sciences. “I don’t know how that’s going to affect our daily life, but I suspect it will. If you think about earlier discoveries in physics that seemed basic, people figured out how to build smaller [electronic] devices. I’d be willing to bet this will end up driving new technology somewhere.”

Even before it does, however, it is likely to lead to a whole new set of fundamental questions, including about such things as dark matter, which comprises over three-quarters of the universe.

“We’ll use this to address another set of questions,” explained Hobbs. As such, it’s both “an end and a beginning at the same time. It is not the end of the questions by any means. It is a very significant waypoint along the route.”