Tags Posts tagged with "Olivia Tourney Flatto"

Olivia Tourney Flatto

Camila dos Santos speaks at the Pershing Square Research Alliance’s Fifth Annual Prize Dinner at the Park Avenue Armory on May 23 with Bill Ackman, co-founder of the Pershing Square Sohn Foundation and CEO of Pershing Square Capital Management, and Olivia Tournay Flatto, the President of the Pershing Square Foundation.

By Daniel Dunaief

They aren’t quite wonder twins, but some day the dedicated work of husband and wife scientists Christopher Vakoc and Camila dos Santos may help people batting against a range of cancers, from leukemia to breast cancer.

An assistant professor at Cold Spring Harbor Laboratory, dos Santos recently won the prestigious and highly coveted Pershing Square Sohn prize. Dos Santos, who studies breast cancer, will receive $200,000 in funds per year for the next three years. She won the same prize her husband, an associate professor at Cold Spring Harbor Laboratory, collected two years earlier for his work using the gene-editing technique CRISPR to study the molecular pathways involved in leukemia.

Dos Santos and Vakoc are the first family of prize winners in the Pershing Square Foundation’s five years of supporting research in the New York area.“The board was very much taken by how original her approach is and how thoughtful she is about it,” said Olivia Tournay Flatto, president of the foundation. “There was a lot of early stage data that would say that the observations she’s making are interesting to pursue, but that the National Institutes of Health would not fund. We felt this was something we wanted to be a part of.”

Dos Santos is studying so-called epigenetic changes that protect women from breast cancer if they become pregnant before they are 25. Women who have pregnancies before that cut-off age have a 30 to 40 percent decrease in breast cancer, even decades after their pregnancy.

Dos Santos has been digging into this process, looking at why some women who are pregnant before this age still develop breast cancer later in life.

The Cold Spring Harbor scientist is exploring how infections block the protective effects of pregnancy. She hasn’t defined the panel of infections that could influence cancer risk before or after pregnancy. The hypothesis in her work is that “the whole process that is fighting inflammation could change the breast cells,” which could “take away the advantage that pregnancy brings.”

If she proves her theory — that changes to inflammation could take away benefits of an early pregnancy — she could define changes to proteins and genes as biomarkers to predict the risk of breast cancer, even in the event of an early pregnancy. One of the challenges in the three-step application process for this prize was to explain to a group of experts how what she’s doing was different from what others are pursuing. Her approach is to look at cells before and during the process of turning into cancer cells. That strategy led to the current hypothesis, which was the basis for her application for this prize.

To study breast cancer, dos Santos recently developed a mouse model in her lab, to see how pregnancy changes pre-malignant lesions. When the mice they are studying have a gene that would turn into cancer, some of them don’t develop cancer if they’ve already been pregnant. Those mice that haven’t been pregnant develop cancer. She uses this mouse model to ask questions about how pregnancy changes a cell such that oncogenes cannot operate to change a cell into a cancer.

“We are not only investigating how prevention works, but we are also learning what signals break that prevention,” dos Santos said.

Dos Santos has used the mouse model experiments to test an unusual element to human breast cancer resistance. Women who reach their second trimester before 25, but don’t give birth to a child, have the same resistance, decades later, to breast cancer. Mice whose pregnancies last through the equivalent of the second trimester also experience similar epigenetic benefits.

She has tested mice who have a pseudo-pregnancy —who have higher pregnancy hormone levels without being pregnant — to see if a similar pregnancy environment would convey the same resistance. “Even in those cases, with no fetus, no embryo, no birth and no nursing, we see that the epigenetics changes,” dos Santos said. The scientist plans to use the funds from this award to perform high-tech experiments, such as single-cell, multiple mouse models and human tissue analysis that she wouldn’t have been able to tackle without the funding.

Dos Santos is grateful for the funding, which she said she wouldn’t have been able to secure through other means based on “the stage we are right now,” she said. The work is “risky” and “provocative,” but it’s also “outside of the box ideas and experiments and approaches.”

When she puts all the variants together, the risky outcome could be beneficial, leading to a better understanding of how to copy or, perhaps, understand nature to try to cure or prevent cancer.

Dos Santos said she learned about the award when she was on a train on the way to Jamaica, where she was catching a flight to Washington, D.C. She said she turned into a “texting machine,” sharing the good news with everyone, including her husband Vakoc, who called her as soon as he saw the news. “He was super happy,” she recalled.

She said Vakoc was particularly helpful in discussing the work and in watching their sons Lucas and Marcus who are 8 and 5, respectively. She also received some unexpected help from him before an extensive seven- to eight-minute finalist screening process.

She asked him about the interview, and he remembered that there were five people in the audience and that he didn’t get that many questions. When she appeared for her interview, she saw about 25 people in the audience and received numerous questions. In a way, she said, his memory of his experience may have helped her, because she didn’t have time to worry about the size of the audience or the number of questions.

Dos Santos said their sons are proud of their parents for winning awards for their work on cancer.

When her sons are upset with dos Santos, they sometimes warn, reflecting their parents’ threat to take away TV, that they’re going to “take your epigenetics away.”

Dos Santos said the couple maintains a healthy work-life balance. She is grateful for her husband’s support, as well as for the environment and expertise at Cold Spring Harbor Laboratory.

“Here at the lab, we not only have the technology to move this forward, but we also have a pretty outstanding body of scientists that are very collaborative,” she said.

From left, Evan Sohn, co-founder of the Sohn Conference Foundation; Benjamin Martin, associate professor at Stony Brook University; and Bill Ackman, co-founder of the Pershing Square Foundation and CEO of Pershing Square Capital Management at an awards dinner. Photo by Melanie Einzig/PSSCRA

By Daniel Dunaief

Up and coming scientists are often stuck in the same position as promising professionals in other fields. To get the funding for research they’d like to do, they need to show results, but to get results, they need funding. Joseph Heller, author of “Catch 22,” would certainly relate.

A New York-based philanthropy called the Pershing Square Sohn Cancer Research Alliance is seeking to fill that gap, providing seven New York scientists with $600,000 each over the course of three years.

In the fifth annual competition, Benjamin Martin, an associate professor in the Department of Biochemistry & Cell Biology at Stony Brook University, won an award for his study of zebrafish models of metastatic cancer. Martin is the first Stony Brook researcher to win the prize.

Working with Assistant Professor David Matus, whose lab is across the hall and whose research team conducts weekly group meetings with Martin’s lab, Martin is able to see in real time the way grafted human tumor cells spread through blood vessels to other organs in the transparent zebrafish.

“It’s been very challenging to understand what process cancer cells are using to metastasize and leave the blood vessels,” said Olivia Tournay Flatto, the president of the Pershing Square Foundation. “With this technology, he can see what’s happening. It’s a really powerful tool.”

The work Martin presented was “really appealing to the whole board, and everybody felt this kind of project” had the potential to bring data and insights about a process researchers hope one day to slow down or stop, said Flatto.

This year, about 60 early-stage investigators applied for an award given specifically to researchers in the New York City area. When he learned that he won, Martin said, “There was some dancing going on in the living room.” He suggested that the award is a “validation” of his research work.

The process of a cancer cell leaving a blood vessel is “basically a black box” in terms of the mechanism, Martin said. It’s one of the least understood aspects of metastasis, he added.

Indeed, a developmental biologist by training, Martin is hoping to discover basics about this cancer-spreading process, such as an understanding of how long it takes for cancer cells to leave blood vessels. The process can take hours, although it’s unclear whether what he’s seen is typical or abnormal.

Martin would like to identify how the cancer cells adhere to the blood vessel walls and how and why they leave once they’ve reached their target.

Metastatic cancer is likely using the same mechanism the immune system uses to travel to the sites of infection, although researchers still need to confirm several aspects of this model.

Moving in involves interactions with white blood cells, including macrophages. With white blood cells, an area of infection or inflammation becomes activated, which triggers a reaction of adhesion molecules called selectins.

By watching a similar transport process in cancer, Martin and Matus can “see things people haven’t seen before” and can explore way to inhibit the process, Martin suggested.

He is hoping to find ways to stop this process, forcing cancer cells to remain in the blood vessels. While he doesn’t know the outcome of a cancer cell’s prolonged stay in the vessel, he predicts it might end up dying after a while. This approach could be combined with other therapies to force the cancer cells to die, while preventing them from spreading.

Through this grant, Martin will also study how drugs or mutations in selectins generate a loss of function in these proteins, which affects the ability of cancers to leave the blood vessel.

Martin plans to use the funds he will receive to hire more postdoctoral researchers and graduate students. He will also purchase additional imaging equipment to enhance the ability to gather information.

Martin appreciates that this kind of research, while promising, doesn’t often receive funding through traditional federal agencies. This type of work is often done on a mouse, which is, like humans, a mammal. The enormous advantage to the zebrafish, however, is that it allows researchers to observe the movement of these cancer cells, which they couldn’t do in the hair-covered rodent, which has opaque tissues.

“There’s a risk that these experiments may not work out as we planned,” Martin said. He is hopeful that the experiments will succeed, but even if they don’t, the researchers will “learn a great deal just from seeing behaviors that have not been observed before.”

Indeed, this is exactly the kind of project the Pershing Square Sohn Cancer Research Alliance seeks to fund. They want scientists to “put forward the riskiest projects,” Flatto said. “We are ready to take a chance” on them.

One of the benefits of securing the funding is that the alliance offers researchers a chance to connect with venture capitalists and commercial efforts. These projects could take 20 years or more to go from the initial concept to a product doctors or scientists could use with human patients.

“We are not necessarily focused on them starting a company,” Flatto said. “We think some of those projects will be able to be translated into something for the patient,” which could be through a diagnosis, prevention or treatment. “This platform is helpful for young investigators to be well positioned to find the right partners,” he added.

Aaron Neiman, the chairman of the Department of Biochemistry & Cell Biology at SBU, suggested that this award was beneficial to his department and the university.

“It definitely helps with the visibility of the department,” Neiman said. The approach Matus and Martin are taking is a “paradigm shift” because it involves tackling cells that aren’t dividing, while many other cancer fighting research focuses on halting cancer cells that are dividing.

Neiman praised the work Martin and Matus are doing, suggesting that “they can see things that they couldn’t see before, and that’s going to create new questions and new ideas,” and that their work creates the opportunity to “find something no one knew about before.”