Tags Posts tagged with "Planets"

Planets

by -
0 1922
BNL’s Peter Guida with Daniela Trani, a summer school student at the NASA Space Radiation Lab. Photo from BNL

Ferdinand Magellan didn’t have the luxury of sending a machine into the unknown around the world before he took to the seas. Modern humans, however, dispatch satellites, rovers and orbiters into the farthest reaches of the universe. Several months after the New Horizons spacecraft beamed back the first close-up images of Pluto from over three billion miles away, NASA confirmed the presence of water on Mars.

The Mars discovery continues the excitement over the possibility of sending astronauts to the Red Planet as early as the 2030s.

Before astronauts can take a journey between planets that average 140 million miles apart, scientists need to figure out the health effects of prolonged exposure to damaging radiation.

Each year, liaison biologist Peter Guida at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory coordinates the visits of over 400 scientists to a facility designed to determine, among other things, what radiation does to the human body and to find possible prevention or treatment for any damage.

Guida is working to “improve our understanding of the effects that space radiation from cosmic rays have on humans,” explained Michael Sivertz, a physicist at the same facility. “He would like to make sure that voyages to Mars do not have to be one-way trips.”

Guida said radiation induces un-repaired and mis-repaired DNA damage. Enough accumulated mutations can cause cancer. Radiation also induces reactive oxygen species and produces secondary damage that is like aging.

The results from these experiments could provide insights that lead to a better understanding of diseases in general and may reveal potential targets for treatment.

This type of research could help those who battle cancer, neurological defects or other health challenges, Guida said.

By observing the molecular changes tissues and cells grown in the lab undergo in model systems as they transition from healthy to cancerous, researchers can look to protect or restore genetic systems that might be especially vulnerable.

If the work done at the NSRL uncovers some of those genetic steps, it could also provide researchers and, down the road, doctors with a way of using those genes as predictors of cancer or can offer guidance in tailoring individualized medical treatment based on the molecular signature of a developing cancer, Guida suggested.

Guida conducts research on neural progenitor cells, which can create other types of cells in the nervous system, such as astrocytes. He also triggers differentiation in these cells and works with mature neurons. He has collaborated with Roger M. Loria, a professor in microbiology and immunology at Virginia Commonwealth University, on a compound that reverses the damage from radiation on the hematological, or blood, system.

The compound can increase red blood cells, hemoglobin and platelet counts even after exposure to some radiation. It also increases monocytes and the number of bone marrow cells. A treatment like this might be like having the equivalent of a fire extinguisher nearby, not only for astronauts but also for those who might be exposed to radiation through accidents like Fukushima or Chernobyl or in the event of a deliberate act.

Loria is conducting tests for Food and Drug Administration approval, Guida said.

If this compound helps astronauts, it might also have applications for other health challenges, although any other uses would require careful testing.

While Guida conducts and collaborates on research, he spends the majority of his time ensuring that the NSRL is meeting NASA’s scientific goals and objectives by supporting the research of investigators who conduct their studies at the site. He and a team of support personnel at NSRL set up the labs and equipment for these visiting scientists. He also schedules time on the beam line that generates ionizing particles.

Guida is “very well respected within the space radiation community, which is why he was chosen to have such responsibility,” said Sivertz, who has known Guida for a decade.

Guida and his wife Susan, a therapist who is in private practice, live in Searingtown.

While Guida recalls making a drawing in crayon after watching Neil Armstrong land on the moon, he didn’t seek out an opportunity at BNL because of a long-standing interest in space. Rather, his scientific interest stemmed from a desire to contribute to cancer research.

When he was 15, his mother Jennie, who was a seamstress, died after a two-year battle with cancer. Guida started out his career at Cold Spring Harbor Laboratory, where he hoped to make at least the “tiniest contribution” to cancer research.

He pursued postdoctoral research at BNL to study the link between mutations, radiation and cancer.

Guida feels as if he’s contributed to cancer research and likes to think his mother is proud of him. “Like a good scientist,” though, he said he’s “never satisfied. Good science creates the need to do more good science. When you find something out, that naturally leads to more questions.”

File photo by Elana Glowatz

Skygazers are in for a special treat this weekend — for the first time in 33 years, there will be a supermoon eclipse.

A supermoon occurs when a full moon reaches the point in its orbit that is closest to Earth, known as its perigee, which happens a handful of times a year. The proximity — of about 222,000 miles — makes the moon look brighter, and it appears about 14 percent larger.

The supermoon on Sept. 27 and 28 will coincide with a total lunar eclipse, which occurs when the moon passes through Earth’s shadow, covering its surface in a red tint.

That red tint occurs because of the refraction of light through Earth’s atmosphere on its way to the moon.

According to NASA, a supermoon eclipse is a rare event. It has happened only five times since the beginning of the 20th century — in 1910, 1928, 1946, 1964 and 1982 — and those who miss it this weekend will not have another chance to catch it until 2033.

As a bonus, it will also be a harvest moon, which is the full moon closest to the autumnal equinox on Sept. 23.

On the East Coast, a partial eclipse will begin at 9:07 p.m. on Sept. 27, according to NASA, with the total eclipse beginning at 10:11 p.m. It will last a little more than an hour before returning to a partial eclipse. The full event will end at 12:27 a.m. on Sept. 28.

At the time the partial eclipse begins for New York viewers, the \moon will be about 26 degrees above the horizon, in the east southeast direction. It will gradually move higher and southward in the sky, so that at the time the partial eclipse ends after midnight, the moon will be about 50 degrees above the horizon to the south.

This view, from 478,000 miles, shows that Pluto is home to huge, 11,000-foot tall mountains, most likely composed of ice and frozen methane and nitrogen. The lack of impact craters suggests that Pluto’s surface is young, probably less than 100 million years old. Courtesy of NASA/APL/SwRI

When Alan Calder was young, his father used to share the world of the planets and stars with him through telescopes in their backyard. Peter Tarr, meanwhile, drew pictures in his teenage notebooks of Saturn and Jupiter and saved enough money to travel to Africa aboard a ship with Neil Armstrong to view a solar eclipse.

This past week, Calder, Tarr, and many others who have craned their necks skyward received the first set of clear images from Pluto, a dwarf planet located more than three billion miles from Earth.

The New Horizons space probe, which the National Aeronautics and Space Administration blasted off from Earth in 2006, beamed back the first pictures of a dwarf planet that had, up until recently, been considered something of a gray, icy blob.

Traveling at the speed of light, the images took four and a half hours to reach the eager eyes of astronomers and scientists around the world. Long Islanders shared the excitement surrounding these first close-up views of a planet named, by then 11-year old Venetia Burney, more than eight decades ago.

“Our imaginations tend to fail us” when anticipating what’s around the corner or, more precisely, billions of miles away, said Frederick Walter, a professor of astronomy who specializes in stars and teaches a solar system course at Stony Brook. Pluto “doesn’t look like any of the worlds we know.”

Astronomers have zeroed in on the 11,000 foot high ice mountains, which, NASA scientists said, are likely made of a combination of ice and frozen methane and nitrogen.

The show stopper in these early images, however, was the lack of something many of them were sure would be there: impact craters. These craters are like the ones that riddle the surface of Earth’s moon and that have also affected the geology of our planet.

New Horizons captured this stunning image, on July 13, of one of Pluto’s most dominant features, the “heart.” It’s estimated to be 1,000 miles across at its widest point and rests just above the equator. The heart’s diameter is about the same distance as from Denver to Chicago. Courtesy of NASA/APL/SwRI
New Horizons captured this stunning image, on July 13, of one of Pluto’s most dominant features, the “heart.” It’s estimated to be 1,000 miles across at its widest point and rests just above the equator. The heart’s diameter is about the same distance as from Denver to Chicago. Courtesy of NASA/APL/SwRI

“Some process has been resurfacing this planet, to smooth it out and get rid of whatever craters it should have,” said Deanne Rogers, an assistant professor in the Department of Geosciences at Stony Brook. “That was a real surprise for me.”

At this point, any explanation of the process that might melt and smooth out the surface of a planet that takes 248 years to orbit the sun is speculation, Rogers added.

One such possibility is the presence of radioactive elements, researchers said.

Calder, who is an associate professor in the Department of Physics and Astronomy at Stony Brook, said he, too, is “intrigued by what seems to be the smooth surface of the planet. That implies an active geology.”

Calder’s research is in the field of star explosions. He said the images and information from Pluto wouldn’t impact his work too directly, unless scientists were able to show an interesting ratio of unexpected isotopes.

Calder said he’s looking forward to watching the textbooks change and seeing an alteration in the curriculum of classes on the solar system in light of the new images from the New Horizons satellite that are returning at such a slow pace that it will take 16 months for NASA to collect them all.

The active geology of this distant dwarf planet suggests that “even a small cold body that far out has activity on it,” Calder said.

For Tarr, a senior science writer at Cold Spring Harbor Laboratory, his interest in the planets date back to his teens. Traveling aboard a boat toward Africa to observe a solar eclipse, Tarr rubbed elbows with author Isaac Asimov, astronaut Armstrong, thousands of others interested in astronomy and fellow teenager Neil deGrasse Tyson, who would become an astrophysicist, author and director of the Hayden Planetarium.

For Tarr, some of the heroes of the Pluto images are the scientists who figured out, more than a decade ago, how to plot a course from Earth that would take the New Horizons spacecraft within 7,800 miles of Pluto.

“The calculation that goes into the launch is an incredible achievement,” Tarr said.

For Walter, part of the excitement of seeing these images comes from interpreting and understanding the unexpected parts of the picture.

“If you anticipated everything, you’d be doing the wrong thing,” Walter said. “Now that they’ve got these images” some of the old ideas will get “tossed out, and they’ll bring in something new” to explain the lack of craters, he added.