Tags Posts tagged with "James Misewich"

James Misewich

James Misewich Photo from BNL

By Daniel Dunaief

Even as the pandemic continues to cast a pall over the prospects for the economy, the federal government is finding ways to support science. Recently, as a part of a $625 billion award to a host of institutions, the Department of Energy earmarked $115 million over five years for a part of a project led by Brookhaven National Laboratory.

The science, called quantum information systems, could have applications in a wide range of industries, from health care to defense to communications, enabling higher levels of artificial intelligence than the current binary system computers have used for decades. By benefiting from the range of options between the 0s and 1s that typically dictate computer codes, researchers can speed up and enhance the development of programs that use artificial intelligence.

The investment “underscores the confidence the federal government has with respect to how important this technology is,” said James Misewich, the Associate Laboratory Director for Energy and Photon Sciences at BNL. “Despite the challenges of the time, this was a priority.”

Local leaders hailed the effort for its scientific potential and for the future benefit to the Long Island economy.

“I have seen strong support inside of Congress and the administration for funding requests coming out of the Department of Energy for ideas on how to move the DOE’s mission forward,” said U.S. Rep. Lee Zeldin (R-NY-1). “I have also seen a very high level of appreciation and respect for BNL, its leadership, its staff, its mission and its potential.”

Zeldin said the average American spends more time than ever engaging with technologies and other discoveries that were made possible by the first quantum revolution. “Here we are on the verge of a second quantum revolution and BNL is at the forefront of it,” Zeldin said.

Zeldin sees limitless possibilities for quantum information science, as researchers believe these efforts will lead to advancements in health care, financial services, national security and other aspects of everyday life. “This next round of quantum advancements seeks to overcome some of the vulnerabilities that were identified and the imperfections in the first wave,” he said.

State Senator James Gaughran (D-Northport) expects quantum science to provide a significant benefit to the region. “We believe this is going to be a major part of our economic future,” he said. “It is a huge victory for Long Island.”

The return on investment for the state and the federal government will also materialize in jobs growth. This is “going to employ a lot of people,” Gaughran said. “It will help to rebuild the type of economy we need on Long Island. The fact that we are on the front lines of that will lead to all sorts of private sector development.”

While the technology has enormous potential, it is still in early enough stages that research groups need to work out challenges before they can fully exploit quantum technology. BNL, specifically, will make quantum error correction a major part of their effort.

As quantum computers start working, they run into a limitation called a noisy intermediate scale quantum problem, or NISQ. These problems come from errors that lower the confidence of getting the right answer. The noise is a current limitation for the best quantum computers. “They can only go so far before you end up with an error that is fatal” to the computing process, Misewich said.

By using the co-design center for quantum advantage, Misewich and his partners hope to use the materials that “beat the NISQ error by having the combination of folks with a great team that are all talking to one another.”

The efforts will use a combination of classical computing and theory to determine the next steps in the process of building a reliable quantum information system-driven computer.

Misewich’s group is also focusing on communication. The BNL scientists hope to provide a network that enables distributed computing. In classical computing, this occurs regularly, as computer scientists distribute a problem over multiple computers.

Similarly, with quantum computing, scientists plan to distribute the problem across computers that need to talk to each other.

Misewich is pleased with the combination of centers that will collaborate through this effort. “The federal government picked these centers because they are somewhat complementary,” he said. The BNL-led team has 24 partners, which include IBM, Stony Brook University, SUNY Polytechnic Institute, Yale University, Princeton University, the Massachusetts Institute of Technology, Harvard University, Columbia University and Howard University, among others.

“We had to identify the best team and bring in the right people to fill the gaps,” Misewich explained.

Using a combination of federal funds and money from New York State, BNL plans to build a new beamline at the National Synchrotron Lightsource II, which will operate at very low temperatures, allowing scientists to study the way these materials work under real word conditions.

BNL would like the work they are doing to have an application in calculations in three areas: the theory of the nucleus, quantum chemistry, which explores ways to design better materials, and catalysis.

A quantum computer could help make inroads in some challenging calculations related to electron-electron interactions in superconducting materials, Misewich said, adding that the entire team feels a “tremendous sense of excitement” about the work they are doing.”

Indeed, the group has been working together for close to two years, which includes putting the team in place, identifying the problems they want to tackle and developing a compelling strategy for the research to make a difference.

The group is expecting to produce a considerable amount of research and will likely develop various patents that will “hopefully transfer the technology so companies can start to build next generation devices,” Misewich said.

Along with local leaders, Misewich hopes these research efforts will enable the transfer of this technology to a future economy for New York State.

This effort will also train a numerous graduate and post doctoral students, who will be the “future leaders that are going to drive that economy,” Misewich said.

The research will explore multiple levels of improvement in the design of quantum computers which they hope will all work at the same time to provide an exponential improvement in the ability of the computer to help solve problems and analyze data.

Sen. Kenneth LaValle, wearing hat, sits with Brookhaven National Laboratory beamline scientist Dieter Schneider. Looking on from left, BNL Director Doon Gibbs; vice president for development at Cold Spring Harbor Laboratory, Charles Prizzi; NSLS-II director John Hill; and Stony Brook University associate vice president for Brookhaven affairs, Richard Reeder. Photo from Brookhaven National Laboratory

Thanks to the persistent support of state Sen. Ken LaValle (R-Port Jefferson), Brookhaven National Laboratory secured $15 million from New York State to add a state-of-the-art microscope that could contribute to advances in basic science and medicine.

The national laboratory will purchase a new cryo-electron microscope and will use the funds to create a building attached to its National Synchrotron Light Source II.

“Cryo-electron microscopy is an advanced imaging technology that will significantly accelerate scientists’ understanding of molecular structures and processes generally, including many impacts in understanding disease and in aiding drug discovery,” Doon Gibbs, the laboratory director of BNL, said in an email.

BNL will use the funds to purchase the first of what they hope will be four such new microscopes. The lab is finalizing a bid, which is due by June 30 for funds from the National Institutes of Health for three additional microscopes.

“There is an exponentially increasing demand for the type of bio-structural information that such machines provide, and so we are competing to become an East Coast based national facility to serve this rapidly growing community,” James Misewich, the associate director for energy and photon sciences at BNL said in an email.

Having a suite of microscopes would enable BNL to have a spectrum of capabilities to serve the needs of its scientists and of researchers from around the world who flock to the Upton-based lab to conduct their research.

The new facility will create jobs associated with running the cryo-EM, Misewich said. If BNL wins the NIH proposal to become a national cryo-EM facility, it would also employ additional scientists, engineers, technicians and administrators to run the user program.

Misewich said he hopes scientists at nearby Stony Brook University and Cold Spring Harbor Laboratory will benefit from the opportunity to use a combination of its X-ray and electron microscope probes.

Senior members of the BNL team credit LaValle for helping to secure the funds.

“The $15 million in New York State funding is the culmination of a two-year effort led by the senator to bring a cryo-EM to Brookhaven and jump-start this important effort,” Gibbs said.

LaValle suggested that the funds were well worth the investment.

“It is critically important for government to embrace and support the work of the organizations that make life-altering discoveries and better our lives, health and environment,” LaValle said in an email. “This investment will further establish world-leading prominence in the field of medical research, and position the region for additional major investments by the National Institutes of Health and the U.S. Department of Energy.”

Misewich envisions configuring one of the microscopes to allow for electron tomography, which will generate three-dimensional images of cells.

“The approach will be complementary to the X-ray imaging work we can undertake with the NSLS-II beamlines,” Misewich said.

Gibbs explained that the cryo-EM is complementary to X-ray crystallography, which is the traditional method for determining structures, which scientists already do at BNL.

“Few prescription drugs have been approved by the [Food and Drug Administration] for use in the U.S. in the last 20 years without a crystallographic study of their structure by X-rays,” Gibbs continued.

Misewich expects the new microscope could lead to new methods of detection, diagnosis and treatment for diseases like cancer or for medical challenges like antibiotic resistance.

Combining the technological tools of the new cryo-EM with the insights from the NSLS II and the nine-year-old Center for Functional Nanomaterials will enable researchers to “provide much more rapid bio-structure determination in response to needs like the ability to rapidly characterize a virus,” Misewich said.

LaValle sited this effort as a part of his ongoing commitment to build Long Island’s new high-tech economy.

The combination of BNL, SBU and CSHL “will provide a significant boost to the competitiveness of the biosciences and biotechnology communities across Long Island,” LaValle said.