Tags Posts tagged with "Brookhaven National Laboratory"

Brookhaven National Laboratory

From left, outgoing Secretary of the Department of Energy Ernest Moniz with BNL Laboratory Director Doon Gibbs taken at the opening of the National Synchrotron Light Source II at BNL. Photo courtesy of BNL

By Daniel Dunaief

Before Ernest Moniz ends his tenure as Secretary of the Department of Energy, he and his department released the first annual report on the state of the 17 national laboratories, which include Brookhaven National Laboratory.

On a recent conference call with reporters, Moniz described the labs as a “vital set of scientific organizations” that are “critical” for the department and the country’s missions. Experts from the labs have served as a resource for oil spills, gas leaks and nuclear reactor problems, including the meltdown at Fukushima in 2011 that was triggered by a deadly tsunami. “They are a resource on call,” Moniz said.

In addition to providing an overview of the benefit and contribution of the labs as a whole, the annual report also offered a look at each of the labs, while highlighting a research finding and a translational technology that has or will reach the market. In its outline of BNL, the report heralded an “exciting new chapter of discovery” triggered by the completion of the National Synchrotron Light Source II, a facility that allows researchers at BNL and those around the world who visit the user facility to explore a material’s properties and functions with an incredibly fine resolution and sensitivity.

Indeed, scientists are already exploring minute inner workings of a battery as it is operating, while they are also exploring the structure of materials that could become a part of new technology. The DOE chose to shine a spotlight on the work Ralf Seidl, a physicist from the RIKEN-BNL Research Center, has done with several collaborators to study a question best suited for answers at the Relativistic Heavy Ion Collider.

Seidl and his colleagues are exploring what gives protons their spin, which can affect its optical, electrical and magnetic characteristics. The source of that spin, which researchers describe not in terms of a top spinning on a table but rather as an intrinsic and measurable form of angular momentum, was a mystery.

Up until the 1980s, researchers believed three subatomic particles inside the proton created its spin. These quarks, however, only account for a third of the spin. Using RHIC, however, scientists were able to collide protons that were all spinning in a certain direction when they smash into each other. They compared the results to protons colliding when their spins are in opposite directions.

More recently, Seidl and his colleagues, using higher energy collisions, have been able to see the role the gluons, which are smaller and hold quarks together, play in a proton’s spin. The gluons hadn’t received much attention until the last 20 years, after experiments at CERN, in Geneva, demonstrated a lower contribution from quarks. “We have some strong evidence that gluons play a role,” Seidl said from Japan, where he’s working as a part of an international collaboration dedicated to understanding spin.

Smaller and more abundant than quarks, gluons are like termites in the Serengeti desert in Africa: They are hard to see but, collectively, play an important role. In the same report, the DOE also celebrated BNL’s work with fuel cell catalysts. A senior chemist at BNL, Radoslav Adzic developed a cheaper, more effective nanocatalyst for fuel cell vehicles. Catalysts for fuel cells use platinum, which is expensive and fragile. Over the last decade, Adzic and his collaborators have developed a one-atom-thick platinum coating over cheaper metals like palladium. Working with BNL staff scientists Jia Wang, Miomir Vukmirovic and Kotaro Sasaki, he developed the synthesis for this catalyst and worked to understand its potential use.

N.E. Chemcat Corporation has licensed the design and manufacturing process of a catalyst that can be used to make fuel cells as a part of a zero-emission car. This catalyst has the ultra low platinum content of about two to five grams per car, Adzic said. Working at BNL enabled partnerships that facilitated these efforts, he said. “There is expertise in various areas and aspects of the behavior of catalysts that is available at the same place,” Adzic observed. “The efficiency of research is much more convenient.”

Adzic, who has been at BNL for 24 years, said he has been able to make basic and applied research discoveries through his work at the national lab. He has 16 patents for these various catalysts, and he hopes some of them will get licensed. Adzic hopes this report, and the spotlight on his and other research efforts, will inspire politicians and decision makers to understand the possibility of direct energy conversion. “There are great advances in fuel cell development,” Adzic said. “It’s at the point in time where we have to do some finishing work to get a huge benefit for the environment.”

At the same time, the efficiency of fuel-cell-powered vehicles increases their economic benefit for consumers. The efficiency of an internal combustion engine is about 15 percent, whereas a fuel cell has about 60 percent efficiency, Adzic said.

BNL’s Laboratory Director Doon Gibbs welcomed the DOE publication. “This report highlights the remarkable achievements over the past decade of our national lab system — one that is unparalleled in the world,” he said. Gibbs suggested that the advanced details in the report, including the recognition for the NSLS II, span the breadth of BNL’s work. “They’re just a snapshot of what we do every day to make the world a better place,” Gibbs said.

While the annual report is one of Moniz’s final acts as the secretary of the agency, he hopes to communicate the vitality and importance of these labs and their work to the next administration.“I will be talking more with secretary nominee [Richard] Perry about the labs again as a critical jewel and resource,” Moniz said. “There’s a lot of support in Congress.” Moniz said the DOE has had five or six lab days, where labs share various displays with members of the legislative body. Those showcases have been “well-received” and he “fully expects the labs to be vital to the department.”

Shinjae Yoo with his son Erum

By Daniel Dunaief

He works with clouds, solar radiation and nanoparticles, just to name a few. The subjects Shinjae Yoo, a computational scientist at Brookhaven National Laboratory, tackles span a broad range of arenas, primarily because his focus is using large pieces of information and making sense of them.

Yoo helps refine and make sense of searches. He develops big data streaming algorithms that can apply to any domain where data scalability issues arise. Integrating text analysis with social network analysis, Yoo did his doctoral research at Carnegie Mellon University, where he also earned a master’s degree, on creating systems that helped prioritize these electronic messages.

“If you are [traveling and] in the airport, before you get into your plane, you want to check your email and you don’t have much time,” he said. While this isn’t the main research work he is doing at the lab, this is the type of application for his work. Yoo developed his technical background on machine learning when he was at Carnegie Mellon. He said he continues to learn, improve and develop machine learning methods in various science domains. By using a statistical method that combines computational science skills, statistics and applied math, he can offer a comprehensive and, in some cases, rapid analysis of information.

Colleagues and collaborators suggested Yoo has made an impact with his work in a wide range of fields. His “contribution is not only in the academic field, but also means a lot on the industrial and academic field,” Hao Huang, a machine learning scientist at GE Global Research, wrote in an email. “He always focuses on making good use of data mining and machine learning theory on real world [areas] such as biology, renewable energy and [in the] material science domain.”

Yoo explained how a plant biologist can do stress conditioning for a plant with one goal in mind. That scientist can collect data over the course of 20 years and then they can “crunch the data, but they can’t always analyze it,” which might be too unwieldy for a bench scientist to handle. Using research from numerous experiments, scientists can study the data, which can provide a new hypothesis. Exploring the information in greater detail, and with increased samples, can also lead to suggestions for the best way to design future experiments.

Yoo said he can come to the scientist and use machine learning to help “solve their science data problem,” giving the researchers a clearer understanding of the broad range of information they collected. “Nowadays, generated data is very easy,” but understanding and interpreting that information presents bigger challenges. Take the National Synchrotron Light Source II at BNL. The $912 million facility, which went live online earlier this year, holds considerable promise for future research. It can look at the molecules in a battery as the battery is functioning, offering a better understanding of why some batteries last considerably longer than others. It can also offer a look at the molecular intermediaries in biochemical reactions, offering a clearer and detailed picture of the steps in processes that might have relevance for disease, drug interactions or even the creation of biological products like shells. He usually helps automate data analytics or bring new hypotheses to scientists, Yoo said. One of the many challenges in experiments at facilities like the NSLS II and the Center for Functional Nanomaterials, also at BNL, is managing the enormous flow of information that comes through these experiments.

Indeed, at the CFN, the transmission electron microscopy generates 3 gigabytes per second for the image stream. Using streaming analysis, he can provide an approximate understanding of the information. Yoo received a $1.9 million, three-year Advanced Scientific Computer Research grant this year. The grant is a joint proposal for which Yoo is the principal investigator. This grant, which launched this September, is about high-performance computing enabled machine learning for spatio-temporal data analysis. The primary application, he said, is in climate. He plans to extend it to other data later, including, possibly for NSLS II experiments.

Yoo finds collaborators through emails, phone calls, seminars or anywhere he meets other researchers. Huang, who started working with Yoo in 2010 when Huang was a doctoral candidate at Stony Brook, appreciates Yoo’s passion for his work. Yoo is “dedicated to his research,” Huang explained. “When we [ran] our proposed methods and got results that [were] better than any of the existing work, he was never satisfied and [was] always trying to further explore to get even better performance.”

When he works with collaborators in many disparate fields, he has found that the fundamental data analysis methodologies are similar. He needs to do some customization and varied preprocessing steps. There are also domain-specific terms. When Yoo came to BNL seven years ago, some of his scientific colleagues around the country were not eager to embrace his approach to sorting and understanding large pools of data. Now, he said other researchers have heard about machine learning and what artificial intelligence can do and they are eager to “apply those methods and publish new papers.”

Born and raised in South Korea, Yoo is married to Hayan Lee, who earned her PhD at Stony Brook and studies computational biology and specializes in genome assembly. They have a four-year old son, Erum. Yoo calls his son “his great joy” and said he “gives me a lot of happiness. Hanging around my son is a great gift.”

When Yoo was entering college in South Korea, he said his father, who had worked at the National Institute of Forest Science, played an important role. After his father consulted with people about different fields, he suggested Yoo choose computer science over chemistry, which would have been his first choice. “He concluded that computer science would be a new field that would have a great future, which is true, and I appreciate my dad’s suggestion,” Yoo said.

Athi Varuttamaseni. Photo couresty of BNL

By Daniel Dunaief

Athi Varuttamaseni is like an exterminator, studying ways pests can gain entry into a house, understanding the damage they can cause and then coming up with prevention and mitigation strategies. Except that, in Varuttamaseni’s case, the house he’s defending is slightly more important to most neighborhoods: They are nuclear power plants.

The pests he’s seeking to keep out or, if they enter, to expel and limit the damage, are cyberattackers, who might overcome the defenses of a plant’s digital operating system and cause a range of problems.

Varuttamaseni, an assistant scientist in the Nuclear Science & Technology Department at Brookhaven National Laboratory, started his career at BNL by modeling the failure of software used in nuclear power plant protection systems. Last year, he shifted toward cybersecurity. “We’re looking at what can go wrong with nuclear power plants” if they experience an attack on the control and protection systems, he said.

Varuttamaseni is part of a team that received a grant from the Department of Energy to look at the next generation of nuclear power plants, which are controlled and managed mostly by digital systems. A few existing plants are also looking to replace some of their analog systems with digital. “We asked what can go wrong if a hacker somehow managed to breach the outer perimeter and get in to control the system, or even if that is possible at all,” he said. By looking at potential vulnerabilities in the next generation of power plants, engineers can find a problem or potential problem ahead of time and can “go back to the drawing board to put in additional protection systems that could save the industry significant cost in the long run,” Varuttamaseni said.

Robert Bari, a physicist at BNL and a collaborator on the cybersecurity work, said Varuttamaseni, who is the lead investigator on the Department of Energy project, played “a major role” in putting together a recent presentation Bari gave at UC Berkeley that outlined some of the threats, impacts and technical and institutional challenges. The presentation included a summary and the next steps those running or designing nuclear power plants can take. Bari said it was a “delight” to collaborate with Varuttamaseni.

A colleague, Louis Chu, had recruited Varuttamaseni to work at BNL in another program, and Bari said he “recognized his abilities” and “we started to collaborate.” Varuttamaseni and Bari are going through a systematic analysis using logic trees and other approaches to explore vulnerabilities. The BNL team, which is collaborating with scientists at Idaho National Laboratory, shared the information and analysis they conducted with the Department of Energy and with an industrial collaborator.

In his second year of the work, Varuttamaseni said he is looking at the system level and is pointing out potential weaknesses in the design. He then shares that analysis with designers, who can shore up any potential problems. In the typical analysis of threats to nuclear power plants, the primary concern is of the release of radioactive material that could harm people who work at the plants or live in the communities around the facility.

Varuttamaseni, however, is exploring other implications, including economic damage or a loss of confidence in the industry. That includes the headline risk attached to an incident in which an attacker controlled systems other than a safety function and that are not critical to the operation of a plant. In addition to exploring vulnerabilities, Varuttamaseni is studying a plant’s response. Most of the critical systems are air-gapped, which means that the computer has no physical or wireless connection. While this provides a layer of protection against cyberattacks, it isn’t flawless or impenetrable. An upgrade of the hardware or patching of a hardware system might create just the kind of opening that would enable a hacker to pounce.

The Nuclear Regulatory Commission and the industry are “aware of those scenarios,” Varuttamaseni said. “There are procedures in place and mitigation steps that are taken to prevent those kinds of attacks.” Ideally, however, the power plant would catch any would-be attacker early in the process. Varuttamaseni is working on three grants that are related to systems at nuclear power plants. In addition to cyberattacks, he is also analyzing software failures in the protection system and, finally, he’s also doing statistical testing of protection systems.

Varuttamaseni, who was born in Thailand, lives in Middle Island. He appreciates that Long Island is less crowded than New York City and describes himself as an indoor person. He enjoys the chance to read novels, particularly science fiction and mysteries. He also likes the moderate weather on Long Island compared to Bangkok, although threats from hurricanes are new to him. Next June, Varuttamaseni will present a paper on cybersecurity at the American Nuclear Society’s Nuclear Plant Instrumentation, Control & Human-Machine Interface Technology Conference in San Francisco.

Varuttamaseni is “always on the lookout for insights into possible attack pathways that an attacker could come up with,” he said. “The mitigating factor of my work is that we’re looking at a longer-term problem. There’s still time to [work with] many of these potential vulnerabilities.”

Ivan Bozovic. Photo courtesy of BNL

By Daniel Dunaief

How long and how much work does it take to defy conventional wisdom? Often, the prevailing belief about anything has backers who support the idea and aren’t eager to change or replace what they know with something new.

Recognizing this, Ivan Bozovic, the Oxide Molecular Beam Epitaxy (MBE) group leader at Brookhaven National Laboratory, checked and rechecked his work, spending close to a decade for parts of it, repeating his steps and checking the accuracy of his data points to make sure his case, which flew in the face of what so many others believed, was airtight.

Engineers, researchers and corporations have known about so-called high-temperature superconductivity for over a century. Using objects called cuprates, which are oxides of copper, researchers have created substances that can conduct electricity with close to no resistance at temperatures that are well above the requirements for most superconductivity.

While the name high-temperature superconductivity might suggest materials that allow the passage of energy through them in a sauna, the reality is far from it, with the temperatures coming in closer to negative 163 degrees Fahrenheit. While cold by everyday standards, that is still well above the record critical temperature before cuprates, which stood at – 418 degrees F.

Up until Bozovic’s study, which was recently published in Nature, scientists believed superconductivity in these cuprates occurred because of the strength of electron pairing. Carefully and in great detail, Bozovic demonstrated that the key factor in leading to this important property was the density of electron pairs, which are negatively charged particles.

Other scientists suggested Bozovic’s study was an important result that flew against the prevailing explanation for a phenomenon that holds promise for basic science and, perhaps one day, for the transmission of energy in the future.

Bozovic’s study “shows that [the] standard picture fails quite astonishingly in copper oxides that show high temperature superconductivity,” Davor Pavuna, a professor at the Swiss Federal Institute of Technology at Lausanne, explained in an email. “We are only begining to grasp how dramatic” this latest discovery is.

Pavuna described how he was recently at an event in Corsica, France and that his colleagues believed “this is a clear signal that we will have to develop much more advanced theoretical framework for cooperative phenomena, like superconductivity.”

Bozovic’s work and his latest result “show that our physics understanding and models require some new physics framework,” Pavuna said.

Bozovic and his colleagues studied over 2,150 samples. He explained that cuprates are complex for standards of condensed matter physics because some of them have 20 to 50 atoms in unit cells. That means that when engineers synthesize them, cuprates can have a mixture of unwanted secondary phases that could “spoil the experiment.”

Ivan Bozovic with his granddaughter Vivien at Vivien’s first birthday party last year in California. PhotoPhoto by Julie Hopkins, cameracreations.net
Ivan Bozovic with his granddaughter Vivien at Vivien’s first birthday party last year in California. Photo by Julie Hopkins, cameracreations.net

The number of samples necessary to demonstrate this property is a matter of personal standards, Bozovic suggested. He made sure he kept “checking and double checking and triple checking to be sure that what we had closed all the loopholes,” Bozovic said. He wanted “no possibility of an alternative explanation.”

The way Bozovic and his colleagues approached the problem was to start with a cuprate composition. They then replaced one atom at a time by another, which provided a series of samples that were almost identical, but slightly different in chemical composition. He was able to show how the critical temperature changes with electron density in small increments.

“What’s really impressive here is [Bozovic’s] ability to use a molecular beam epitaxy system — that he designed — to place single atomic layers on to a substrate, layer by layer,” James Misewich, the associate lab director for Energy & Photon Sciences at BNL explained in an email.

Bozovic’s work is “an exciting finding that could have wide-ranging impacts on how we identify, design, and build new superconducting materials,” continued Misewich.

As with other science, Bozovic said the answer to one question leads to a series of follow up questions, which include why do small pairs of electrons form in cuprates and not in anything else.

A resident of Mount Sinai, Bozovic lives with his wife Natasha, who is a mathematician. The couple has two daughters, Dolores, a professor of Physics and Astronomy at UCLA and Marijeta, an assistant professor of Slavic Languages and Literatures at Yale, where Bozovic is an adjunct professor of Applied Physics.

Born and raised in the former Yugoslavia, Bozovic is the son of two medical doctors. His father, Bosislav Bozovic, was twice nominated for the Nobel Prize for his work on the relation between cancer and the immune system. He was also a major general in the medical corp and the head of the Medical Division of the National Academy of Sciences.

His mother, Sasha Bozovic, wrote a best-selling memoir, devoted to a daughter she lost in World War II. His mother was also a colonel in the medical corps who worked in the army until she retired as the highest ranking woman in the army. “I had some big shoes to fill,” Bozovic acknowledges.

As a teenager, Bozovic played the lead guitar in a rock band. Nowadays, he strums nursery rhymes for his granddaughter Vivien using FaceTime.

A scientist who suggests a sense of humor is extremely important, especially in a field that can include disappointments and setbacks, Bozovic jokes that he speaks “zero” languages, a conclusion he reached after listening to an online description he gave of his recent work. In reality, he can read about four languages, although he has studied more.

As for his work, Bozovic is looking forward to discussing his recent results with theorists like Gabriel Kotliar, a Rutgers Professor of Physics and Astronomy who has a part time position at BNL. Kotliar is leading a new materials theory center at BNL.

“I hope that we’ve given them new pointers about where to look and what to calculate,” Bozovic said. “I’m pretty optimistic that there will be feedback from them.”

From left, postdoctoral associate Yuanheng Cai, biological research associate Xuebin Zhang and plant biochemist Chang-Jun Liu in the BNL greenhouse. Photofrom Brookhaven National Laboratory

By Daniel Dunaief

It provides structural support, allowing gravity-defying growth toward the sky. While it offers necessary strength, it also makes it more difficult to get inside to convert plant biomass into fuel.

Lignin is the major component that makes cell walls harder. Plants can tolerate the loss of lignin, but dramatically reducing it or altering its structure could severely affect its growth, which makes any effort to modify lignin challenging.

Seeking to balance between the plant’s structural needs and the desire to gain access to biofuel, Chang-Jun Liu, a plant biochemist at Brookhaven National Laboratory, added a step in the synthesis of lignin. “Most studies in this field rely on knocking down or knocking out one or two biosynthetic pathway genes,” said Liu. “We added one more reaction” that competes for the precursors of lignin formation. Liu said he and his collaborators figured that adding that last step in the production of lignin, which is a natural part of plant cell walls, would have the least effect on plant growth while it can effectively reduce lignin content or change its structure.

Liu said he redirected the metabolic precursor by using a modified enzyme he created over the course of several years. The enzyme diverts biosynthetic precursors away from making lignin. Plants typically have three types of lignin, called S, G and H lignin. In a wild-type aspen tree, the ratio of S to G is two to one. This change, however, altered that, turning the ratio to one to two. The general perception is that increasing G lignin would make the cell wall structure stronger and harder, making it harder to release simple sugars. The surprising finding, however, was that reducing S and maintaining G greatly enhanced the release of sugar with digestive enzymes from aspen cell walls.

Scientific partners including John Ralph at the University of Wisconsin and the Great Lakes Bioenergy Research Center confirmed the alteration of lignin structure. Liu tested his enzyme in his earlier work on the flowering plant Arabidopsis. When it worked, he moved on to aspen trees, which grow rapidly and can thrive in environments where typical farm crops struggle to grow. The aspen experiments proved more fruitful in part because these trees contained more S lignin, and the enzyme he developed preferentially blocked the S lignin. The aspen trees with the modified enzyme can yield up to 49 percent more ethanol during fermentation, compared to controls.

Using infrared light at the National Synchrotron Light Source, Liu and his collaborators were able to see an increase in the production of cellulose fibers, which are a primary source of sugars in the cell wall. This may contribute to the release of simple sugars. Liu will continue to explore other possibilities. Other lignin researchers applauded these results.

Liu’s “approach will definitely have a great impact on the cost reduction of cellulosic biofuels,” Dominique Loque, the director of Cell Wall Engineering at the Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, explained in an email. “With no impact on biomass yield and a reduction in recalcitrance, it will reduce the conversion costs of biomass to fermentable sugars.”

While this research, which was recently published in Nature Communications, shows potential commercial promise, Liu and his team are working to answer basic questions. He is interested in further testing his approach in grasses and different trees to determine the effects on lignin content, structure, cell wall digestibility and plant growth. The trees in this experiment were grown in a greenhouse, where scientists could control light and temperature and mimic the natural environment without natural stressors, like insects or fungus. Loque suggested that Liu’s approach can be “easily and quickly optimized to alleviate potential issues such as susceptibility to pathogens” if they exist.

Liu has planted 150 of these altered trees in the field. So far, he said, the biomass yield is not compromised with these experimental plants. “Field tests will allow evaluating the impact of engineering on predators, pathogens and other stresses,” Loque said. Liu was able to create this enzyme after developing an understanding of enzyme structures using x-rays at the NSLS. In that research, Liu was able to gain a better knowledge of how the enzymes that occur naturally worked. Once he knew the structure and method of operation of the enzymes in the lignin pathway, he could make changes that would alter the balance of the different types of lignin.

Liu lives with his wife Yang Chen, a teacher’s assistant in Rocky Point Middle School and their two children, 16-year-old Allen and 14-year-old Bryant. For the last few years, Liu and his family have added hiking, table tennis and tennis to their recreational repertoire.

Liu is encouraged by these findings and is extending and expanding his studies and collaborations. He will work with a Department of Energy sponsored Energy Frontier Research Center. He will also pursue more applied studies to explore the more efficient use of cell wall biomass to produce biomaterials or bio-based products. He is forming a collaboration with Stony Brook’s material science team and with the NSLS-II. “Plant cell wall represents the most abundant biomass on Earth,” Liu said. “Understanding its synthesis, structural property and efficient way in its utilization are critical for our future bio-based economy.”

Lee Michel on a Blackhawk helicopter during a training exercise in 2011. Photo by Roger Stoutenburgh

He has been to the Super Bowl, the Boston Marathon, a presidential inauguration, the Baltimore Grand Prix, the Rockefeller Tree Lighting and the ball drop in Times Square on New Year’s Eve. Lee Michel is neither a politician nor an athlete: He is part of a national, first-response team, called the Radiological Assistant Program.

The program is a unit of the Department of Energy, which assists local, state and federal agencies to characterize the environment, assess the impact to the local population and support decision makers on steps to minimize the hazards of a radiological incident.

Michel is the training and outreach coordinator in Region 1 of the program. He works with partner agencies around the country to deal with everything from the discovery of radiological material that someone might have accidentally brought home from a work site to an intentional detonation of a dirty bomb.

His job is a “full soup-to-nuts response to radiological material that shouldn’t be wherever it is,” Michel said.

He trains people at facilities around the country to understand “how to detect [radiation], how to contain it, how to identify it and how to mitigate it,” Michel said.

Kathleen McIntyre, the contractor operations manager for RAP Region 1, said her group is the first on-scene emergency response team representing the Department of Energy. One of nine programs around the country, the BNL team is responsible for a region that stretches from Maine to Maryland and to the Pennsylvania-Ohio border.

In addition to sports events and conventions, the team also assists with other high-profile events. In late September, the BNL RAP team will work with other agencies during Pope Francis’s visit to the United States.

In his job, Michel often travels to ensure he’s appropriately trained so he can teach other first-responder agencies. In the last several months, he’s been to Chicago, Albuquerque, Las Vegas, Boston, Connecticut and New Jersey.

These trips are necessary to create effective collaborations with local partners, said McIntyre. “Part of the thing that [Michel] does and does well is coordinate with our first-responder partners,” McIntyre said. The training and outreach ensure “if we are ever in a situation where we need to work together, this isn’t the first time we’ve met each other.”

At left, Lee Michel’s uncle, Morton Rosen, was a photographer at BNL for more than 35 years. At right, his grandfather, Isadore Rosen, was stationed at Camp Upton during WWI. Photo left from BNL Archives; right from Lee Michel
At left, Lee Michel’s uncle, Morton Rosen, was a photographer at BNL for more than 35 years. At right, his grandfather, Isadore Rosen, was stationed at Camp Upton during WWI. Photo left from BNL Archives; right from Lee Michel

While the mission hasn’t changed for the five years Michel has been in his role, the mechanisms have evolved.

“The equipment we’re using is much more sophisticated than what we had,” Michel said. “The software that runs the system or is used in conjunction with the system is much more advanced.”

Indeed, McIntyre said Michel regularly has to remain updated on the latest software and equipment, in the same way an owner of a laptop has to remain current on electronic updates.

Michel “has to be conversant with all these” systems, she said. “He has to hit the ground running. We don’t own every piece of radiological equipment out there. He needs to understand whatever he’s going to teach.”

McIntyre gives Michel “great kudos” for “rolling up his sleeves” as he tries to stay abreast of the changing technology.

In addition to training, Michel does exercises and drills with response teams, keeping the groups prepared to react to a wide range of potential radiological problems or events.

While the Radiological Assistance Program only has three full-time employees at BNL, the facility includes 26 volunteers.

Michel has been dealing with radiation for over 30 years, starting with eight years in the navy from 1981 to 1989 when he was a nuclear power operator.

Born and raised on Long Island, Michel is the third generation in his family to work at the Upton facility. His grandfather, Isadore Rosen, was stationed at Camp Upton during World War I. His uncle, Morton Rosen, took pictures for BNL for over 35 years. Michel, who lives in Holtsville, has two daughters, 26-year old Heather and 22-year old Michelle.

As for a fourth generation at BNL, Michel holds out some hope. “I would love to have one of them work here,” he said. He’s even entertained the idea of his seven-month old granddaughter Jemma one day contributing to BNL.

While the work involves traveling to high-profile events, it’s sometimes tough to soak in the atmosphere.

The 2009 inauguration involved working 14-hour shifts in single digits, McIntyre said. After their work, they come back for more assignments. These contractors and volunteers “who serve on the RAP teams are dedicated professionals.”

Builds upon revitalization efforts and Connect LI

Suffolk County Executive Steve Bellone, center, along with regional leaders, announced a new regional plan on Tuesday. Photo from the county executive’s office

As the percentage of youth on Long Island declines, regional leaders are determined to entice young people to move in and stay, but their plan comes with a price.

On Tuesday, County Executive Steve Bellone (D) and several regional leaders, including Brookhaven Town Supervisor Ed Romaine (R), announced they are seeking $350 million to fund the Long Island Innovation Zone, I-Zone, plan. I-Zone aims to connect Long Island’s transit-oriented downtown areas, like New Village in Patchogue, the Meadows at Yaphank and the planned Ronkonkoma Hub, to institutions like Stony Brook University, Brookhaven National Laboratory and Cold Spring Harbor Laboratory.

The I-Zone plan emphasizes the use of a bus rapid transit, or BRT, system  that runs north to south and would connect Stony Brook University and Patchogue. There will also be a paralleling hiking and biking trail, and the system will serve as a connection between the Port Jefferson, Ronkonkoma and Montauk Long Island Rail Road lines.

The goal is to make Long Island more appealing to the younger demographic and avoid local economic downturns.

According to the Long Island Index, from 2000 to 2009, the percentage of people aged 25-34 decreased by 15 percent. The majority of these individuals are moving to major cities or places where transportation is readily accessible.

“We must challenge ourselves because if we don’t, we have an Island at risk,” Romaine said. Government officials acknowledged that without younger people living on Long Island the population will be unable to sustain the local economy. Fewer millennials means there are less people who will purchase property and contribute to the success of businesses in the area.

The proposal comes after Governor Andrew Cuomo’s (D) call for regional planning.

The plan also builds upon the Ronkonkoma Hub plan, with the installation of sewers and a new parking area. The I-Zone proposal claims to improve Long Island’s water quality, as funding will help connect sewers through Islip downtown areas to the Southwest Sewer District.

Additionally, the plan calls for the construction of a new airport terminal on the north side of Long Island MacArthur Airport in Islip and for the relocation of the Yaphank train station in closer proximity to Brookhaven National Laboratory.

“We have all that stuff [access to recreational activities, education center and downtown areas] here but we don’t have a connection. We don’t have any linked together,” said Justin Meyers, Suffolk’s assistant deputy county executive for communications.

Bellone and Romaine, as well as Stony Brook University President Samuel Stanley, Islip Town Supervisor Angie Carpenter (R), Suffolk County Legislator Kara Hahn (D-Setauket), Long Island Regional Planning Council Chairman John Cameron, Patchogue Mayor Paul Pontieri, Vice President of Development and Community Relations at CSHL Charles Prizzi, Chief Planning Officer of the Long Island Rail Road Elisa Picca, Director of BNL Doon Gibbs, and founder of Suburban Millennial Institute Jeff Guillot, were involved with the I-Zone proposal.

If funding for the project is received, construction could begin in approximately two years, Meyers said, adding that constructing the BRT and the hiking and biking trial would take as few as five years.

Bellone said that without younger people moving in, the trend could lead to the Island’s economic stagnation.

“We are aging faster than any other region in our country,” he said. “The inevitable result of that will be an ever-growing population that naturally is pulling more social services infrastructure.”

Juergen Thieme stands near the beginning of the beamline and is pointing in the direction the light travels to the end station, where scientists conduct their experiments. Photo from BNL

He’s waited six years. He left his home country of Germany, bringing his wife and children to Long Island.

Now, months after first light and just weeks before the first experiments, Juergen Thieme is on the threshold of seeing those long-awaited returns.

A physicist at Brookhaven National Laboratory and adjunct professor at Stony Brook, Thieme is responsible for one of the seven beamlines that are transitioning into operation at the newly minted National Synchrotron Light Source II. The facility allows researchers to study matter at incredibly fine resolution through X-ray imaging and high-resolution energy analysis.

“We have invested so much time and so much energy into getting this thing going,” Thieme said. “When you open the shutter and light is coming to the place where it’s supposed to be, that is fantastic.”

The beamline is already overbooked, Thieme said. Scientists have three proposal submission deadlines throughout the year. The most recent one, which ended on June 1, generated over 20 submissions, which Thieme and the beamline team read through to check their feasibility and then send out for a peer review.

The proposals include studies in biology, energy, chemistry, geosciences, condensed matter and materials science.

One of the drivers for the construction of the $912 million facility was developing a greater understanding of how batteries work and how to store energy.

“Although batteries are working very well already, there is room for improvement,” Thieme said. The importance of energy storage suggests that “even a small improvement can have a huge impact.”

Indeed, when he returns to Germany and drives through the countryside, he sees thousands of windmills creating energy. Wind speed and energy demands are not correlated, he said. “There is a need for an intermediate storage of energy.”

The NSLS-II also has the potential to improve commercial industries. Mining rare earth elements, which have a range of application including in cell phones, is a potentially environmentally hazardous process. By using the NSLS-II, scientists can see how bacteria might change oxidation states to make the materials insoluble, making them easier to obtain.

For years, Thieme was on the other side of this process, sending proposals to beamlines to use his training in X-ray physics and X-ray optics to conduct environmental science projects, including analyzing soils.

Six years ago, Qun Shen, the Experimental Facilities Division director for the NSLS-II, asked Thieme if he would consider joining BNL. The two had met when Thieme brought students to the Argonne National Laboratory in Chicago, where Shen was the head of the X-Ray Microscopy and Imaging Group.

Thieme said he presented the opportunity to his family. His three children voted with a clear yes, while his wife Kirsten was hesitant. Eventually, they decided to go.

Following that offer, Thieme looked at the future site of the facility and saw a green lawn. “I was asking myself, ‘What do I do for the next six years?’” he recalled. “I can tell you I was extremely busy.”

He said he worked on design, planning and evaluations, which included numerous calculations to decide on what to build. “One of the big aspects of constructing a facility at NSLS-II is to reach out to the broader community and try to solicit input from them and try to develop the scientific capabilities to meet their needs,” said Shen. “He has certainly done very well.”

Thieme’s beamline will accelerate the process of collecting information for scientists, Shen said. For some projects, the existing technology would take a few days to produce an image. The beamline Thieme oversees will shorten that period enough that researchers can “test out and revise their hypothesis during the process,” Shen added.

Thieme is eager not only to help other scientists unlock secrets of matter but is also hungry to return to his environmental science interests.

Thieme and Kirsten live in Sound Beach with their 16-year-old son Nils, who is in high school. Their daughters, 23-year-old Svenja, who is studying English and history, and 21-year-old Annika, who is studying to become a journalist, have returned to Germany.

Thieme is inspired by the NSLS-II. “We are building a state of the art experimental station” he said. “To be competitive with other upcoming facilities, we have always to think about how to improve the beamline that we have right now.”

Olness remembered as brilliant scientist, education advocate

John Olness with his wife Margaret. Photo from Richard Olness

He did what he loved, and was loved for it.

John William Olness, a nuclear physicist and a Long Island resident since 1961, died on Feb. 15 at the age of 85.

Olness is survived by his wife Margaret, their sons Robert, Richard, Frederick and Christopher and their daughter Kristin.

“He was a creative parent,” son Richard said in a phone interview. “I wouldn’t trade him for the world.”

Olness was born in 1929, in Saskatchewan, Canada, while his father was teaching at a junior college. The family returned to their farm in northern Minnesota when John was young, and that is where he grew up.

Olness received a doctorate in nuclear physics from Duke University in 1957 where he met Margaret. He moved to Long Island from Dayton, Ohio, in 1961, then he began his career at Brookhaven National Laboratory in 1963 where he stayed until his retirement in 2000 after 37 years of service. John and Margaret married in 1958 and moved to Stony Brook in 1968.

John Olness poses for a photo with his family and family friends. Photo from Richard Olness
John Olness poses for a photo with his family and family friends. Photo from Richard Olness

“He got to do what he wanted,” Margaret said in a phone interview. “He was one of the lucky people who loved what he did for a living. You can’t beat that.”

“John worked with many of the visiting scientists who came to BNL to use the facilities, including Sir Denys Wilkinson (Oxford University), D. Allan Bromley (Yale and, later, science adviser to President George H.W. Bush) and future Space Shuttle astronaut Joseph Allen,” son Robert said of his father’s time at BNL, in an email.

Margaret identified her husband’s passions as physics first and music second.

In his leisure time Olness was a Little League baseball coach; and a founding member and trombone player with the Memories of Swing, a big band that performed around Long Island. He also served as a vice president of the Three Village school board in 1975-76. Kristin said that his desire to be on the school board was in large part to fight for the budgets of the music, sports and arts programs that are seemingly always the first to go when money gets thin.

Olness loved baseball, tennis and basketball, and often spent hours on the phone discussing the Detroit Tigers baseball team with his father, who lived in Michigan. He also played football in high school and college, Margaret said.

Olness was a supportive father and husband, according to Margaret. Their children have gone on to enjoy rewarding careers in wide-ranging walks of life, thanks in no small part to that parental support.

Frederick is a professor and physics department chair at Southern Methodist University in Dallas, Texas; Robert is a major in the Army Reserve, awaiting his next deployment; Kristin has just finished a year on Broadway in “Cabaret,” and was also a member of the cast in the show’s 1998 revival; Richard is an actuary for the Department of Defense; and Christopher is a professional trombonist on Broadway currently playing in “On the Town,” the hit musical comedy.

“Dad put emphasis on education, and he and Mom supported us in exploring the arts and recreational sports,” Richard said in an email. “And in the later years, he encouraged us each to find a career we would enjoy.”

A memorial service will be held for John Olness on Thursday, July 2, at Setauket Presbyterian Church.

Above, Morgan May at the LSST site in Cerro Pachón, Chile, last month. The dryness of the site is essential for good viewing. Water vapor in the air causes stars to twinkle, or to have blurred images. Only the heartiest small cactus can survive at this elevation and in this low moisture. The LSST site is on the southern edge of the driest desert in the world, in the middle of 85,000 acres of land which is kept undeveloped to avoid light pollution for astronomy. Photo from Morgan May

Look! Up in the sky! It’s a bird, it’s a plane, it’s … billions of galaxies. Impossible to see with the naked eye, only vaguely visible through good telescopes, these galaxies will come to life in a way never seen before when the Large Synoptic Survey Telescope starts providing images from its mountaintop home in Chile in 2020.

Before this technological wonder is completed, people like Morgan May, a physicist at Brookhaven National Laboratory, are testing to make sure this ambitious project provides clear and accurate information.

Recently, May and his colleagues at BNL conducted two tests of the telescope.

The LSST will have 200 individual silicon sensors that are the film in the 3.2 gigapixel digital camera. The process of making the sensors is imperfect, with the sensors starting out as molten mass.

Impurities or variation in the temperature can cause imperfections that look like tree rings around a central circle, which create electric fields that can cause a distortion in the image.

“Because we are trying to measure things at a much higher level of precision, the tree rings were a source of great concern,” said May, who receives funding from the Department of Energy’s Office of Science-Cosmic Frontier Research.

They found that these radial imperfections were much smaller than in previous detectors, which was already a benefit to the project. Looking at the likely actual measurements using these sensors, May and his colleagues found that these tree rings had a small effect on the data, which was a pleasant surprise, but one that took some time to prove.

In another test, May, working with Columbia University graduate student Andrea Petri, examined whether differences in the sizes of the three billion pixels in the camera might also cause problems interpreting the information.

May and Yuki Okura, a postdoctoral fellow from Japan’s RIKEN laboratory who is stationed at the RIKEN-BNL Research Center, measured how much light each pixel picked up in the detector. While the variation was small, they weren’t sure whether it was small enough to keep from causing problems with the data.

The team simulated a night sky. Once they gathered the information they would have collected from these slight pixel differences, they compared their simulated image to their original.

Fortunately for the scientists, this effect also proved manageable and won’t create confusion.

May and Okura’s work “did have a good outcome,” said Sam Aronson, director of the RIKEN BNL Research Center. “They showed that the sensor imperfections measured on the LSST sensors will not affect LSST’s science objectives.”

While May is relieved the telescope passed these two tests, he continues to search for other potential problems with this revolutionary telescope.

“I am confident the LSST is going to be successful in its goals, but we have to work very hard to follow every possible issue and resolve it,” he said.

As a part of the LSST Dark Energy Science Collaboration, May said his primary research goal is to answer the question, “What is dark energy?” May said he will be studying subtle features of enormous amounts of information that will become available. May will be researching a force that causes the universe to expand faster and faster, rather than contract.

Until the 1930s, everyone thought the universe was contracting. Edwin Hubble, for whom the Hubble Space Telescope is named, was the first to observe this expansion. It is as if a ball thrown in the air slows down as expected and then accelerates away from Earth, May said. One well-regarded hypothesis is that the universe is filled with something called dark energy that causes a gravitational force that repels rather than attracts.
Once the telescope goes online, the information will become widely available.

“We’re going to make our data public to the everyone in the United States,” said May. It will be possible for “children in high school or even elementary school to have their own galaxy or supernova.”

Born in Brooklyn, May lives on Long Island with his wife Dana Vermilye. The couple have a 23-year old son, Michael, who is in medical school and a daughter, Julia, who is a high school sophomore.

May sees cosmology and astrophysics as a new frontier in science. “It’s an area where great discoveries are being made,” he said. “If you are interested in science as an observer or a career, I would say [it’s] really in the forefront.”