Science & Technology

Jeremy Borniger. Photo from CSHL

By Daniel Dunaief

Much as New Yorkers might want to minimize sleep, even during the pandemic when the need to be active and succeed is hampered by limited options, the body needs rest not only for concentration and focus, but also for the immune system.

Recently, Assistant Professor Jeremy Borniger, who joined Cold Spring Harbor Laboratory in January, collaborated with his former colleagues at Stanford University to publish research in the journal Science Advances that sheds light on the mechanism involved in this linkage.

Doctors and researchers had known for a long time that the release of glucocorticoids like cortisol, a stress hormone, can suppress the ability to fight off an infection. “That happens in people that are chronically stressed, even after surgery,” said Borniger in a recent interview.

A comprehensive understanding of the link between neuronal cells that are active during stress and a compromised immune system could help develop new ways to combat infections. The Stanford-led study provides evidence in a mouse model of the neuronal link between stress-induced insomnia and a weakened immune system.

Ideally, scientists would like to understand the neural pathways involved, which could help them design more targeted approaches for controlling the immune system using natural circuitry, according to Borniger.

Scientists could take similar approaches to the therapies involved with Parkinson’s, depression and obesity to increase or decrease the activity of the immune system in various disease states, instead of relying on a broader drug that hits other targets throughout the body.

In theory, by controlling these neurons, their gene products or their downstream partners, researchers could offer a way to fight off infections caused by stress.

While their studies didn’t look at how to gauge the effect of various types of sleep, such as napping or even higher or lower quality rest, their efforts suggest that sleep can help protect against stress-triggered infections.

The total amount and the structure of sleep play roles in this feedback loop. The variability among people makes any broad categorization about sleep needs difficult, as some people function well with six hours of sleep, while others need closer to eight or nine hours per day.

“Scientists are still working out how the brain keeps track of how much sleep it needs to rest and recover,” Borniger explained. “If we can figure this out, then, in principle, we could mess with the amount of sleep one needs without jeopardizing health.”

Researchers don’t know much about the circuitry controlling sleep amount. Borniger recognizes that the conclusions from this study are consistent with what doctors and parents have known for years, which is that sleep is important to overall health. The research also identifies a brain circuit that may be responsible for the way sleep buffers stress and immune responses.

People who have trouble sleeping because of elevated stress from an upcoming deadline often have a flare up of diseases they might have had under control previously, such as herpes viruses or psoriasis. These diseases opportunistically reemerge when the immune system is weakened.

The major finding in this study is not that the connection exists, but that the researchers, including principal investigator Luis de Lecea and first author Shi-Bin Li at Stanford, found the neural components.

While the studies of these linkages in the hypothalamus of mice were consistent across individuals, the same can’t be said for anecdotal and epidemiological evidence in humans, in part because the mice in the study were genetically identical.

For humans, age, sex, prior experiences, diet, family history and other factors make the linkage harder to track.

Even though researchers can’t control for as many variables with humans as they can with mice, however, several other studies have shown that stress promotes insomnia and poor immune function.

Borniger emphasized that he is the second author on the paper, behind Li and was involved in tracking the immune system component of the work.

Borniger and de Lecea are continuing to collaborate to see if drugs that target the insomnia neurons block the effect of stress on the immune system.

Now that he has moved into the refurbished Demerec Laboratory at CSHL, Borniger plans to work on projects to investigate how to use the nervous system to control anti-tumor immunity in models of breast and colorectal cancer, among others.

By understanding this process, Borniger can contribute to ways to manipulate these cells and the immune system to combat cancer and other inflammatory diseases.

Ideally, he’d like to be a part of collaborations that explore the combination of manipulating nervous and immune systems to combat cancer.

Borniger came to Cold Spring Harbor Laboratory because he was eager to collaborate with fellow scientists on site, including those who look at the immune system and metabolism. He appreciates how researchers at the famed research center look at how bodies and the brain respond to a growing tumor and would like to explore how tumors “influence nerves and then, reciprocally, how nerves influence tumor progression.”

The first few steps towards working at CSHL started in 2018, when Tobias Janowitz, Assistant Professor at CSHL, saw a paper Borniger published on breast cancer and asked him to give a 15-minute talk as a part of a young scholars symposium.

Borniger grew up in Washington, DC, attended college at Indiana University, went to graduate school at Ohio State and conducted his post-doctoral work at Stanford. Coming to CSHL brings him back to the East Coast.

Borniger and his fiancée Natalie Navarez, Associate Director of Faculty Diversity at Columbia University, met when they were in the same lab at Stanford. The couple had planned to get married this year. During the pandemic, they have put those plans on hold and may get married at City Hall.

Borniger and Navarez, who live on campus at Hooper House at CSHL, look forward to exploring opportunities to run, hike and swim on Long Island.

The new CSHL researcher appreciates the new opportunities on Long Island.

“This sort of collaborative atmosphere is what I would have in my Utopian dream,” Borniger said.

Taken around 1890, the photo above includes Lucas Cheadle’s great, great grandparents Martin Van Buren Cheadle and his wife Mary Vera with their children, from left, Overton, Ellis, Lurena and Thomas (who is Cheadle’s great grandfather).

By Daniel Dunaief

In joining Cold Spring Harbor Laboratory, Lucas Cheadle has continued his professional and personal journey far from his birthplace in Ada, Oklahoma.

Then again, his travels, which included graduate work in New Haven at Yale University and, most recently, post doctoral research in Boston at Harvard Medical School, wasn’t nearly as arduous or life threatening as the forced trip his ancestors had to take.

In 1837, Cheadle’s great, great, great grandparents had to travel from Pontotoc, Mississippi to southern Indian Territory, which is now near Tishomingo, Oklahoma as a part of the Trail of Tears. Native American tribes, including members of Cheadle’s family who are Chickasaw, cleared out of their lands to make way for Caucasian settlers.

Lucas Cheadle

Proud of his biracial heritage, which includes Chickasaw, Choctaw, and Cherokee lineages, Cheadle hopes to make his mark professionally in his studies of the development of the brain (see article on page B). At the same time, he hopes to explore ways to encourage other members of the Chickasaw tribe to enter the fields of science, technology, engineering and mathematics.

One of three sons of a mixed Chickasaw father named Robert Cheadle and a Caucasian mother named Cheryl, Cheadle would eventually like to provide the kind of internship opportunities through his own lab that he had during his high school years.

Indeed, during the summer of his junior year, Cheadle did a health care internship, in which he shadowed different types of physicians. He watched active surgeries and observed a psychiatrist during patient visits. After that summer, Cheadle thought he might become a psychiatrist as well because he knew he was interested in the study of the brain.

Down the road, Cheadle envisions having one or two people learn as interns in the lab during the summer. Longer term, Cheadle hopes other investigators might also pitch in to provide additional scientific opportunities for more Native American high school students.

Growing up in Oklahoma, Cheadle never felt he stood out as a member of the Chickasaw tribe or as a biracial student.

His father, Robert, was active with the tribe, serving as a tribal judge and then as a legislative attorney for the Chickasaw. His grandfather, Overton Martin Cheadle, was a legislator.

Through their commitment to the Chickasaw, Cheadle felt a similar responsibility to give back to the tribe. “It was an incredibly important part of their professional lives and it was a passion” to help others, he said. “I’m driven by that spirit.”

His father took people in who had nowhere to go. In a few cases, people he put up robbed the family. Even after they robbed him, Cheadle’s father took them back. When Robert Cheadle died earlier this year, one of the people whom Cheadle supported helped out with his funeral arrangements.

Driven to accomplish his mission as a scientist, Lucas Cheadle feels he can reach out to help high school students and others interested in science during his research journey.

“The better I can do, the more I can help,” Cheadle said. He hopes to “open doors for other people.”

With some of these efforts to encourage STEM participation among Native Americans, Cheadle hopes to collaborate with John Herrington, a Chickasaw astronaut who took a Native American flute into space during one of his missions. “It would be wonderful to discuss this” with Herrington, “if he has time for me,” said Cheadle.

In modern times, the Chickasaw tribe has made “good strides” in being successful. One challenge to that success, however, is that it has included assimilation.“The main goal is to hold onto the heritage as much as we can,” said Cheadle.

As for now, he plans to honor his heritage in his lab by “working hard to create a safe, respectful environment where people’s unique backgrounds and characteristics are supported and embraced. I try to create a space where diversity can thrive.”

Lucas Cheadle. Photo from CSHL

By Daniel Dunaief

One of the newest additions to Cold Spring Harbor Laboratory’s neuroscience program, Lucas Cheadle, who is an assistant professor, is exploring the early environmental factors at a molecular level that shape the neurological development of the mouse visual system.

While nature and nurture combine to produce the individuals each life form becomes, Cheadle is focused on the ways nurture, specifically, shapes the pathways in the brain that affect the development of sight.

Microglia are an unlikely player in this environmentally-triggered development, as doctors and researchers previously saw these cells primarily as participants in neurinflammation.

That is not the case anymore, with Cheadle and other scientists demonstrating over the past decade or so that microglia play important parts in the healthy brain. Cheadle, specifically, has demonstrated that these cells play a role in experience-dependent circuit development.

Indeed, the process of circuit refinement in the developing brain, which Cheadle describe as being among the “most complex structures in the known universe,” is akin to a room full of half-full boxes, which represent synaptic connections between neurons.

The brain begins with numerous little boxes that make the room difficult to navigate. As the brain consolidates the important items into a smaller number of larger boxes and removes the smaller boxes, the room becomes more manageable.

This is consistent with what Cheadle has seen during refinement. A smaller number of synapses become stronger and are maintained, while others are removed. This promotes the efficiency and precision of neural processing, he explained.

When the contents of some of those boxes disappear, however, the result can lead to neurodegenerative diseases like Alzheimer’s, in which a person struggles to find memories that may have been unwittingly cleared out.

Cheadle, who most recently was a post doctoral researcher at Harvard Medical School, is exploring the way microglia shape the connections between the eyes and the brain between when a mouse is born and when it reaches one month of age.

His work has shown that microglial cells are required for the sensory-dependent phase of visual circuit development. Disrupting signals between microglia and neurons affects synapse elimination, akin to removing the smaller boxes, which is important for circuit function.

Indeed, prior to work Cheadle and others have done in recent years with these cells in the brain, researchers thought microglia in the brain were quiescent, or inactive, after birth, except for their role in brain injury, disease pathology and neuroinflammation.

Until the first week of life, microglia engulf and then digest synaptic connections between some neurons, in a process called phagocytosis. During the sensory-dependent phase of refinement in the third week after birth, which Cheadle demonstrated in a paper published this month in the journal Neuron, microglia stop phagocytosis and rely on cytokines to break down synapses.

The cytokine pathway Cheadle discovered, called TWEAK, which is a ligand expressed by microglia, and Fn14, a receptor expressed by neurons, becomes active between eye opening, which is around two weeks, and peaks at about four weeks old.

When mice don’t have exposure to important visual stimuli during this critical period, the circuit has too many synaptic connections, which reduces the effectiveness of the developing visual system.

While Cheadle is working on visual development, specifically, he is interested in the broader implications of this work in the context of the environmental signals that affect the development of the brain.

In that broader context, the processes involved in autism and schizophrenia could reflect a period in which individuals have an overabundance of synapses that weren’t sufficiently pruned and refined.

Despite the fact that researchers hypothesized that synaptic pruning may lead to these disorders decades ago, they still have a limited awareness of whether and how this might happen. Studying the way microglia contribute to healthy circuit development could provide important clues about these processes.

Some epidemiological evidence points to the linkage between immune activity and neurodevelopmental disorders. In 1918 and 1919, during the Spanish Flu pandemic, children born during that period had a higher incidence of an autism or schizophrenia later in life.

Other evidence shows an interaction between immune activation and neurodevelopmental dysfunction, including the genetic loci associated with such disorders and increased inflammatory markers in the blood and brains of people with such disorders. “There’s really no question that there is a link,” Cheadle explained. “The nature of the link is still poorly understood.”

While earlier epidemiological data raises questions about the current pandemic, it doesn’t provide a definitive answer because “we still don’t quite understand what the nuanced molecular factors are that link the immune activation to the increase in disease prevalence,” Cheadle suggested.

“There’s a real chance that having COVID during pregnancy may impact the development of the offsprings’ nervous systems as has been seen in other infections,” Cheadle wrote. “While it is not the current priority of COVID research, it certainly warrants studying.”

Cheadle hopes to understand the “underlying principals of disorders” he said.

A resident of Huntington, Cheadle lives five minutes from the lab. He plans to rent for now because he didn’t want to start a new lab and move into a new house at the same time.

Cheadle has hired a technician and is in the process of hiring another. A post doctoral scientist will join his lab in November.

Early on in his life, Cheadle said he was fascinated with the interface between the world and biology. He wanted to understand how human brains interpret the information that comes from our senses. Everything culminated, professionally, in his interest in neurobiological mechanisms.

Currently, Cheadle is also interested in the looming behavior of mice. In the field, when mice see a bird that is flying slowly overhead, they are more likely to make a mad dash for safety, running into weeds or for cover from a tree. When the bird, however, is flying too rapidly, the mice freeze.

“I’m intrigued to find out whether the dichotomy of fight or flight could be shifted by the function of microglia,” he said. “I like to understand something at a functional level and dissect it to a molecular level.”

Ethan Hawke as the visionary Nikola Tesla. Photo from IFC Films

Reviewed By Jeffrey Sanzel

After dropping out of Harvard, writer-director-producer Michael Almereyda got a Hollywood agent based on a spec script about inventor and innovator Nikola Tesla. Tesla now arrives in theaters (and streaming) some three decades later. In the meantime, Almereyda has made over two dozen films, ranging from shorts to feature length to documentaries. He has worked with many of the same actors over the years — in this case reuniting with Ethan Hawke (who starred in Almereyda’s modern-dress Hamlet), Kyle MacLachlan, and Jim Gaffigan.

Kyle MacLachlan plays Thomas Edison, Tesla’s frenemy and rival in the film. Photo from IFC Films

The film is not a complete biopic but instead begins in 1884 when Tesla was unhappily working for Thomas Edison in his workshop. It quickly presents their incompatibility and Tesla’s subsequent embarkation on an independent path. The focus is on the battle between Edison’s direct current and Tesla’s alternate current. (Some of this material was covered in Alfonso Gomez-Rejon’s The Current War, which emphasized the business competition between Edison and George Westinghouse with Benedict Cumberbatch as the former, Michael Shannon as the latter, and Nicholas Hoult in the less prominent role of Tesla.)

The structure of Tesla is eclectic. It is narrated by Anne Morgan, daughter of mogul J.P. Morgan, who later bankrolls Tesla. Dressed in period garb, she talks to the camera, referencing her laptop, and siting Google searches. This sets the tone for what is going to be an unconventional structure. The visual elements are highly stylized, with scenes often played out against enlarged photos, painted backdrops, or stock footage.  Sometimes this is highly effective; other times it has the feel of the cheaply made educational films of the 60’s and 70’s.

There is nothing wrong with this strange, theatrical tactic. Often, the unexpected vision or rough approach bring the explored world into a different focus by not enslaving it to its period. The result can present old concepts in new lights. When this fails, works such as these can still succeed as a triumph of style over substance. Unfortunately, Tesla is no triumph. The scenes that are part of the historical narrative are meandering, with a lot of mumbling scientific jargon that is no doubt well-researched and accurate, but make for very slow going.

Tesla should not be a history report: It should engage on some visceral level. The surrounding structure is uniquely artistic and unpredictable; the content plays as pedestrian. The result is like a pie with an amazing and complex crust but a bland, tasteless filling.

There is a wonderful scene that ends in a small food fight between Edison and Tesla. This, like several other moments, are then corrected as only fantasy. The random appearance of a cellphone is a slyly introduced anachronism. This is where the film delights and surprises. The speculation, the what-if’s, and the flights of fancy engage us for a few moments but then we drift back into soporific stupor. There is great deal espoused about idealism versus capitalism and creation versus commerce. All are important concepts but they are not presented in any dramatic fashion.

When Tesla sets up his laboratory at Wardenclyffe in Shoreham, there are enough lightning flashes and electrical storms for half a dozen Frankenstein movies. It is stretches like these that seem to go on with little purpose.

Ethan Hawke makes Tesla a brooding genius, full of tics and OCD. As always, he fully commits to the role and delivers the best he can. But the problem is we never really learn who Tesla is. In many ways, he is a cipher at the center of his own story. Kyle MacLachlan’s Edison is an egotist of epic proportion but allows flashes of doubt to peek through. There are occasional sparks between them and the rivalry between these dysfunctional geniuses offer the strongest sequences. If only there were more.

Eve Hewson’s Anne Morgan is a fully-realized character, the underlying but never spoken love for Tesla a driving factor. She makes the  marveling at his genius and exasperation with his inability to communicate completely natural. Jim Gaffigan is a blowsy and sincere George Westinghouse and loses himself in the character. J.P. Morgan, as played by Donnie Keshawarz, enters late and is a borderline melodrama villain.

Rebecca Dayan as the grand dame of the theatre, Sarah Bernhardt, steers her away from the dangers of caricature, and her fascination with Tesla is intriguing if not fully explored. The rest of the cast are given one note each to play, and they struggle along with the weightier sections of exposition.

There are at least half a dozen electrical references that could be made to cleverly sum-up Tesla — comments about random sparks or broken circuits. But, ultimately, it is much simpler than that: The film just doesn’t work.

Tesla is rated PG-13 for some thematic material and some nudity.

James Misewich Photo from BNL

By Daniel Dunaief

Even as the pandemic continues to cast a pall over the prospects for the economy, the federal government is finding ways to support science. Recently, as a part of a $625 billion award to a host of institutions, the Department of Energy earmarked $115 million over five years for a part of a project led by Brookhaven National Laboratory.

The science, called quantum information systems, could have applications in a wide range of industries, from health care to defense to communications, enabling higher levels of artificial intelligence than the current binary system computers have used for decades. By benefiting from the range of options between the 0s and 1s that typically dictate computer codes, researchers can speed up and enhance the development of programs that use artificial intelligence.

The investment “underscores the confidence the federal government has with respect to how important this technology is,” said James Misewich, the Associate Laboratory Director for Energy and Photon Sciences at BNL. “Despite the challenges of the time, this was a priority.”

Local leaders hailed the effort for its scientific potential and for the future benefit to the Long Island economy.

“I have seen strong support inside of Congress and the administration for funding requests coming out of the Department of Energy for ideas on how to move the DOE’s mission forward,” said U.S. Rep. Lee Zeldin (R-NY-1). “I have also seen a very high level of appreciation and respect for BNL, its leadership, its staff, its mission and its potential.”

Zeldin said the average American spends more time than ever engaging with technologies and other discoveries that were made possible by the first quantum revolution. “Here we are on the verge of a second quantum revolution and BNL is at the forefront of it,” Zeldin said.

Zeldin sees limitless possibilities for quantum information science, as researchers believe these efforts will lead to advancements in health care, financial services, national security and other aspects of everyday life. “This next round of quantum advancements seeks to overcome some of the vulnerabilities that were identified and the imperfections in the first wave,” he said.

State Senator James Gaughran (D-Northport) expects quantum science to provide a significant benefit to the region. “We believe this is going to be a major part of our economic future,” he said. “It is a huge victory for Long Island.”

The return on investment for the state and the federal government will also materialize in jobs growth. This is “going to employ a lot of people,” Gaughran said. “It will help to rebuild the type of economy we need on Long Island. The fact that we are on the front lines of that will lead to all sorts of private sector development.”

While the technology has enormous potential, it is still in early enough stages that research groups need to work out challenges before they can fully exploit quantum technology. BNL, specifically, will make quantum error correction a major part of their effort.

As quantum computers start working, they run into a limitation called a noisy intermediate scale quantum problem, or NISQ. These problems come from errors that lower the confidence of getting the right answer. The noise is a current limitation for the best quantum computers. “They can only go so far before you end up with an error that is fatal” to the computing process, Misewich said.

By using the co-design center for quantum advantage, Misewich and his partners hope to use the materials that “beat the NISQ error by having the combination of folks with a great team that are all talking to one another.”

The efforts will use a combination of classical computing and theory to determine the next steps in the process of building a reliable quantum information system-driven computer.

Misewich’s group is also focusing on communication. The BNL scientists hope to provide a network that enables distributed computing. In classical computing, this occurs regularly, as computer scientists distribute a problem over multiple computers.

Similarly, with quantum computing, scientists plan to distribute the problem across computers that need to talk to each other.

Misewich is pleased with the combination of centers that will collaborate through this effort. “The federal government picked these centers because they are somewhat complementary,” he said. The BNL-led team has 24 partners, which include IBM, Stony Brook University, SUNY Polytechnic Institute, Yale University, Princeton University, the Massachusetts Institute of Technology, Harvard University, Columbia University and Howard University, among others.

“We had to identify the best team and bring in the right people to fill the gaps,” Misewich explained.

Using a combination of federal funds and money from New York State, BNL plans to build a new beamline at the National Synchrotron Lightsource II, which will operate at very low temperatures, allowing scientists to study the way these materials work under real word conditions.

BNL would like the work they are doing to have an application in calculations in three areas: the theory of the nucleus, quantum chemistry, which explores ways to design better materials, and catalysis.

A quantum computer could help make inroads in some challenging calculations related to electron-electron interactions in superconducting materials, Misewich said, adding that the entire team feels a “tremendous sense of excitement” about the work they are doing.”

Indeed, the group has been working together for close to two years, which includes putting the team in place, identifying the problems they want to tackle and developing a compelling strategy for the research to make a difference.

The group is expecting to produce a considerable amount of research and will likely develop various patents that will “hopefully transfer the technology so companies can start to build next generation devices,” Misewich said.

Along with local leaders, Misewich hopes these research efforts will enable the transfer of this technology to a future economy for New York State.

This effort will also train a numerous graduate and post doctoral students, who will be the “future leaders that are going to drive that economy,” Misewich said.

The research will explore multiple levels of improvement in the design of quantum computers which they hope will all work at the same time to provide an exponential improvement in the ability of the computer to help solve problems and analyze data.

METRO photo

By Elof Axel Carlson

Elof Axel Carlson

Science is a way of enlarging our knowledge about the  universe. It is not the only way to do so.  We can experience the universe through our travels, our observation of the changing seasons, our feelings of awe at a glorious sunset, or the joy of seeing a rainbow form after a passing rain shower. 

We can also experience a feeling that many call spiritual, through meditation, prayers, or reverential feelings. All societies experience these different ways of encountering the diversity of the universe and how to classify the world we experience around us. What sets science apart is its use of reason and tools to explore the universe.

Experimental science was formalized during the renaissance especially in Italy where Galileo and his students did experiments to work out the first laws of physics using inclined planes and quantitative relations to show a mathematical measure of speed and acceleration. Galileo also added the use of the telescope to explore the heavenly bodies and showed Venus had phases like the moon, the moon had craters and mountain ranges, Jupiter had 4 moons whose orbits he and his students worked out, and the sun had sunspots whose migrations allowed him to show the sun rotates on an axis.

That is not knowledge one gets from revelation or looking for bible codes in the Old Testament verses. It led to a dualism with Descartes and other philosophers seeing the universe as containing two realms – the material universe accessible to science through reason and experimentation and the spiritual or supernatural world that was accessible by revelation and scriptural interpretations of theologians. The Renaissance was also contentious, and Protestants and Catholics fought over who should interpret the Bible.

The relation between the world interpreted by science and the world interpreted by the supernatural has been an uneasy one ever since the Renaissance. Many people have no problem balancing the two ways to experience their lives. Other feel uncomfortable with the supernatural or uncomfortable with the scientific outlook expressed as atheism agnosticism, humanism, or scientism.

I am a scientist, and in that role I avoid explanations invoking the supernatural. I describe what is accessible through observation, experimentation, and the tools of science to investigate what is complex and render it interpretable through my studies. But I am also a human being who enjoys listening to music, going to museums to see great artworks and reading wonderful books of fiction and human imagination.

Science enlarged the universe I can live in and made possible the long life I have lived.  Some people, however, have a more ambivalent relation to science. They see it as destructive to their spiritual beliefs. They see it as destroyer of their children’s faith. They see it as sterile of emotions and human feelings. They see it as a rival that deprives them of the total freedom of the will to do what they want when they want. 

We see this in the  responses to the  advice offered by the nation’s epidemiologists and microbiologists who have studied infectious disease. Germs have no ideology. They have hosts. Those hosts can include you or me.

My response to a contagious disease is to follow what science recommends. I get a flu shot each year. I was immunized in my youth against smallpox, polio, and whooping cough. I had the measles and got an autoimmunity from that as was the case for mumps during the Depression years I grew up.

I am puzzled that adults can take offense at being told to  wear a facial mask to prevent spraying their germs in the streets and rooms they occupy as well as serving as a protection from those germs exhaled from our mouths and noses.

I am puzzled that people belittle scientists who measure the oceans’ temperatures and the study of the melting of glaciers around the polar regions and who keep careful records showing increases of carbon dioxide in the atmosphere and a rising temperature of the atmosphere and a rising sea level and more numerous and severe climate changes around the world. The evidence is overwhelming that it is caused by a fossil fuel carbon-based civilization and that it needs regulation through international treaties.

But those who ignore or reject science do not offer an alternative to changing our habits of how we live. What is it besides “wishful thinking” or denial that they offer in response? I am not advocating that science always has good outcomes. Science, like all human activity, has to be monitored, assessed and regulated. Pollution of the land, air and waters that are essential  for our lives needs regulation. Science often lends its help to the construction of weapons of mass destruction which is just rationalized murder of the innocent who are embedded in the guilty we designate as the enemy.

In a democracy it is our obligation to debate the uses and abuses of science as well as the uses and abuses of cultural beliefs and political ideologies. It is false to believe that society and nature are always self-correcting without human involvement in how we respond to the  threats often of our own making.

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

Anže Slosar. Photo from BNL

By Daniel Dunaief

Ever since Ancient Romans and Greeks looked to the stars at night, humans have turned those pinpricks of light that interrupt the darkness into mythological stories.

Two years from now, using a state-of-the-art telescope located in Cerro Pachón ridge in Northern Chile, scientists may take light from 12 billion light years away and turn it into a factual understanding of the forces operating on distant galaxies, causing the universe to expand and the patterns of movement for those pinpricks of light.

While they are awaiting the commissioning of the Vera C. Rubin Observatory, researchers including Brookhaven National Laboratory Physicist Anže Slosar are preparing for a deluge of daily data — enough to fill 15 laptops each night.

An analysis coordinator of the Large Synoptic Survey Telescope’s dark energy science collaboration, Slosar and other researchers from around the world will have a unique map with catalogs spanning billions of galaxies.

Anže Slosar

“For the past five years, we have been getting ready for the data without having any data,” said Slosar. Once the telescope starts producing information, the information will come out at a tremendous rate.

“Analyzing it will be a major undertaking,” Slosar explained in an email. “We are getting ready and hope that we’ll be ready in time, but the proof is in the pudding.”

The Vera C. Rubin Observatory is named for the late astronomer who blazed a trail for women in the field from the time she earned her Bachelor’s Degree from Vassar until she made an indelible mark studying the rotation of stars.

Slosar called Rubin a “true giant of astronomy” whose work was “instrumental in the discovery of dark matter.”

Originally called the Large Synoptic Survey Telescope (LSST), the Rubin Observatory has several missions, including understanding dark matter and dark energy, monitoring hazardous asteroids and the remote solar system, observing the transient optical sky and understanding the formation and structure of the Milky Way.

The study of the movement of distant galaxies, as well as the way objects interfere with the light they send into space, helps cosmologists such as Slosar understand the forces that affect the universe as well as current and ancient history since the Big Bang.

According to Slosar, the observatory will address some of its goals by collecting data in five realms including examining large structures, which are clustered in the sky. By studying the statistical properties of the galaxies as a function of their distance, scientists can learn about the forces operating on them.

Another area of study involves weak lensing. A largely statistical measure, weak lensing allows researchers to explore how images become distorted when their light source passes near a gravitational force. The lensing causes the image to appear as if it were printed on a cloth and stretched out so that it becomes visually distorted.

In strong lensing, a single image can appear as two sources of light when it passes through a dense object. Albert Einstein worked out the mathematical framework that allows researchers to make these predictions. The first of thousands of strong lensing effects was discovered in 1979. Slosar likens this process to the way light behind a wine glass bends and appears to be coming from two directions as it passes around and through the glass.

The fourth effect, called a supernova, occurs when an exploding star reaches critical mass and collapses under its own weight, releasing enough light to make a distant star brighter than an entire galaxy. A supernova in the immediate vicinity of Earth would be so bright, “it would obliterate all life on Earth.”

With the observatory scanning the entire sky, scientists might see these supernova every day. Using the brightness of the supernova, scientists can determine the distance to the object.

Scientists hope they will be lucky enough to see a supernova in a strongly lensed galaxy. Strong lensing amplifies the light and would allow scientists to see the supernova that are otherwise too distant for the telescope to observe.

Finally, the observatory can explore galaxy clusters, which are a rare collection of galaxies. The distribution of these galaxies in these clusters and how they are distributed relative to each other can indicate the forces operating within and between them.

The BNL scientist, who is originally from Slovenia, is a group leader for the BNL team, which has seven researchers, including post docs. As the analysis coordinator of the dark energy science collaboration, he also coordinates 300 people. Their efforts, he said, involve a blend of independent work following their particular interests and a collective effort to prepare for the influx of data.

Slosar said his responsibility is to have a big-picture overview of all the pieces the project needs. He is thrilled that this project, which was so long in the planning and development stage, is now moving closer to becoming a reality. He said he has spent five years on the project, while some people at BNL have spent closer to 20 years, as LSST was conceived as a dark matter telescope in 1996.

Scientists hope the observatory will produce new information that informs current understanding and forms the basis of future theories.

As a national laboratory, BNL was involved in numerous phases of development for the observatory, which had several different leaders. The SLAC National Accelerator in Stanford led the development of the camera that will be integrated into the telescope. BNL will also continue to play a role in the data analysis and interpretation.

“Fundamentally, I just want to understand how the universe operates and why it is like this and not different,” said Slosar.

COVID-era Human Language Analysis Lab Meeting in July, top row from left, MZ Zamani, Matthew Matero, Nikita Soni ; bottom row from left, Adithya Ganesan, Oscjar Kjell, Linh Pham and H. Andrew Schwartz in the middle. Photos taken July, 2020

By Daniel Dunaief

Computers might not be able to tell you how they are doing, unless they run a diagnostic test, but they might be able to tell you how you are doing.

Using artificial intelligence, a team of scientists at Stony Brook University recently received a $2.5 million grant from the National Institutes of Health to study how social media posts and mobile phone data may be able to predict excess drinking among restaurant workers.

By using data from texting, social media and mobile phone apps, these researchers, led by Andrew Schwartz, an Assistant Professor in the Department of Computer Science, are hoping to use artificial intelligence to predict excessive drinking.

According to the National Institute of Alcohol Abuse and Alcoholism, unhealthy drinking involves seven drinks a week for women and 14 for men.

Schwartz said the study hopes to be able to address whether the researchers, including Richard Rosenthal, the Director of Addiction Psychiatry at Stony Brook Medicine and Christine DeLorenzo, Associate Professor in the Departments of Biomedical Engineering and Psychiatry, could “say what the mood predicts how much participants will be drinking in the future.”

By analyzing the content of texts and social media posts, Schwartz and a team that also involves scientists from the University of Pennsylvania will explore whether an increase in stress is more likely to happen before an increase in drinking.

The researchers will study the effect of empathy, which can be health promoting and health threatening. “We believe AI-behavior-based measures will work better than questionnaires for detecting an unhealthy style of empathy,” Schwartz explained in an email. The AI will search for non-obvious patterns of social media posts and texts to determine which type of empathy a person might demonstrate and whether that empathy could lead to a drinking spiral.

Empathy theoretically may add to stress for bartenders and restaurant workers as they often listen to customers who share their tale of woe with food service professionals and are also in a social job.

Indeed, amid the pandemic, where levels of stress are higher during periods of uncertainty about public health and in which restaurant workers might be more likely concerned about their employment, this study could provide a way to understand how increases in alcohol consumption develop potentially to inform new ways to interrupt a negative spiral. “The extra stress of job security is heightened right now” for restaurant workers, among others, Schwartz said.

By validating AI against accepted tools, the researchers hope to gauge the AI-decoded link between emotion and unhealthy drinking behavior by aligning what an individual is expressing in social media with indicators of their emotional state and drinking.

Participants in the study are filling out brief surveys several times a day.

In the long run, the scientists hope this kind of understanding will allow future public health professionals to offer support services to people without the cost of having to administer numerous questionnaires.

The researchers had received word that their proposal had received the kind of score from the NIH that suggested they would likely get funded last July. They could have received positive funding news any time from November through May, which was when they learned that they had secured the financial support to pursue their research.

The topic of study is “extremely relevant,” he added, amid the current uncertainty and the potential for a second wave in the fall or winter.

“We’re interested in studying how unhealthy drinking develops and how it plays out in people’s daily lives,” Schwartz said.

Social media provides a window into the emotional state of the participants in the research.

To be sure, the researchers aren’t looking at how people post about drinking, per se, online. Instead, the scientists are looking at how people in the study answer questions about their drinking in the regular questionnaires.

The researchers came together for this effort through the World Well Being Project, which is a research consortium in collaboration with scientists at the University of Pennsylvania, Stony Brook University and Stanford.

The project involves groups of computer scientists, psychologists and statisticians to develop new ways to measure psychological and medical well-being based on language in social media, according to the group’s web site, which describes “Authentic Happiness.”

In a recent study, 75,000 people voluntarily completed a personality questionnaire through Facebook and made their status updates available. Using these posts, the researchers were able to predict a user’s gender 92 percent of the time just by studying the language of their status updates.

Researchers in substance use approached the World Well Being Project, which Schwartz is a part of, about the topic of unhealthy alcohol use.

The Artificial Intelligence methods Schwartz is developing and that the scientists are testing through this grant are aimed at understanding how a person is changing their language over time through their digital footprint.

In the future, Schwartz believes this approach could contribute to personalized medicine.

“When someone is most at risk, apps that are validated [may be able to] detect these sorts of patterns,” he said. While this study doesn’t provide a personalized patient app, it should provide the tools for it, he explained.

Optimizing this work for false positive and false negatives is a part of this study. The researchers need to create the tools that can make predictions with minimal false positives and false negatives first and then hope it will be used to interact with patients.

In this type of artificial-intelligence driven work, researchers typically need about 500 words to come up with a conclusion about a person’s emotional state. A goal of this work is to get that number even lower.

Fotis Sotiropoulos, the Dean of the College of Engineering and Applied Sciences, offered his enthusiastic support for this effort.

Schwartz is blazing a trail in advancing AI tools for tackling major health challenges,” Sotiropoulos said in a statement. “His work is an ingenious approach using data-science tools, smart-phones and social media postings to identify early signs of alcohol abuse and alcoholism and guide interventions.”

Ivar Strand Photo courtesy of BNL

By Daniel Dunaief

Ivar Strand had to put on a suit at home to interview virtually for a new job.

In the midst of the pandemic, Brookhaven National Laboratory was looking for a Manager of Research Partnerships in the Strategic Partnership Program and, despite the fact that the lab was limiting the people who were on site, was moving forward to fill a job opening.

“It was a strange situation,” Strand said, but the job piqued his interest, particularly because he’d be working with Martin Schoonen, the leader of BNL’s Strategic Partnership Programs office and an associate laboratory director for environment, biology, nonproliferation and national security. Schoonen and Strand, who worked together at Stony Brook in the late 1990’s, have known each other for over 25 years.

While Strand worked at Stony Brook as an Assistant Vice President of Sponsored Programs, he had a visiting appointment at BNL for five years, from 2005 to 2010. Several of the staff at BNL “remembered who I was, which made the transition a little bit easier,” he said.

Strand most recently worked at Long Island University, where he was the Executive Director in the Office of Sponsored Projects.

Schoonen was pleased to welcome Strand to the BNL fold. “[He is] taking on a pivotal role to develop contractual arrangements with potential partners and assist with growing and diversifying the labs funding sources,” Schoonen said in a statement.

In effect, Strand is facilitating collaborations among institutions. He will facilitate not only the connections and collaborations, but also encourage broadening and deepening professional connections to create either project specific or ongoing strategic partnerships

Strand will work to increase the awareness of the capabilities BNL can provide to researchers, entrepreneurs, and investors. The main drawback in a job he started on May 26 has been that he hasn’t been able to “build face-to-face relationships,” he said. Speaking with people for the first time through web-based platforms is not the same as running into someone who is walking across the site.

Building the relationship with the Department of Energy also represents a new challenge for Strand, who has previously worked with educational institutions as well as with Northwell Health.

“I spent my whole career building partnerships at various research institutions,” he said. After facilitating those collaborations, Strand has entered into agreements and then moved one. At BNL, he has the added dynamic of “making sure it satisfies the requirements of the DOE.” The scope of his work comprises all the research funding coming into the lab outside of the direct money that comes from the DOE, which represents about 90 percent of the funds for research at the lab.

Some of these other initiatives are collaborative, which involve DOE funds that also have a requirement to find a company to contribute financially, such as the Technology Commercialization Fund.

Working with finance and departmental business managers, Strand oversees the non-direct DOE money that comes in. When educational institutions and companies participate, particularly to supply funding, Strand and the strategic partnership team become a part of the conversation.

BNL often competes against the other national labs for major projects. Once the government selects a winner, as it did for the construction of the Electron Ion Collider, the DOE often asks the lead on the project to tap into the expertise and talents of the other institutions. When BNL recently won the EIC contract over Jefferson Laboratory in Virginia, the DOE asked BNL to partner with Jefferson to build the facility. New York State originally agreed to contribute $100 million to the construction of the EIC. Strand said the lab is hopeful that the commitment would come through.

In addition to the scientific discoveries that the EIC will bring, it is also a construction project that will provide the state with jobs. “I’m involved in some of the discussions in order to provide information about the project,” Strand said.

The transition to a government lab will require Strand to maneuver through structured agreements from the DOE, which is a bit of a challenge. The DOE uses structured agreements, while educational institutions also do but often are willing to use the agreements the sponsors propose.

Strand is pleased that BNL recently received approval to participate in the Atom Consortium, which was started by Glaxo and the University of California at San Francisco. The negotiation had been going on for several years. “It allows us to enhance our big data computing capabilities and expertise,” he explained.

Strand is excited about rejoining BNL. “I’ve always wanted to work in the lab and understand how best to build collaborations under the government umbrella,” he said.

Strand hoped his unconventional approach to some of the partnership challenges will work in the context of the structured environment of a national laboratory.

Indeed, in 2007, when he was working at Stony Brook, the university received the funds to buy a supercomputer. The two institutions, however, had decided to house the supercomputer at BNL, which made it a “challenging transaction” for all parties. He and others had to help Stony Brook become an enlisted partner, which allowed BNL to house the supercomputer on site.

In the bigger picture, Strand said he and Schoonen are reviewing where the lab will be from a strategic perspective in five years. In addition to industry, they are looking to collaborate with other federal sponsors with whom they haven’t traditionally partnered. They have to make sure that these efforts conform with DOE’s growth agenda.

A first-generation American whose parents were born in Norway, Strand said his parents met in the United States. A resident of South Setauket, Strand lives with his wife Maritza, who is an implementation specialist for ADT payroll. A tennis player and golfer, Strand alternates visiting and hosting his brother, who lives in Norway and is a veterinarian.

Strand is looking forward to his ongoing collaborations with Schoonen. “Having worked with him in the past, I have a lot of respect” for Schoonen, Strand said. “I jumped at the chance to be reunited with him. He’s an unbelievably great guy to work for.”

Photo from Vanderbilt Museum

Have you ever gazed at the night sky and wanted to know more about what you see? If you are intrigued by astronomy, and have a beginner or novice-level understanding of it, the Charles and Helen Reichert Planetarium & Observatory at the Suffolk County Vanderbilt Museum in Centerport invites you to take its Astronomy Education Series of six virtual mini-courses.

Dave Bush, director of the Planetarium, said each course builds upon the prior one in the sequence, while it also provides flexibility for students to gauge their own level of interest. Students may enroll in as many, or as few, courses as they choose, he said. It is recommended, however, that Course 1 be taken as a prerequisite for any of the other five. Course 1 begins September 15. Courses 2 to 6 are offered from mid-October through late April 2021.

“During the COVID-19 shutdown, this series will be taught remotely via Zoom,” Bush said. “Once the Planetarium reopens, the courses will be taught at the Planetarium in a classroom setting.  If we are permitted to move to a classroom setting, those classes will also will be livestreamed for those students who prefer, or are required, to attend remotely.”

The instructor is Bob Unger, who has pursued a lifelong interest in astronomy. He taught in the Planetarium’s outreach program Discovering the Universe: Mobile Classroom, has participated in projects for the National Oceanic and Atmospheric Administration, and is one of the command-console operators of the Planetarium’s projection system. Occasional guest speakers may be invited.

Courses are designed for beginning to novice-level amateur astronomers – and for anyone who wishes to expand their knowledge of astronomy and the night sky.  “The Astronomy Education Series provides a more formal education than is typically provided at planetarium shows and exhibits, or from media outlets,” said Unger.

Designed for adult learners (age 16 years and up), the courses explore astronomy, astrophysics, cosmology, and the night sky. The textbook is free in electronic form as a PDF document. The fee for each course is $70, $60 members. To register, visit www.vanderbiltmuseum.org. For further information, call 631-988-3510.