Power of 3

Educational Programs Administrator Michele Darienzo Photo from BNL

By Daniel Dunaief

Brookhaven National Laboratory hopes to inspire the scientists of the future.

The Department of Energy sponsored national laboratory, which attracts scientists from all over the world to its state-of-the-art facility, opens its doors regularly to local students and teachers, with researchers and educators translating what they do to area residents at all levels of scientific development and understanding.

Amid so many other efforts and with a welcome return to on-site education after pandemic restrictions over the last few years, BNL received DOE funding to help eight area teachers learn how to create computer coding.

In their classrooms, these educators have shared what they studied this past summer with their students.

Amanda Horn

Coding, which uses programs like Python and Arduino, can help scientists create a set of instructions that allow computers to process and sort through data more rapidly than any person could by hand.

At the same time, a knowledge of coding can and does provide students with tools that scientists seek when they are choosing graduate students, technicians or staff in their laboratories.

Coding helps to set students “up for a job,” said Michele Darienzo, Educational Programs Administrator and one of the two teachers for the four-week summer program. “It puts you at the top of the pile.”

Darienzo added that efforts such as these prepare the science, technology, engineering and math workforce for the future.

Using modern technology, researchers collect data in a wide range of fields at a rate that requires technological help to sort through it and derive meaning from it.

“We’re at the point where lots of projects are collecting so much data and information,” said Darienzo. “We have one experiment [that is producing] many iPhones per second worth of data. That’s not something a person can do in their lifetime.”

Darienzo taught the programming language Python to the class of teachers, while Amanda Horn, who is also an Educational Programs Administrator, instructed these educators with Arduino.

“It went really well,” said Horn. “The teachers seemed really engaged in everything we were doing.”

A day in the life of a river

Bernadette Uzzi

Beyond the on site experience at BNL, Horn accompanied a class this fall or a Day in the Life of the Carmans River at Smith Point County Marina.

The students used sensors to measure numerous variables, such as temperature, pressure and humidity. With another sensor, they were able to measure carbon dioxide levels.

“If you cup your hand around the sensor, you can graph [the level of the gas] in real time using the code,” said Horn. Variabilities occurred because of the movement of air, among other factors, she added.

The students on the trip “seemed excited [to use the sensors] and to get a sense of how they worked,” Horn said.

In the context of global warming in which greenhouse gases such as carbon dioxide drive an increase in temperature, Horn addressed why it’s important to measure the levels of the gas.

Ongoing efforts

Training teachers to code represents one of numerous educational efforts BNL offers.

The Office of Educational Programs has hosted over 30,000 participants in various programs in its K-12 and university science education programs.

Kenneth White

Bringing students back on site this year after suspending in person visits amid the pandemic created a “big difference” for students, in terms of their excitement and enthusiasm, said Kenneth White, Manager of the Office of Educational Programs.

Jeffrey Tejada, a junior at Brown University, conducted summer research in the Computational Sciences Initiative.

Tejada, who grew up in Patchogue and moved to Medford, appreciated the opportunities he’s had since he started coming to BNL at the age of 14.

“It’s crazy how incredible BNL Is as a resource,” said Tejada, whose parents are immigrants from the Dominican Republic.

Indeed, the first year Tejada attended, Aleida Perez, Manager, University Relations and DOE Programs at BNL, needed to convince his mother Rosa Tejada that the effort, which didn’t involve any pay, would benefit her son.

“My mom asked [Perez,], ‘how worth it is this?’” Tejada recalled. Perez told Rosa Tejada, “You have to do this.”

His mom didn’t understand, but she listened and “that’s all that mattered,” as Tejada not only conducted research over the years, but is also planning to earn his PhD after he graduates.

White suggested that the recent coding effort was a recognition that students coming for internships at BNL or for scientific training opportunities elsewhere ended up spending considerable time trying to “figure out the basics” of coding.

Aleida Perez

In the first year of the teaching program, BNL reached out to teachers in 20 school districts that met particular criteria, including serving a high percentage of students that are traditionally under-represented in STEM fields. This included Longwood, Hampton Bays, Williams Floyd, South Huntington, Roosevelt, Central Islip, Middle Country and Brentwood.

The first week of the program was “frightening” for some of the teachers, who hadn’t had coding experience, said Perez. The teachers were “glad they came back for week two.”

As a part of the program, teachers presented their coding lessons to high school students on site at BNL, said Bernadette Uzzi, Manager, K-12 Programs in the Office of Educational Programs.

The final assessment test was a “pretty fun day,” Uzzi said, as the students pushed teachers to go further with their outdoor explorations.

Uzzi was thrilled when she had read that the Department of Energy had invited BNL to write a proposal for this pilot program. “Coding skills are important to be a scientist, no matter what field you’re in” she said. “There’s definitely a gap in what students are learning in school versus what is needed in the STEM workforce.”

Summer of ’24

At this point, it’s unclear if the DOE will build on this pilot program and offer additional teachers the opportunity to learn coding and bring this skill back to their classroom.

Uzzi said she would like to increase the number of teacher participants to 12 next year and to add physics applications to the current course work, which included a focus on environmental climate science.

Wei Yang at a poster session for a conference. Photo by Dr. Bo Zhou

By Daniel Dunaief

When cancer spreads, it becomes especially dangerous. Indeed, metastatic cancer accounts for 90 percent of deaths from this disease.

Stony Brook University Associate Professor Wei Yang, who joined the Pathology Department on August 1st, hopes to reduce metastatic mortality.

Yang is looking both upstream for the kind of molecular biological signals that might make cancer more likely to spread and downstream, for processes that overcome the body’s natural defenses and that lead to increased morbidity and mortality.

As he described, the goal is to prevent micrometastases, which are metastatic tumors that are too small for a radiographic scan, from growing into clinically relevant macrometastases that can be detected through imaging such as X-ray scans.

Micrometasases can form at an early stage, sometimes even before the detection of primary tumors. They are typically asymptomatic and are rarely lethal, as many cancer survivors die with, but not of, these micrometastases.

In work he conducted in California at the Cedars-Sinai Medical Center, Yang focused on the protein kinase RIPK2, which is over expressed in prostate cancer.

By inhibiting RIPK2 kinase in cell culture and animal models, Yang reduced prostate cancer metastasis by over 90 percent after four weeks of treatment. Inhibiting this protein made cancer progression over 10 times slower.

Innate immune cells and epithelial cells express RIPK2 at various levels. RIPK2 is over expressed in about 18 cancer types and the high expression is generally associated with worse patient outcomes.

RIPK2 is localized in the cytoplasm, which is inside the cell, rather than on the cell surface, which makes it difficult to train the immune system to destroy it. Small molecule compounds, however, can penetrate into the cytoplasm of tumor cells.

Developing oral drugs to shut off RIPK2 is a promising approach to disrupting this protein.

Repurposing an existing drug

The Food and Drug Administration has already approved a multi-kinase inhibitor called Ponatinib, which can inhibit the pro-metastatic RIPK2 signaling pathway in prostate cancer.

Yang believes it is “very promising” to repurpose this drug to treat prostate cancer patients who don’t respond to hormone therapies.

His animal experiments showed that RIPK2-higher tumor cells can grow into macromestases in multiple organs, such as bones, liver and adrenal glands. RIPK2 was also detected in cancers such as kidney and breast. Its expression levels are typically higher than in normal tissues.

Yang is the first to demonstrate that targeting RIPK2 reduces cancer metastasis.

He has been working on prostate cancer since he conducted his postdoctoral research at Harvard University/ Boston Children’s Hospital in 2006.

He started by analyzing three comprehensive and publicly available clinical databases. Using stringent criteria, he identified seven promising drug targets in prostate cancer metastasis. Among the seven, RIPK2 was the most significantly overexpressed and its expression increased along with prostate cancer progression from benign to lethal cancer.

Most patients diagnosed with metastatic prostate cancer die within two to three years. About 31 percent live five years or longer. 

For Yang, who earned his PhD from Peking University, the goal is to understand and prevent the lethal process of metastatic progression. He aims to develop clinically actionable drug targets and biomarkers.

Upstream and downstream

Yang is searching for genes and proteins that regulate the expression of this protein kinase, to find out what increases the expression of RIPK2 in tumor cells.

He has identified three transcription factors that are important for the expression of RIPK2 mRNA in prostate cancer cells. Previous studies showed that these factors are key drivers of prostate cancer aggressiveness.

He explained that it’s promising that patients with the overexpression of these transcription factors may benefit from targeting RIPK2 to reduce cancer aggressiveness. He is also identifying a gene signature associated with RIPK2 signaling activity. This will allow him to identify additional patients who may benefit from inhibiting this protein.

Seeking collaborators

Yang said he came to Stony Brook University for a host of reasons, including to have more lab space where he can employ two post doctoral researchers, two or three graduate students, one research support specialist and two undergraduates.

He is in the second year of a five year National Cancer Institute grant and is also in the second year of a three-year Department of Defense grant.

Yang would like to find collaborators at Stony Brook who can bring specific levels of expertise in areas such as lipid signaling.

In addition to RIPK2, Yang also focuses on palmitoylation signaling in cancer metastasis. Palmitoylation is a type of lipid modification on proteins and is a reversible post-translational modification whose deregulation contributes to diseases including cancer.

Stony Brook has a “world class lipid signaling research center,” he explained in an email, and he would like to find collaborators in this arena.

Hobbies

Married with a 14-year old son, Yang enjoys traveling with his family to cities and national parks and reading history and science fiction books. One of his favorite authors is Yuval Noah Harari.

As a child, Yang was particularly interested in science. Cancer affected his family, as his grandfather had liver cancer that was diagnosed early enough to receive treatment and his aunt is living with lung cancer.

While he has a sense of urgency to study metastatic cancer, Yang said the field does not receive as much funding and attention as other areas of cancer research. He estimates that about 10 percent of the cancer budget supports investigations into metastatic cancer.

His approach, he said, will remain focused on actionable plans and on efforts that have “high translational potential,” he explained.

Alexander Zamolodchikov Photo by John Griffin/SBU

By Daniel Dunaief

Alexander Zamolodchikov Photo by John Griffin/SBU

Stony Brook University might need to rename a wing of the C.N. Yang Institute for Theoretical Physics the Breakthrough Prize alley. That’s because theoretical physicist Alexander Zamolodchikov recently shared a $3 million prize in fundamental physics, matching a similar honor his neighbor on the floor and in the department, Peter van Nieuwenhuizen, earned in 2019.

Zamolodchikov shared this year’s award with University of Oxford Professor John Cardy for their contributions to quantum field theories which describe particle physics as well as magnetism, superconducting materials and the information content of black holes.

“I’m not working for prizes, but it’s kind of encouraging that other people think that my contribution is significant,” said the Russian-born Zamolodchikov, who joined Stony Brook in 2016 and had previously worked at Rutgers for 26 years, where he co-founded the High Energy Theory Center.

While Zamolodchikov was pleased to win the award and was understated in his response, his colleagues sang his praises.

Zamolodchikov is “one of the most accomplished theoretical physicists worldwide,” George Sterman, Director of the C.N. Yang Institute for Theoretical Physics and Distinguished Professor at Stony Brook University’s Department of Physics and Astronomy, said in a statement. “He has made groundbreaking advances, with enormous impact in many physics fields, such as condensed matter physics, quantum statistical physics and high energy physics, including our understanding of fundamental matter and forces.”

Sterman added that Zamolodchikov’s insights have influenced the way theoretical physicists think about foundational concepts.

“Having such a giant in your institute is always great,” said van Nieuwenhuizen, who said the two Breakthrough Prize winners sometimes discuss physics problems together, although their fields differ.

Founded by Sergey Brin, Priscilla Chan and Mark Zuckerberg, Julia and Yuri Milner and Anne Wojcicki, the Breakthrough Prizes are referred to as the “Oscars of science.”

A scientific throwback

Zamolodchikov has a “very pleasant personality” and couldn’t be a better neighbor in a corridor in which five of the offices house distinguished professors, van Nieuwenhuizen said.

Van Nieuwenhuizen, who was a deputy for C.N. Yang for six years, said the two of them often discussed whether to continue to build a theoretical physics department or to branch out into applied physics.

The direction for the department “wasn’t so obvious at the time” but the institute members decided to continue to build a fundamental physics group, which attracted the “right people. In hindsight, it was the right decision,” van Nieuwenhuizen added.

In some of his lectures and discussions, Zamolodchikov, who often pushes his glasses up on his forehead, works with equations he writes on a blackboard with chalk.

He suggested that many in the audience prefer the slow pace of the blackboard and he uses it when appropriate, including in class lectures. Having grown up in pre-computer times, he considers the blackboard his “friend.” 

“He’s a throwback,” said van Nieuwenhuizen. “I happen to think that is the best way of teaching.”

Thinking about eating bread

Zamolodchikov said he often gives his work considerable thought, which he believes many scientists do consciously and subconsciously, wherever they are and what they are doing.

When his daughter Dasha was about four years old, she asked him what he was thinking about all the time. He joked that he was contemplating “how to consume more white bread.”

Even today, Dasha, who conducts biological research, asks if he is “still thinking about white bread.”

Family commitment to physics

When Zamolodchikov’s father Boris returned from World War II, the Soviet Union built a physics institute in his town of Dubna.

His father had an “exceptional understanding” of some parts of physics, such as electromagnetic theory and he would talk in their house about science. Boris Zamolodchikov was chief engineer of a laboratory that was working on the first cyclotron.

“He convinced us that physics was something to devote the life to,” Zamolodchikov explained.

Zamolodchikov (who goes by the name “Sasha”) and his late twin brother Alexei (who was known as Alyosha) looked strikingly similar, but were never sure whether they were fraternal or identical twins. The twins collaborated on research in physics until Alexei died in 2007.

Zamolodchikov and his brother understood each other incredibly well. One of them would share a thought in a few words and the other would understand the idea and concept quickly.

“It was some sort of magic,” said Zamolodchikov. “I miss him greatly.”

Indeed, even recently, Zamolodchikov has been working to solve a problem. He recalls that his brother told him he knew how to solve it, but the Stony Brook Distinguished Professor forgot to ask him about the details.

When Zamolodchikov, who thinks of his twin brother every day, learned he had won the prize, he said he feels “like I share this honor with him.”

Description of his work

In explaining his work, Zamalodchikov suggests that quantum field theory, which was questioned for some time before the mid-1970’s, has been used to describe subatomic physics.

On a general level, quantum field theory helps explain nature in terms of degrees of freedom.

“I was trying to solve simplified versions of these field theories,” said Zamolodchikov. He provided insights into what quantum field theory can describe and what kind of physical behavior would never come from quantum field theory.

His work shed light on phase transitions, from liquids to gases. He was able to find a solution through quantum field theory that had a direct application in explaining phase transition.

Experimentalists did the experiment and found the signature he expected.

“When I make a prediction about the behavior in phase transition and they do the experiment and find it exactly as my prediction, it’s remarkable,” he said. “My prediction involves an exceptionally complicated but beautiful mathematical structure.”

Suji Park working at the QPress. Photo courtesy of BNL

By Daniel Dunaief

Technological advances, like the audiences who crave the latest gadgets and gizmos, often proceed with a sense of purpose and speed. Anything that gets in the way or slows down the process can become an obstacle to overcome.

And so it is for Suji Park, a member of the Research Staff at the Center for Functional Nanomaterials at Brookhaven National Laboratory. Park, who joined the lab just under four years ago, is helping in the process of creating a reliable and faster process to produce two dimensional objects that could become parts of future nanotechnology.

Unlike an assembly line production to manufacture cars or objects that are part of the visible world, Park is working with scientists from around the world at the QPress, an effort that started a year before she arrived to create miniature materials that could become part of a host of technological advances, including in quantum information systems.

In the three steps involved in stacking two dimensional structures, the QPress system can improve efficiencies.

In the process of exfoliation, scientists typically create monolayers manually, which involves a long training period, time and effort to make two dimensional flakes. With the right recipes, the QPress uses controlled conditions, some of which are beyond the human range, through a more reliable process that takes a few hours of training.

The most time consuming step in the process involves searching for flakes with particular properties. Park uses machine learning techniques to help researchers filter out thin flakes.

The QPress has not automated the stacking of flakes, but they have created a motorized machine they can control remotely.

“We can provide more precise manipulation to stack nanomaterials, which makes this process easier and faster” than a manual or other motorized setup, Park explained.

The manufacturing process was “not very systematically studied. People didn’t know exactly what the important factors were to make good, quality two-dimensional materials.”

One of the earliest parts of the QPress process involved trying to understand how the older methodologies worked. 

When Park started to design the exfoliation machine, she said she was “surprised” at how little people knew about the mechanism. Once scientists create flakes they need, they typically move on. At a place like BNL, however, staff scientists can spend time on fundamental studies.

BNL“decided to make a machine to study this process and to make two dimensional materials easier,” which would allow scientists to “spend their time on research and not on the process,” she said.

Like a good baker

Park described the process of making these critical parts as being akin to the way a baker combines ingredients to create a house special bread. She may not have an exact recipe, but combines ingredients and cooks them at a particular temperature to produce the desired product.

“Somebody who knows how to make a good, quality bread has a sense of how it’s done” by relying on intuitive experience, she said. “Human factors are involved.”

A bread machine, by contrast, makes similar quality breads regardless of who uses it, which is more like how the QPress is designed to work to help make quality, reproducible two dimensional materials for application in nanotechnology.

The mechanized QPress process can optimize the steps, control a host of parameters and increase the yield.

To be sure, Park suggested the process isn’t designed to reach mass production levels, which would take another level of investment. Instead, QPress is targeting lab research.

Greater efficiency

You Zhou, Assistant Professor at the University of Maryland, can’t fabricate materials that are chemically unstable or that are air sensitive. He could, however, do so at QPress.

“The QPress system offers better control and reliability than our home-built system,” Zhou said. “Depending on the situation, sometimes we send graduate students to work onsite at the QPress for a week. Other times, we perform experiments remotely. Both have been working well for us.”

The QPress process has created a higher yield, with larger samples that sped up the process of making materials.

Zhou added that the QPress system seems to be one of the most advanced available to researchers in terms of control and automation.

Greater efficiency has meant that his group “has become more productive and can invest their saved time in other research activities,” Zhou said. “The technology is still improving.”

The process

Researchers stack these structures for specific applications. Depending on the sequence and orientation of each layer, the structures can store, process or communicate information.

Park is working with users to discuss experiments in advance. The discussions involve considering the feasibility of creating the materials and structures.

Air sensitive two dimensional materials can degrade over time. BNL prepares flakes one or two days before scientists arrive.

A cataloger can scan a sample and detect mono to tri-layered graphene flakes using a machine based learning program. The QPress group doesn’t make heterostructures. Users need to do it themselves.

With the QPress under development, the user community has continued to build. Last year, the QPress worked with 20 to 30 scientists. The numbers this year are outpacing that demand.

Beginnings

Born and raised in the southern part of South Korea in Masan-si, which is now called Changwon-si, Park liked math and science as a teenager. She thought she’d become a teacher until she was accepted by POSTECH in her second grade of high school. During her undergraduate training, she decided to earn her PhD and become a scientist.

Currently a resident of Coram, Park loves working at the Center for Functional Nanomaterials. Outside of work, she enjoys watching movies, shows, painting, drawing, baking, cooking, and yoga. She recently started growing plants.

In her work, Park, who is one of two dedicated members of the QPress team, appreciates the opportunity to create efficiencies for other scientists.

Jasmine Moss. Photo by Susan Anderson

By Daniel Dunaief

As the first chemist in the history of Cold Spring Harbor Laboratory, Professor John Moses has forged new connections at the lab, even as he maintains his affinity for and appreciation of his native Wrexham in Wales.

Indeed, Moses recently created and funded a fellowship for disadvantaged students in Wales, giving them an opportunity to visit the lab, learn about the science he and others do, and, perhaps, spark an interest in various science, technology, engineering and math fields.

Called Harbwr y Ffynnon Oer Scholarship, which means “Cold Spring Harbor” in Welsh, Moses’s laboratory recently welcomed Jasmine Moss, the first recipient, in early August.

“I hope it broadens” the horizons of those who travel to the lab, explained Moses in an email. “Wales is a small country” with a population of about three million. Coming to New York — a city with a much bigger population than Wales — “can only be an eye-opening experience.”

Jasmine Moss with postdoctoral fellow Dharmendra Vishwakarma. Photo by Theresa Morales

For Moss, who is studying for an integrated masters degree in biomedical engineering, the opportunity proved exciting and rewarding.

“I was expecting to feel intimidated” with everyone knowing so much more than she, Moss said during an interview on the morning of her third day in the lab. “I was expecting maybe a little bit not to understand everything. Everyone is amazing” and made her feel welcome.

The experience started with a walk around the campus, which included considerable information not only about the science but also about the history of the 133-year old laboratory.

Moss, who said this was the first time she’d been in a professional chemistry lab, helped conduct an experiment in which a reaction caused a liquid to change color because of the presence of copper.

“I did the measuring and putting it together,” said Moss, who added that she was “heavily supervised.” She did some calculations as well.

Moss suggested that her interest in science originated with a proficiency in math.

If she were having a bad day in secondary school, she could turn her mood and her mentality around by spending an hour in math class.

Beyond the science

Theresa Morales, a senior scientific administrator, created a schedule of activities and coordinated Moss’s visit.

“We want to do the same thing for any scholarship awardee,” Morales said. “We want to give them the overall experience. It’s not just about the science. We invite the person to realize the culture of Cold Spring Harbor Laboratory” which has a “beautiful campus and great people” who occupy its labs, attend meetings, and share scientific insights and experiences.

A postdoctoral researcher in Moss’s lab, Josh Homer suggested that Morales did “the heavy lifting” in coordinating three days of activities and opportunities for Moss. Homer, who is collaborating with Professor Bo Li to develop new opiates that are non addictive for pain treatment, appreciated Moss’s reactions to the opportunities in the lab.

“I thought [Moss’s] face lit up,” he said. When people are exposed to science in a “manageable and digestible way, they learn that they can do it.”

Indeed, Homer, who grew up in New Zealand, recalled how a high school teacher inspired his interest in science.

“My journey genuinely kick started from one good teacher” who sparked an “inquisitiveness” within him, Homer said. 

Coming from a smaller country, Homer can relate to the opportunities science has provided for him.

“Chemistry has been a fantastic way to see the world and explore,” said Homer, who conducted his PhD research at the University of Oxford in the United Kingdom. “Science is a universal language. Chemistry is the same in India, China” and all over the world.

A family experience

Jasmine Moss with her dad, Stephen Moss, front, with members of John Moses’s lab. Photo by Lorraine Baldwin

Moss traveled to New York for the first time with her parents Stephen and Emma, who stayed with her on campus, toured the grounds and library and attended a picnic.

While the library tour was less interesting to Moss, she said her father “really enjoyed it.”

Morales suggested that the lab “wants parents to feel just as good” and that the parents will have “the same enthusiasm for science and the experience as the scholar if they can feel they are a part” of the visit.

In addition to getting an inside look at Cold Spring Harbor Laboratory, Moss and her parents ventured into the city, where she ate her first pizza and visited the Empire State Building and the Statue of Liberty. She was particularly impressed with the speed at which the Empire State Building was constructed, which took a year and 45 days.

Prior to her visit, Moss’s understanding of the city of New York came from the version she observed through the sitcom “Friends.”

As for the next phase of her life, she expressed an interest in helping people, which could be through medical engineering, biology or in some other field.

“I want to do something meaningful,” Moss said.

Next steps

Moses hopes to bring students to the lab each year, particularly those who might have had problems or difficulties or are from a disadvantaged background. Moss suffers from anxiety and feels every new experience makes similar opportunities easier.

“The team really put me at ease almost immediately,” said Moss.

Moss was surprised by the similarities between Long Island and the United Kingdom. She suggested the best parts of Wales are the countryside and beaches. If she returned the favor and hosted guests in her native Wales, she would take them to an international rugby match in Cardiff.

As for other area sports, Moses comes from the little soccer town that could in Wrexham, which is now famous for the purchase of the local team by actor Ryan Reynolds and co-owner Rob McElhenney. While the actors have brought soccer dreams to life, Moses hopes Cold Spring Harbor Laboratory might help young students realize their science dreams.

Andrew Young. Photo by Daniel Dunaief

By Daniel Dunaief

Andrew Young is in a similar place to the one he was in when he first met his wife Lynne over two decades ago: spending time on the water. 

This time, however, instead of living aboard a 72-foot sailboat in San Diego, Young is shifting back and forth from his new home in Setauket to a motor boat, fully equipped to form a floating office, in the Setauket harbor.

Above, Andrew Young demonstrates where a cylindrical device for drug delivery could be implanted. Photo by Daniel Dunaief

In the time between his stints aboard ships, Young, who is a native of Taranaki, New Zealand, has conducted research on gut hormones, making the kinds of discoveries that helped lead to diabetes treatments and weight loss treatments such as Ozempic and Wegovy.

When the couple first started dating in 2001, Young was working at a company called Amylin, which was named after a hormone.

For years, no one knew exactly what the hormone did. Numerous scientists believed amylin worked in opposition to the pancreatic hormone insulin, which controls glucose levels in the blood and, when absent, leads to diabetes.

Young’s job was to solve the riddle of amylin. Coming from the beta cells of the pancreas, which are the same cells that produce insulin and that responded to the same stimuli, he suspected it was involved in metabolic control, but “we got it totally wrong for about four years,” he said.

Young helped discover that amylin and insulin weren’t working in opposition: they were functioning on opposite ends towards the same goal.

Insulin accelerates the exit of glucose from the blood, while amylin slowed the entry of glucose into the blood. Amylin works on gastric emptying and suppresses appetite. The “clever little beta cell was doing two jobs,” Young said. 

Adding in the second hormone made it easier to control glucose in the blood, without big ups and downs in sugar levels.

Replacing amylin meant the body needed about 30 to 50 percent of the amount of insulin the body might otherwise need. People who take insulin alone to treat diabetes require more insulin than the body usually produces.

“It’s an orchestra of hormones that get the job done,” Young said.

That’s especially true for hormones produced in the digestive tract The discovery of the physiology of amylin made the scientific and pharmaceutical world aware of the importance of the gut in metabolic control. For most pharmaceutical companies, the lesson began with Glucagon-like peptide 1, or GLP-1, which has led to Wegovy and Ozempic.

Amylin and GLP-1 were both used for diabetes. Amylin analogs haven’t been approved for weight loss, but Young expects they will be. “The amylin story was kind of neat,” he said. “It focused our minds on the gut. GLP-1 was the next one of these gut hormones.”

A revelation on a poster

While pharmaceutical companies saw the potential benefit of stimulating GLP1, which triggered the release of insulin, they couldn’t create a drug that had an effect that lasted long enough to make a difference. 

The body makes GLP1 at about the same rate as it breaks it down, which means controlling blood sugar and appetite by altering GLP-1 was difficult. “You could get a decent anti-diabetic effect if you infused it continuously,” Young explained, as the half life of endogenous GLP-1 is about five minutes.

Young attended a poster session at the American Diabetes Association’s annual meeting in San Francisco, California in 1996.

Looking at a poster from Dr. John Eng, who works at the Bronx Veterans Administration Medical Center, Young thought he saw a solution in the form of a hormone from the reptilian Gila monster.

Eng demonstrated that the hormone, which he called exendin-4 and which he studied with his own money, stayed in diabetic mice for 24 hours. Young thought this might lead to the development of a diabetes drug.

As he was reading the poster, Young realized he was standing next to someone who worked at competitor Eli Lilly.

“I thought he had figured it out as well” and that they were in a race to understand exendin-4, Young added.

Young arranged for the staff at Amylin to buy what they could of this compound and to make some of it in house as well. The company quickly performed numerous experiments in a short period of time, even before Eng arrived in San Diego.

Eng gave a seminar about what he knew about the molecule. Young then stood up and talked about what Amylin had since learned about it. 

Eng was “dumbstruck, but he realized at that stage that we were the people he should partner with,” Young added.

The hormone amylin and exendin-4 had many of the same effects, including inhibiting gastric emptying. They did, however, have opposite effects on other actions. Exendin stimulated insulin secretion, while amylin inhibited it. 

Better than an injection

Young has continued to work for six companies in scientific leadership roles. Amid the financial crisis of 2008, Young went to work in North Carolina for GlaxoSmithKline, which is now called GSK.

In 2015, Young co-founded Phoundry Pharmaceuticals with five other former GSK coworkers. Phoundry attracted the attention of Intarcia Therapeutics. Using an invention by Alza Corp and licensed to Intarcia, the company developed a thin, implantable cylindrical device that could push as much as 160 micro liters of drugs out over six months.

In looking for a treatment for its drug delivery system, Intarcia chose Phoundry.

“The limited volume of such a small implanted pump required very potent medicines,” Young said. “Phoundry’s competitive advantage was the knowledge of how to engineer in such potency.”

After the purchase of Phoundry in 2015, Young became Chief Scientific Officer at Intarcia. The FDA, however, rejected the use of exendin from Intarcia. Through an extended appeals process, the FDA is planning to allow one final discussion about the delivery of exendin through Intarcia’s device on September 21st.

The current version of the device lasts for at least three and six months in the body. The same device could be used to deliver other medicines. The pumps have been engineered with a failsafe system that disables its osmotic engine in the event of malfunction, so the drug is not released.

The device could deliver drugs for many chronic conditions, such as hypertension and osteoporosis and is intended for frequent administration of the same drug.

Not only a scientist

As for his work in the early stages of understanding hormones that have led to drugs that are now widely used to treat diabetes and obesity, Young is pleased with his contribution.

“Obesity is probably the most deadly disease on the planet, given its high and increasing prevalence and the cardiovascular risk factors that spring from it,” Young explained.

Novo Nortis recently announced that treating obesity alone, without any diabetes, reduces the risk of death.

Young himself is taking one of these drugs and has lost 36 pounds over six months. 

Part of a process that has led to six approved products, he is working as a consultant for several companies, and believes he still has more to give. “I intend to keep doing it,” he said. “I’ve got at least one more” down the road.

Given the long drug development process, he hopes to help move one or more pieces ahead.

As for his oceanic surroundings, Young didn’t exactly sweep his future wife off her feet when they met. “He invited me on his boat for dinner,” Lynne recalls. “He was outside the marina and he had on this sweater that was dirty and oversized.”

Young suggested they have soup for dinner and proceeded to pull out a can of Campbell’s tomato soup.

She knew Young, however, was “probably the guy when I walked on the boat and he said, ‘Would you like a cup of tea?’” Other men had suggested an alcoholic drink.

Lynne, who is an attorney, also appreciated his collection of books.

The Youngs chose Setauket because they had cast a wide net, looking for a home on the water somewhere between the Canadian border and North Carolina. 

“This was it,” said Lynne, who is thrilled with the extensive art community in the area.

Esther Tsai is one of four scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory to be selected by DOE’s Office of Science to receive significant funding through its Early Career Research Program. Photo courtesy of BNL

By Daniel Dunaief

This is part 2 of a 2-part series.

Half of this year’s crop of recipients from New York State for Early Career Awards from the Department of Energy came from Brookhaven National Laboratory.

With ideas for a range of research efforts that have the potential to enhance basic knowledge and lead to technological innovations, two of the four winners earned awards in basic energy science, while the others scored funds from high energy physics and the office of nuclear physics.

“Supporting America’s scientists and researchers early in their careers will ensure the United States remains at the forefront of scientific discovery,” Secretary of Energy Jennifer Granholm said in a statement. The funding provides resources to “find the answers to some of the most complex questions as they establish themselves as experts in their fields.”

The DOE chose the four BNL recipients based on peer review by outside scientific experts. All eligible researchers had to have earned their PhDs within the previous 12 years and had to conduct research within the scope of the Office of Science’s eight major program areas.

Last week, the TBR News Media  highlighted the work of Elizabeth Brost and Derong Xu. This week, we will feature the efforts of Esther Tsai and Joanna Zajac.

Esther Tsai

Esther Tsai is one of four scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory to be selected by DOE’s Office of Science to receive significant funding through its Early Career Research Program. Photo courtesy of BNL

Listening to her in-laws argue over whom Alexa, the virtual assistant, listens to more, Esther Tsai had an idea for how to help the scientists who trek to BNL for their experiments. As a member of the beamline staff at the National Synchrotron Lightsource II, Tsai knew firsthand the struggles staff and visiting scientists face during experiments.

Artificial intelligence systems, she reasoned, could help bridge the knowledge gap between different domain experts and train students and future generations of scientists, some of whom might not be familiar with the coding language of Python.

In work titled “Virtual Scientific Companion for Synchrotron Beamlines,” Tsai, who is a scientist in the Electronic Nanomaterials Group of the Center for Functional Nanomaterials, is developing a virtual scientific companion called VISION. The system, which is based on a natural language based interaction, will translate English to programming language Python. 

“VISION will allow for easy, intuitive and customized operation for instruments without programming experience or deep understanding of the control system,” said Tsai.

The system could increase the efficiency of experiments, while reducing bottlenecks at the lightsource, which is a resource that is in high demand among researchers throughout the country and the world.

Staff spend about 20 percent of user-support time on training new users, setting up operation and analysis protocols and performing data interpretation, Tsai estimated. Beamline staff often have to explain how Python works to control the instrument and analyze data.

VISION, however, can assist with or perform all of those efforts, which could increase the efficiency of scientific discoveries.

After the initial feelings of shock at receiving the award and gratitude for the support she received during the award preparation, Tsai shared the news with friends and family and then went to the beamline to support users over the weekend.

As a child, Tsai loved LEGO and jigsaw puzzles and enjoyed building objects and solving problems. Science offers the most interesting “puzzles to solve and endless possibilities for new inventions.”

Tsai appreciates the support she received from her parents, who offered encouragement throughout her study and career. Her father Tang Tsai, who is a a retired professor in Taiwan, often thought about research and scribbled equations on napkins while waiting for food in restaurants. On trips, he’d bring papers to read and shared his thoughts. Tsai’s mom Grace, a professor in management in Taiwan who plans to retire soon, also supported her daughter’s work. Both parents read press releases about Tsai’s research and shared their experience in academia.

Tsai thinks it’s exciting to make the imaginary world of Star Trek and other science fiction stories a reality through human-AI interactions.

Joanna Zajac

From left, Joanna Zajac is one of four scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory to be selected by DOE’s Office of Science to receive significant funding through its Early Career Research Program. Photo courtesy of BNL

A quantum scientist in the Instrumentation Division, Joanna Zajac is developing a fundamental understanding of fast light-matter interconnects that could facilitate long distance quantum networks.

Zajac will design and build systems that use quantum dots to generate single photos in the wavelengths used for optical telecommunications.

These quantum dots could potentially generate photons that would work at telecommunication and atomic wavelengths, which could reduce the losses to almost nothing when quantum information travels through the current optical fibers network. Losses are currently around 3.5 decibels per kilometer, Zajac explained in an email.

By coupling quantum dot single photons with alkali vapors, the light-matter interconnects may operate as a basis for quantum information, making up nodes of quantum network connected by optical links.

“Within this project, we are going to develop fundamental understanding of interactions therein allowing us to develop components of long-distance quantum networks,” Zajac said in a statement. “This DOE award gives me a fantastic opportunity to explore this important topic among the vibrant scientific community in Brookhaven Lab’s Instrumentation Division and beyond.”

Zajac explained that she was excited to learn that her project had been selected for this prestigious award. “I have no doubt that we have fascinating physics to learn,” she added.

In her first year, she would like to set up her lab space to conduct these measurements. This will also include development experimental infrastructure such as microscopes and table-top optical experiments. She hopes to have some proof-of-principle experiments. 

She has served as a mentor for numerous junior scientists and calls herself “passionate” when it comes to working with students and interns.

Zajac, who received her master’s degree in physics from Southampton University and her PhD in Physics from Cardiff University, said she would like to encourage more women to enter the science, technology, engineering and mathematics fields, “as they are still underrepresented,” she said. “I would encourage them to study STEM subjects and ensure them that they will do just great.”

Elizabeth Brost is one of four scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory selected by DOE’s Office of Science to receive significant funding through its Early Career Research Program. Photo courtesy of BNL

By Daniel Dunaief

This is part 1 of a 2-part series.

Half of this year’s crop of recipients from New York State for Early Career Awards from the Department of Energy came from Brookhaven National Laboratory.

With ideas for a range of research efforts that have the potential to enhance basic knowledge and lead to technological innovations, two of the four winners earned awards in basic energy science, while the others scored funds from high energy physics and the office of nuclear physics.

“Supporting America’s scientists and researchers early in their careers will ensure the United States remains at the forefront of scientific discovery,” Secretary of Energy Jennifer Granholm said in a statement. The funding provides resources to “find the answers to some of the most complex questions as they establish themselves as experts in their fields.”

The DOE chose the four BNL recipients based on peer review by outside scientific experts. All eligible researchers had to have earned their PhDs within the previous 12 years and had to conduct research within the scope of the Office of Science’s eight major program areas.

In a two part series, TBR News Media will highlight the work of these four researchers. This week’s Power of 3 column features Elizabeth Brost and Derong Xu. Next week, TBR will highlight the work of Joanna Zajac and Esther Tsai.

Elizabeth ‘Liza’ Brost

Elizabeth Brost is one of four scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory selected by DOE’s Office of Science to receive significant funding through its Early Career Research Program. Photo courtesy of BNL

In work titled “Shining Light on the Higgs Self-Interaction,” Brost, who is an associate scientist, is studying properties of the Higgs Boson, which was a long sought after particle that helps explain why some particles have mass. The Standard Model of Particle Physics, which predicted the existence of the Higgs Boson, also suggests that the Higgs field can interact with itself. This interaction should produce pairs of Higgs Bosons at the Large Hadron Collider at CERN in Switzerland, where Brost works.

A significant challenge in Brost’s work is that the production of such pairs occurs 1,000 times less frequently than the production of single Higgs Bosons, which researchers discovered to considerable fanfare in 2012 after a 48-year search.

Brost is leading the effort to use machine learning algorithms to cherry pick collision data in real time. Since these events are so rare, “it’s very important that we are able to save promising collision events,” she explained in an email.

The LHC collides protons at a rate of 40 million times per second, but the facility only keeps about 100,000 of those.

Thus far, everything Brost has seen agrees with the Standard Model of Particle Physics predictions, but “that just means we have to work harder and develop new strategies to search for new physics,” she said.

Brost earned her undergraduate degree in physics and French from Grinnell College and her PhD in physics from the University of Oregon. When she learned she’d won this early career award, she “couldn’t believe it was real for quite some time,” she wrote. “The hardest part was keeping it a secret until the official announcement.

She explained that she was only allowed to tell a few select people at BNL and close family members about the distinction, who were also sworn to secrecy. 

The award will allow her to expand the scope of the work she’s doing and to hire additional staff.

As an experienced mentor, Brost recognizes that there is “a lot of pressure to work on whatever is the newest or coolest thing in order to stand out from a crowd” at a collaboration like ATLAS [an extensive particle detector experiment at the Large Hadron Collider] which involves over 3,000 people.” She urged researchers to work on the physics they find interesting and exciting.

Derong Xu

Derong Xu is one of four scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory selected by DOE’s Office of Science to receive significant funding through its Early Career Research Program. Photo courtesy of BNL

An Assistant Physicist, Xu is working to enhance the  efficiency of the Electron-Ion Collider, a marquee tool that BNL will start building next year and is expected to be operational in the 2030’s.

The EIC will collide beams of electrons and protons or other atomic nuclei. By reducing the beam size, or packing the same number of particles into a smaller space, the EIC can increase the likelihood of these collisions.

Specifically, Xu plans to flatten the beam, which has never been used in a hadron collider. He will explore ways to reduce the interactions between beams and superconducting magnets. He will pursue a combined approach using theoretical and experimental methods, which will affect the parameters for the future EIC.

Generating flat hadron beams in existing hadron machines remains “unexplored, making our project a pioneering effort dedicated to investigating methods for maintaining beam flatness,” Xu explained in an email.

In addition to leveraging flat iron beams, Xu is also considering ways to increase the beam intensity by injecting a greater number of particles into the accelerator, which would boost the collision rate. Such an approach, however, means more electromagnetic force between the beams, requiring additional effort to maintain beam flatness.

To explore these potential approaches and determine an optimal trade-off between strategies, his project will collaborate with leading experts in accelerator physics, conduct comprehensive simulations and investigate an array of techniques.

“Through pushing the boundaries of accelerator technology and exploring diverse construction and beam creation techniques, we aspire to unlock novel scientific frontiers and achieve groundbreaking discoveries in nuclear physics,” he explained.

Receiving the award filled Xu with “immense excitement and pride.” He and his wife called their parents, who are traditional farmers, in China. When he explained to them that the award is a substantial amount of money, they advised him to “try your best and not waste the money,” he shared.

At an early age, Xu showed a strong interest in math and physics. His parents rewarded him with snacks when he got high scores. 

“That was my first equation in my life: high scores = more snacks,” he joked.

To share the subatomic world with people outside his field, Xu often makes analogies. He compares the collision of an electron beam with a proton beam to shooting a flying ping-pong ball with a gun. The ping-pong ball’s size (which, in this case, is a collection of protons) resembles the diameter of a human hair. The collisions create scattered products that provide insights into the subatomic world.

By Daniel Dunaief

A problematic atmospheric greenhouse gases, methane comes from natural gas, agriculture, and swamps. 

John Mak

Recently, John E. Mak, a Professor in the School of Marine and Atmospheric Sciences at Stony Brook University worked with an international group of scientists to demonstrate a process that removes methane from the atmosphere.

A mixture of dust from the Sahara and sea spray reacts with methane to form carbon monoxide and a small amount of hydrochloric acid.

In a recent paper published in the prestigious journal Proceedings of the National Academy of Sciences, Mak, corresponding author Matthew Johnson, who is a Professor in the Department of Chemistry at the University of Copenhagen, and others showed how a novel process removes 5 percent, plus or minus 2 or 3 percent, of the methane from the atmosphere in specific areas.

“What we are showing is that some methane in the middle of the tropical Atlantic Ocean region may be removed” through this process, Mak said from the Gordon Research Conference on Atmospheric Chemistry in Sunday River, Maine.

The research validates a mechanism Mak had proposed in the late 1990’s, when he conducted studies funded by the National Science Foundation in Barbados. “When I first made the observations, I proposed that what we were seeing was a chlorine mediated removal of methane,” Mak explained.

At that time, he didn’t have the ability to make those measurements. The technology, however, has evolved over the years and researchers can now measure chlorine radical precursors such as Cl2 and other chlorine compounds.

Indeed, Maarten van Herpen, first author on the study and a member of Acacia Impact Innovation, approached Mak with a new theory and a new mechanism that he thought could explain Mak’s results from decades earlier.

“They were excited to hear that no one had solved the problem,” said Mak.

By working together through this international team, the group was able to take new measurements and utilize advances in their understanding of atmospheric processes.

‘New, but old’

Mak had conducted his studies towards the beginning of his time at Stony Brook University in the late 1990’s as a part of one of his first federally funded projects. 

“It’s a little unusual for people to make use of observations so far in the past,” said Mak. “It opens up a new, but old avenue of research.”

Mak, who is conducting studies in other areas including a recent project in New York to investigate air quality and air chemistry mechanisms specific to the greater New York City region, believes the research on this PNAS paper takes him almost full circle back to this earlier work.

“There’s a feeling of satisfaction that good measurements are useful for a longer period of time,” he said. 

In this study, Mak helped interpret some of the data his collaborators generated.

The reactions

The process of removing methane starts with sea spray, which is aerosolized by bubbles bursting at the contact point between the ocean and the air. The chlorine comes from that sea spray, while iron comes from the continental crust.

Saharan dust can traverse the globe, but scientists are not sure of the spatial extent of this process. They believe it could be throughout the tropical Atlantic, but it could be in other dust laden ocean regions in the Indian and Pacific Oceans as well.

That process creates what is described as a reactive chlorine species, which is on the hunt for a positively charged particle, such as one of the four hydrogen atoms attached to carbon in methane.

Once the chlorine removes a hydrogen, it creates a methyl group, or CH3, and an incredibly small amount of hydrochloric acid, or HCl, at about one part per quadrillion.

The acid, in fact, is so low that it doesn’t cause any acidification of the oceans. Ocean acidification primarily comes from the absorption of carbon dioxide gas, which reacts with seawater and eventually increases the amount of positively charged hydrogen atoms, decreasing the ocean’s pH.

Meanwhile in the atmosphere, the remaining methyl group is oxidized to carbon monoxide, which eventually becomes carbon dioxide. That is also a greenhouse gas, but is not as potent at trapping heat in the atmosphere as methane.

Now that the group has explored this process, Mak explained that the next step will involve proposing a field campaign in the tropical Atlantic with state of the art instruments.

Mak believes the journal PNAS likely found the subject matter compelling on a broader scale, particularly because this process affects weather and climate.

Outside work

When he’s not working, Mak enjoys boating and fishing. A native of Southern California, Mak is a commercial pilot, who also does some flying as a part of his research studies.

As for climate change, Mak suggested that the weather extremes from this year, which include record high temperatures in the ocean near the Florida Keys and high temperatures in areas in Arizona, are a part of a pattern that will continue.

“What we have been and will continue to observe are changes to the broad equilibrium of energy balance of the Earth ocean atmosphere system,” he explained. “There’s a lot of inertia in the system. But when you change the input by changing the forcing, you upset that equilibrium.” That, he explained, could alter the weather, which is generated as a response to differences in energy from one place to another.

Maurizio Del Poeta. File photo from SBU

By Daniel Dunaief

Maurizio Del Poeta is taking another approach to battling fungal infections that can be deadly, particularly for people who are immunocompromised.

Maurizio Del Poeta. Photo from SBU

A Distinguished Professor at Stony Brook University in the Department of Microbiology and Immunology at the Renaissance School of Medicine at Stony Brook University, Del Poeta has made progress in animal models of various fungal infections in working on treatments and vaccines.

After receiving an additional $3.8 million from the National Institutes of Health for five years, Del Poeta is expanding on some findings that may lead to a greater understanding of the mechanism that makes some fungal infections problematic.

The Stony Brook Distinguished Professor is studying “what makes people susceptible to fungal infections,” he said. “It’s something I’m really passionate about.”

Del Poeta explained that researchers and medical professionals often focus on the people who get sick. Understanding those people who are not developing an infection or battling against a fungus can provide insights into ways to understand what makes one population vulnerable or susceptible and another more resistant.

Expanding such an approach outside the realm of fungal infections could also provide key insights for a range of infections in the future.

Indeed, the awareness of specific signals for other infections could help protect specific populations, beyond those who had general categories like underlying medical conditions, who might be more vulnerable amid any kind of outbreak.

“It’s possible that the study we are doing now with fungi could stimulate interest” in other areas of infectious disease, Del Poeta said.

He suggested that this was “pioneering work” in terms of fungal infections. At this point, his lab has produced “strong preliminary data.”

An important drug treatment side effect as a signal

This investigation arises out of work Del Poeta had done to understand why some people with multiple sclerosis who took a specific drug, called fingolimid, developed fungal infections during their drug treatment.

Del Poeta observed that the drug inhibits a type of immunity that involves the movement of lymphocytes from organs into the bloodstream.

Fingolimid mimics a natural lipid, called a sphingolipid. Del Poeta showed that this sphingolipid is important to contain the fungus Cryptococcus neoformans in the lung. When its level decreases, the fungus can move from the lung to the brain.

Indeed, Fingolimid mimics sphingosin-1-phosphate (S1P) and binds to several S1P receptors.

Del Poeta believes that the pathway between S1P and its receptor regulates the immunity against Cryptococcus. Blocking a specific receptor is detrimental for the host and may lead to reactivation of the fungus.

Putting a team together

Nathália Fidelis Vieira de Sá. Photo by Futura Convites studio

Del Poeta has been working with Iwao Ojima, a Distinguished Professor and the Director of the Institute of Chemical Biology and Drug Discovery in the Department of Chemistry at Stony Brook, to create compounds that energize, instead of block, the target of fingolimid.

Del Poeta has recruited two scientists to join his lab in this effort, each of whom has educational experience in nursing.

Nathália Fidelis Vieira de Sá, who is a registered nurse at the Federal University of Minas Gerais and a chemistry technician at Funec- Contagem City, will join the lab as a technician in the second week of September.

Fidelis Vieira de Sá, who currently lives in her native Brazil, is an “expert on collecting and analyzing organs for mice,” explained Del Poeta in an email.

For her part, Fidelis Vieira de Sá is thrilled to join Del Poeta’s lab at Stony Brook. “I’m very excited,” she said in an email. She is eager to get started because the research is “of such great relevance to public health” and is occurring at such a “renowned institution.”

Fidelis Vieira de Sá believes this is a public health issue that could have a positive impact on people with immunodeficiency conditions who need effective treatment so they live a better, longer life. When she was a peritoneal dialysis nurse, she had a few patients who had fungal infections.

“This is very serious and challenging, detection is difficult, and the life expectancy of these patients drops dramatically with each episode of infection,” she explained. 

Fidelis Vieira de Sá, who has never lived outside Brazil, is eager for new experiences, including visiting Central Park, the Statue of Liberty, Times Square, and the One World Trade Center Memorial.

As for the work, she hopes that, in the near future, Del Poeta will “be able to explain this mechanism deeply and to develop new drugs that will act on this receptor.”

Dr. Marinaldo Pacífico Cavalcanti Neto

Dr. Marinaldo Pacífico Cavalcanti Neto, who is an Assistant Professor at Federal University of Rio de Janeiro, will be arriving at Stony Brook University on August 6. Dr. Neto earned his bachelor of science in nursing and has a PhD in biochemistry from the Medical School of Ribeirão Preto at the University of São Paulo.

Del Poeta described Dr. Neto as an “expert on animal handling and genotyping,”

Dr. Neto recognizes the burden of fungal infections around the world and hoped to work with someone with Del Poeta’s credentials and experience in immunology and infection.

Understanding how cells eliminate infection, how cells might have a lower capacity to control an infection, and looking for how cells respond to treatments such as fingolimid could be a “great strategy to understand why these are so susceptible,” he said.

While Dr. Neto’s background is in immunology, he hopes to learn more about molecular biology.

Unlike Fidelis Vieira de Sá, Dr. Neto, who will live in Centereach, has worked previously in the United States. He has experience at the National Institutes of Health and at the University of California at San Diego and has been attending Del Poeta’s lab meetings from a distance for about a month.

Dr. Neto, whose interest in science increased while he watched the TV show Beakman’s World while he was growing up, is eager to work in an area where he can apply his research.

He appreciates that his work may one day “be used in the generation of protocols in a clinic.