Tags Posts tagged with "Tom Butcher"

Tom Butcher

From left, Libo Wu, Zhangjie Chen (both are doctoral students on the ARPA-E project), Ya Wang, Xing Zhang (graduated), Muzhaozi Yuan and Jingfan Chen (both are doctoral students on the NSF project). Photo courtesy of Stony Brook University

By Daniel Dunaief

Picture a chalkboard filled with information. It could include everything from the basics — our names and phone numbers, to memories of a hike along the Appalachian Trail, to what we thought the first time we saw our spouse.

Diseases like Alzheimer’s act like erasers, slowly moving around the chalkboard, sometimes leaving traces of the original memories, while other times removing them almost completely. What if the images, lines and words from the chalk could somehow be restored?

Ya Wang with former student Wei Deng at Stony Brook’s Advanced Energy Research and Technology Center. Photo courtesy of SBU

Ya Wang, a mechanical engineering assistant professor at Stony Brook University, is working on a process that can regenerate neurons, which could help with a range of degenerative diseases. She is hoping to develop therapies that might restore neurons by using incredibly small magnetic nanoparticles.

Wang recently received the National Science Foundation Career Award, which is a prestigious prize given to faculty in the early stages of their careers. The award lasts for five years and includes a $500,000 grant.

Wang would like to understand the way small particles can stimulate the brain to rebuild neurons. The award is based on “years of effort,” she said. “I’m happy but not surprised” with the investment in work she believes can help people with Alzheimer’s and Parkinson’s diseases.

“All neuron degeneration diseases will benefit from this study,” Wang said. “We have a large population in New York alone with patients with neuron degeneration diseases.” She hopes the grant will help trigger advancements in medicine and tissue engineering.

Wang’s “work on modeling the dynamic behavior of magnetic nanoparticles within the brain microenvironment would lay the foundation for quantifying the neuron regeneration process,” Jeff Ge, the chairman and professor of mechanical engineering, said in a statement.

Wang said she understands the way neurodegenerative diseases affect people. She has watched her father, who lives in China, manage through Parkinson’s disease for 15 years.

Ge suggested that this approach has real therapeutic potential. “This opens up the exciting new possibility for the development of a new microchip for brain research,” he said.

At this point, Wang has been able to demonstrate the feasibility of neuron regeneration with individual nerve cells. The next step after that would be to work on animal models and, eventually, in a human clinical trial.

That last step is a “long way” off, Wang suggested, as she and others will need to make significant advancements to take this potential therapeutic breakthrough from the cell stage to the clinic. 

She is working with a form of coated iron oxide that is small enough to pass through the incredibly fine protective area of the blood/brain barrier. Without a coating, the iron oxide can be toxic, but with that protective surface, it is “more biofriendly,” she said.

The size of the particles are about 20 nanometers. By contrast, a human hair is 80,000 nanometers thick. These particles use mechanical forces that act on neurons to promote the growth or elongation of axons.

Ya Wang. Photo from SBU

As a part of the NSF award, Wang will have the opportunity to apply some of the funds toward education. She has enjoyed being a mentor to high school students, some of whom have been Siemens Foundation semifinalists. Indeed, her former students have gone on to attend college at Stanford, Harvard and Cal Tech. “I was very happy advising them,” she said. “High school kids are extremely interested in the topic.”

A few months before she scored her NSF award, Wang also won an Advanced Research Projects Agency–Energy award for $1 million from the Department of Energy. In this area, Wang also plans to build on earlier work, developing a smart heating and cooling system that enables a system to direct climate control efforts directly at the occupant or occupants in the room.

Extending on that work, Wang, who will collaborate in this effort with Jon Longtin in the Department of Mechanical Engineering at SBU and Tom Butcher and Rebecca Trojanowski at Brookhaven National Laboratory, is addressing the problem in which the system no longer registers the presence of a person in the room.

Wang has “developed an innovation modification to a simple, inexpensive time-honored position sensor, but that suffers from requiring that something be moving in order to detect motion,” Longtin explained in an email. The sensors can’t detect a person that is not moving. The challenge, Longtin continued, is in fooling the sensor into thinking something is there in motion to keep it active.

Wang described a situation in which a hotel had connected an occupant-detecting system to its HVAC system. When a person fell asleep in the room, however, the air conditioning turned off automatically. On a hot summer night, the person was frustrated. She put colored paper and a fan in front of the sensor, which kept the cool air from turning off.

Instead of using a fan and colored paper, the new system Wang is developing cuts the flow of heat to the sensor, which enhances its ability to recognize stationary or moving people.

Wang and her colleagues will use low-power liquid crystal technology with no moving parts. “The sensor detects you because you are a human with heat,” she said. “Even though you are not moving, the amount of heat is changing.”

The sensor will be different in various locations. People in Houston will have different temperature conditions than those in Wisconsin. Using a machine-learning algorithm, Wang said she can pre-train the system to respond to different people and different conditions.

She has developed a smart phone app so that the house can react to the different temperature preferences of a husband and wife. People can also choose night or day modes.

Wang also plans to work on a system that is akin to the way cars have different temperature zones, allowing one side of the car to be hotter than the other. She intends to develop a similar design for each room.

From left, Jon Longtin, Sotirios Mamalis and Benjamin Lawler. Photo courtesy of Stony Brook University

By Daniel Dunaief

It’s not exactly Coke and Pepsi designing a better soda. It’s not Nike and Reebok creating a more efficient sneaker. And, it’s not McDonald’s and Burger King uniting the crown and the golden arches. At Stony Brook University, it is, however, a combination of energy systems that haven’t historically worked together.

“Fuel cells and engines have been seen as competing technologies,” said Sotirios Mamalis, an assistant professor of mechanical engineering at SBU. “The truth of the matter is that these two technologies are very complementary because of their operating principals.”

Indeed, Mamalis is the principal investigator on a multi-year project to create a hybrid fuel cell-engine system that recently won a $2.3 million award from the Department of Energy’s Advanced Research Projects Agency-Energy.

Working with Benjamin Lawler and Jon Longtin at Stony Brook and Tom Butcher, leader of the Energy Conversion Group at Brookhaven National Laboratory, Mamalis plans to build a system that uses solid oxide fuel cells partnered with a split-cylinder, internal combustion engine. The engine system will use the tail gas from the fuel cell to provide additional power, turning the inefficiency of the fuel cell into a source of additional energy.

“These ARPA-E awards are extremely competitive,” said Longtin, adding “If you land one of these, especially a decent-sized one like this, it can move the needle in a lot of ways in a department and at the university level.” The group expects that this design could create a system that generates 70 percent fuel to electricity efficiency. That is well above the 34 percent nationwide average.

Reaching that level of energy efficiency would be a milestone, said Longtin, a Professor in the Department of Mechanical Engineering at Stony Brook. The core of the idea, he suggested, is to take the exhaust from fuel cells, which has residual energy, and run that through a highly tuned, efficient internal combustion engine to extract more power. The second part of the innovation is to repurpose the cylinders in the engine to become air compressors. The fuel cell efficiency increases with higher pressure.

A fuel cell is a “highly efficient device at taking fuel and reacting it to produce DC electricity,” Lawler said. One of its down sides, aside from cost, is that it can’t respond to immediate needs. An engine is the opposite and is generally good at handling what Lawler described as transient needs, in which the demand for energy spikes.

The idea itself is ambitious, the scientists suggested. “These projects are high-risk, high-reward,” said Mamalis. The risks come from the cost and the technical side of things.

The goal is to create a system that has a disruptive role in the power generation market. To succeed, Mamalis said, they need to bring something to market quickly. Their work involves engineering, analysis and design prior to building a system. The project could involve more tasks to reduce technical risk but “we’re skipping a couple of steps so we can demonstrate a prototype system sooner than usual,” Mamalis said.

They will start by modeling and simulating conditions, using mathematical tools they have developed over the years. Once they have modeling results, they will use those to guide specific experimental testing. They will take data from the engine simulation and will subject the engine to conditions to test it in a lab. 

“The biggest challenges will be in changing the operation of each of these two technologies to be perhaps less than optimal for each by itself and then to achieve an integrated system that ends up far better,” Butcher explained in an email. “The target fuel-to-electricity efficiency will break barriers and be far greater than is achieved by conventional power plants today.”

Butcher, whose role will be to provide support on system integration concepts and testing, suggested that this could be a part of distribution power generation, where power is produced locally in addition to central power plants. People have looked into hybrid fuel cell-gas turbine systems in the past and a few have been installed and operational, Mamalis explained. The problem is with the cost and reliability.

Mamalis and his colleagues decided they can tap into the inefficiency of fuel cells, which leaves energy behind that a conventional engine can use. The reason this works is that the fuel cell is just inefficient enough, at about 55 percent, to provide the raw materials that a conventional engine could use. A fuel cell that was more efficient, at 75 or 80 percent, would produce less unused fuel in its exhaust, limiting the ability of the system to generate more energy.

The team needs to hit a number of milestones along the way, which are associated with fuel cell development and engine and hybrid system development.

The first phase of the work, for which the team received $2.3 million, will take two years. After the group completes Phase I, it will submit an application to ARPA-E for phase II, which would be for an additional $5 million.

Lawler suggested that fundamental research made this kind of applied project with such commercial potential possible. “The people who did fundamental work and [were involved in] the incremental steps led us to this point,” he said. “Incremental work leads to ground-breaking ideas. You can’t predict when groundbreaking work will happen.”

The other researchers involved in this project credit Mamalis for taking the lead on an effort that requires considerable reporting and updating with the funding agency.

Every three months, Mamalis has to submit a detailed report. He also participates in person and on conference calls to provide an update. He expects to spend about 90 percent of his time on a project for which the team has high hopes.

“It’s an exciting time to be a part of this,” Longtin said. “These folks are pivotal and we have developed into a very capable team, and we have been setting our sights on larger, more significant opportunities.”