Tags Posts tagged with "Power of 3"

Power of 3

Bruce Stillman. Photo courtesy of CSHL

By Daniel Dunaief

Bruce Stillman, the president and CEO of Cold Spring Harbor Laboratory, was recently awarded the prestigious Canada Gairdner International Award for his contributions to research about the way DNA copies itself. The 60-year-old prize, which Stillman will receive in a ceremony in October and that he shares with his former postdoctoral fellow John Diffley, includes a financial award of $100,000 Canadian dollars that he can spend however he’d like.

A native Australian, Stillman, who has been at Cold Spring Harbor Laboratory since 1979, recently shared his thoughts about the award, research at the lab and his concerns about science in society with Times Beacon Record News Media. 

How does it feel winning the Gairdner Award?

It’s one of the most prestigious awards in the life sciences in the world and it’s certainly a great honor to win it and to join the list of spectacular scientists in the history of the award. There are some really fantastic scientists who I very much admire who have received this award.

How does it relate to the research you’ve conducted?

The field of DNA replication and chromosome inheritance was recognized. It is something I’ve devoted my entire career to. There are a lot of people that have made important contributions to this field. I’m pleased to be recognized with [Diffley] who was my former postdoc. [It’s validating] that the field was recognized.

Has CSH Laboratory been at the cutting edge of discoveries using the gene-editing tool CRISPR?

Cold Spring Harbor didn’t discover CRISPR. Like many institutions, we’ve been at the forefront of applying CRISPR and gene editing. The most spectacular application of that has been in the plant field. Zachary Lippman, Dave Jackson and Rob Martienssen are using genetic engineering to understand plant morphogenesis and development, thereby increasing the yield of fruit. Hopefully, this will be expanded into grains and have another green revolution.

CSHL has also been making strides in cancer research, particularly in Dave Tuveson’s lab, with organoids.

Organoids came out of people studying development. Hans Clevers [developed organoids] in the Netherlands … Tuveson is at the forefront of that. The full promise hasn’t been realized yet. From what I’ve seen, we are quite excited about the possibility of using organoids as a tool to get real feedback to patients. It is rapidly moving forward with the Lustgarten Foundation and with Northwell Health.

What are some of the other major initiatives at CSHL?

The laboratory’s investment about 10 or 15 years ago in understanding cognition in the brain has paid off enormously. Neuroscientists here are at the forefront of understanding cognition and how the brain does computation in complicated decisions. [Scientists are also] mapping circuits in the brain. It took a lot of investment and kind of the belief that studying rodent cognition could have an impact on human cognition, which was controversial when we started it here, but has paid out quite well. At the same time, we are studying cognitive dysfunction particularly in autism. 

Any other technological advances?

There’s been a real revolution in the field of structural biology… [Researchers] have the ability to look at single biological molecules in the electron microscope. It shoots electrons through a grid that has individual biological molecules. The revolution, which was done elsewhere by many people actually, led to the ability to get atomic resolution structures of macro molecular complexes. 

Cold Spring Harbor invested a lot of money, well over $10 million to build a facility and staff a facility to operate this new technology. I’ve been working on this area for about 12, 13 years now … Our structural biologists here in neuroscience, including neuroscientists Hiro Furukawa and Leemor Joshua-Tor have really helped introduce a lot of new biology into CSHL.

What are some of the newer efforts at the lab?

One of the big new initiatives we started is in the field of cancer. As you know by looking around, there’s an obesity epidemic in the Western world. We started a fairly large initiative, understanding the relationship between obesity and cancer and nutrition, and we’re not unique in this. We’re going to have some significant contributions in this area. 

Cancer cells and the tumor affect the whole body physiology. The most severe [consequence] is that advanced cancer patients lose weight through a process called cachexia. We hired [new staff] in this new initiative, renovated a historic building, the Demerec building at a fairly substantial expense, which was supported by New York State. 

What will CSHL researchers study related to obesity?

We’re absolutely going to be focusing on understanding mostly how obesity impacts cancer and the immune system, then how cancer impacts the whole body physiology. Hopefully, once we start to understand the circuits, [we] will be able to intervene. If we can control obesity, we will by logic reduce cancer impact.

What worries you about society?

What worries me is that there is a tendency in this country to ignore science in policy decisions … The number of people not getting vaccinated for measles is ridiculous. There is this kind of pervasive anti-science, anti-technology view that a lot of Americans have. They want the benefits of science and everything that can profit for them. 

There are certain groups of people who misuse data, deliberately abuse misinformation on science to promote agendas that are completely irrational. One of the worst is anti-vaccination. … We should as a society have severe penalties for those who choose to go that route. They shouldn’t send their children to schools, participate in public areas where they could spread a disease that effectively was controlled. Imagine if polio or tuberculosis came back?

How is the lab contributing to education?

People need to act like scientists. It’s one of the reasons we have the DNA Learning Center, to teach people to think like scientists. If 99.99 percent of the evidence suggests [something specific] and 0.01 percent suggest something [else], you have to wonder whether those very small and vocal minority are correct.

Gordon Taylor with technician, Tatiana Zaliznyak. A Raman microspectrometer is pictured in the background. Photo by J. Griffin

By Daniel Dunaief

Something is happening in the Twilight Zone of the ocean, but it’s unclear exactly who is involved and how fast the process is occurring. 

Plants and animals are eating, living, defecating and dying above the so-called Twilight Zone and their bodies and waste are falling toward the bottom of the ocean. But most of that matter isn’t making it all the way to the ocean floor.

That’s where Gordon Taylor, a professor and director of the NAno-RAMAN Molecular Imaging Laboratory at the School of Marine & Atmospheric Sciences at Stony Brook University, comes in. 

Taylor and Professor Alexander Bochdansky of Old Dominion University recently received a $434,000 three-year grant to study the way microorganisms eat, process and convert organic carbon — i.e., carbon that’s a part of living organisms like plants, sea birds and whales — into inorganic carbon, which includes carbon dioxide, carbonate, bicarbonate and carbonic acid.

“The inorganic carbon moves back and forth among these four chemical species,” Taylor explained in an email. Understanding the rate at which carbonic acid builds up can and will help lead to a greater awareness of ways the ocean, which used to have a pH around 8.2 — which is slightly basic, as opposed to levels below the neutral 7— is becoming more acidic.

Above, incubators that Alexander Bochdansky has used in Bermuda. The ones Taylor and Bochdansky will analyze will be smaller than these, which won’t require such a large A-frame to deploy. Images courtesy of A. Bochdansky

They will start by deploying the traps at a single depth, about 985 feet, along the ocean off the coast of Virginia. “We are going to look at who the players are,” Bochdansky said. “There might be only a few key players that degrade this organic carbon. With [Taylor’s] great methods, we can measure the uptake rate in single microbes. This is really exciting.”

The Twilight Zone received its name because it is 650 to 3,300 feet below the surface of the water. Some faint light reaches the top of that zone, but most of that region, which includes creatures that use bioluminescence to attract or find prey, is pitch black.

“The directory of which inventories and fluxes decrease [is] still poorly understood,” Taylor said. “Animals eating the material is one mechanism and we don’t know how important that is compared to microbial decomposition or remineralization,” adding that the goal of this project is to “better define the role of microorganisms in returning carbon to the inorganic pool.”

Taylor is exploring this area with new tools that will allow a greater depth of understanding than previously possible. His group has developed new experimental approaches to apply Raman microspectrometry to this problem. The organisms they examine will include bacteria, fungi and protozoans.

Their experiment will explore which organisms are recycling organic carbon, how fast they are doing it and what factors control their activities. Through this approach, Taylor will be able to see these processes down to the level of a single cell as the instrument can identify organisms that have consumed the heavy isotope tracer.

The Raman microspectrometer uses an optical microscope with a laser and a Raman spectrometer. This tool will measure samples that are micrometers thick, which is smaller than the width of a human hair. The microspectrometer can obtain data from a 0.3-micrometer spot in a cell and he has even produced spectra from single viruses.

The scientists will place phytoplankton common to the region in incubators that Bochdansky developed. They will use a heavy carbon isotope, called carbon 13, that is easy to find through these experiments and see how rapidly microorganisms that colonize are incorporating the isotopically labeled carbon.

Taylor and Bochdansky received funding for the project through the Biological Oceanography Program at the National Science Foundation in the Directorate of Geosciences. Twice a year, the division makes open calls for proposals on any topic of interest to researchers. The scientists submit 15 pages of text that the NSF sends to peer reviewers. A panel meets to evaluate the reviews and ratings and decides which projects to fund.

Bochdansky and Taylor have been “acquainted for a long time and have shared similar interests,” Taylor said.

The carbon experiments in the Twilight Zone account for about a quarter of the work Taylor is doing in his lab. The other research also employs Raman microspectrometry. The United States only has one or two other facilities that do environmental research comparable to the one in Taylor’s lab at Stony Brook. Europe also has three such tools, which can look into single cells using lasers.

One of the other projects Taylor hopes to get funded involves studying the distribution of microplastics in the ocean. “The instrument I have is one of the best tools to look at microscopic plastic particles,” because it identifies the plastic polymer and its source, said Taylor, who is awaiting word on funding from the National Oceanic and Atmospheric Administration.

The other work involves exploring viruses that attack plankton.

“We are exploring Raman methods for early detection of viruses that attack plankton,” Taylor explained. Every organism in the ocean has at least one virus that has evolved to attack it.

As for his work on the Twilight Zone, Taylor said the area acts as a filter of sorts because less than 20 percent of the organic material entering at the top exits at the bottom.

Bochdansky added that these microbes are critical to processes that affect oceans and the planet.

“That’s something people often overlook,” Bochdansky said. “We can’t understand the ocean if we don’t understand it at the level or the scale that’s relevant to microbes.”

Bochdansky is thrilled to work with Taylor, who he’s known for years but will collaborate with for the first time on this project.

“In my lab, we have measured the turnover and release of carbon dioxide,” Bochdansky said. In Taylor’s lab, he measures “the actual feeding of microbial cells.”

A rendering of Suskityrannus hazelae by Andrey Atuchin

By Daniel Dunaief

Even the name Tyrannosaurus rex seems capable of causing ripples across a glass of water, much the way the fictional and reincarnated version of the predator did in the movie “Jurassic Park.”

Long before the predatory dinosaur roamed North America with its powerful jaws and short forelimbs, some of its ancestral precursors, whom scientists believed were considerably smaller, remained a mystery.

A team of scientists led by Sterling Nesbitt, an assistant professor at Virginia Tech, shed some light on a period in which researchers have found relatively few fossils when they shared details about bones from two members of T. rex’s extended ancestral family in New Mexico. 

These fossils, which they named Suskityrannus hazelae, help fill in the record of tyrannosauroid dinosaurs that lived between the Early Cretaceous and latest Cretaceous species, which includes T. rex.

Sterling Nesbitt, assistant professor of geosciences at Virginia Tech, with a partial fossil of Suskityrannus hazelae found in New Mexico. Photo courtesy of Virginia Tech

The researchers, which included Alan Turner, an associate professor of anatomical sciences at Stony Brook University, chronicled the history of these fossils from the Late Cretaceous period, or about 92 million years ago.

“Getting a chance to understand the origin of something is compelling,” said Turner. “Having a discovery like Suskityrannus, which helps us understand how the body plan of tyrannosauroids evolved, is super interesting.” The fossils reveal the “humble beginnings” of a group that would “later dominate North American terrestrial ecosystems.”

Indeed, the new dinosaur was considerably more modest in size than future predators. The Suskityrannus, which included one individual that wasn’t fully grown when it died after living at least three years, measured about three feet at the hip, weighed about 100 pounds, and was about nine feet long, which made it more like a full grown male wolf, albeit longer because of its extended tail.

Scientists had found earlier tyrannosaur relatives from the Early Cretaceous as well as T. rex and its closest relatives near the end of the Late Cretaceous. They were missing data about tyrannosaurs from the middle of the group’s history because fossils from this time period are so rare.

The researchers cautioned that this paper, which was published in the journal Nature, Ecology & Evolution, does not suggest that Suskityrannus was a direct ancestor of T. rex. It does, however, fill a fossil gap in the extended T. rex family.

Suskityrannus hazelae,

The Suskityrannus species has a broad mouth and a muscular skull. Additionally, the bones in its foot were built in a way that made it good at absorbing shocks.

As far as fossil specimens, the bones from this finding are “well represented” across various parts of this creature’s anatomy, including a “lot of limb anatomy and a good portion of the skull and vertebral column,” Turner said. 

This collection of bones help define where on the evolutionary map this new species belong. Some of the anatomical characteristics in this new species appear to be well-suited for future predators, even as they likely also provided an adaptive advantage for the Suskityrannus. 

“These are features that were already in place much earlier” than this new species needed them, Turner said. They may have been adaptations that helped with their agility or with the environment in which they lived. Eventually, evolution turned them into the kinds of anatomical features that made them useful when T. rex eventually grew to as large as 16 tons.

“That’s something you see often in evolution: the way a species is using [its anatomy] isn’t always necessarily what the features evolved for,” Turner said. “Evolution can only work with what it has. What we see with Suskityrannus is that it had these things that became important later on.”

Turner’s role was to help compile and analyze the enormous amount of data that came out of this discovery. He explored how the number of species changed along the boundary between the first half of the Late Cretaceous and the second half of the Late Cretaceous periods, adding that the process of exploring and analyzing such a discovery can take years. 

Indeed, Turner first saw the fossil in 2007. “The studies take a long time and you can get lost in the details,” he said. “You do try and keep the big picture in your head. That’s the thing that makes [the work] interesting.”

Alan Turner while conducting fieldwork in Kenya last summer. Photo by Eric Gorscak

Turner became a part of this work through his connection to Nesbitt. The two scientists attended graduate school together at Columbia University. They have been doing field work together since 2005.

Nesbitt explained in an email that he thought of including Turner immediately “because he is an expert on aspects of paleobiology and theropods, plus he is an excellent colleague to work on papers with.”

In the research paper, the scientists have created an artistic rendering of what this new species might have looked like. While Turner acknowledges that the image involves a “bit of an artistic license,” the image is also “bound by what we know.” 

Nesbitt said this finding provides information about the theropods as a whole. “We really don’t know why T. rex and its closest relatives got so big,” he said, but researchers do know this happened at the end of the Cretaceous period, after 80 million years of being relatively small.

Turner lives in Port Jefferson with his wife, Melissa Cohen, who is the graduate program coordinator in the Department of Ecology & Evolution at Stony Brook University. The couple has two children.

Turner, who grew up in a suburb of Cleveland, recalls a field trip when he was 17 that encouraged him to pursue a career in paleontology. He was conducting research in Montana and he was exploring dinosaurs and sharing a sense of camaraderie with others on the expedition.

“I remember feeling like that was an affirming experience,” Turner said.

As for the discovery of Suskityrannus, Turner shared the wonder at finding a new species, something he’s been a part of eight times with dinosaurs in a career that now includes 11 years at Stony Brook.

“It’s always pretty exciting when you get to work on something that’s new,” he said.

Enyuan Hu with images that represent electron orbitals. Photo from Enyuan Hu

By Daniel Dunaief

Charging and recharging a battery can cause a strain akin to working constantly without a break. Doctors or nurses who work too long in emergency rooms or drivers who remain on the road too long without walking around a car or truck or stopping for food can function at a lower level and can make mistakes from all the strain.

Batteries have a similar problem, as the process of charging them builds up a structural tension in the cathode that can lead to cracks that reduce their effectiveness.

Working with scientists at Brookhaven National Laboratory and the Stanford Synchrotron Radiation Lightsource, Enyuan Hu, an assistant chemist at BNL, has revealed that a doughnut-shaped cathode, with a hole in the middle, is more effective at holding and regenerating charges than a snowball shape, which allows strain to build up and form cracks. 

At this point, scientists would still need to conduct additional experiments to determine whether this structure would allow a battery to hold and regenerate a charge more effectively. Nonetheless, the work, which was published in Advanced Functional Materials, has the potential to lead to further advances in battery research.

“The hollow [structure] is more resistant to the stress,” said Hu. Lithium is extracted from the lattice during charging and changes the volume, which can lead to cracks.

The hollow shape has an effective diffusion lens that is shorter than a solid one, he added.

Yijin Liu, a staff scientist at Stanford’s Linear Accelerator Center (SLAC) and a collaborator on the project, suggested that the result creates a strategic puzzle for battery manufacture.

Enyuan Hu with drawings that represent images of metal 3d orbitals interacting with oxygen 2p obits, forming either sigma bonds (above) or pi bonds (below).
Photo from Enyuan Hu

“On the one hand, the hollow particles are less likely to crack,” said Liu. “On the other hand, solid particles exhibit better packing density and, thus, energy density. Our results suggest that careful consideration needs to be carried out to find the optimal balance.” The conventional wisdom about what caused a cathode to become less effective involved the release of oxygen at high voltage, Hu said, adding that this explanation is valid for some materials, but not every one.

Oxygen release initiates the process of structural degradation. This reduces voltage and the ability to build up and release charges. This new experiment, however, may cause researchers to rethink the process. Oxygen is not released from the bulk even though battery efficiency declines. Other possible processes, like loss of electric contact, could cause this.

“In this specific case of nickel-rich layered material, it looks like the crack induced by strain and inhomogeneities is the key,” said Hu.

In the past, scientists had limited knowledge about cracks and homogeneity, or the consistent resilience of the material in the cathode.

The development of new technology and the ability to work together across the country made this analysis possible. “This work is an excellent example of cross-laboratory collaboration,” said Liu. “We made use of cutting edge techniques available at both BNL and SLAC to collect experimental data with complementary information.”

At this point, Hu estimates that about half the battery community believes oxygen release causes the problem for the cathode, while the other half, which includes Hu, thinks the challenge comes from surface or structural problems. 

He has been working to understand this problem for about three years as a part of a five-year study. His role is to explore the role of the cathode, specifically, which is his particular area of expertise.

Hu is a part of a Battery500 project. The goal of the project is to develop lithium-metal batteries that have almost triple the specific energy currently employed in electric vehicles. A successful Battery500 will produce batteries that are smaller, lighter and less expensive than today’s model.

Liu expressed his appreciation for Hu’s contributions to their collaboration and the field, saying Hu “brings more than just excellent expertise in battery science into our collaboration. His enthusiasm and can-do attitude also positively impacts everyone in the team, including several students and postdocs in our group.”

In the bigger picture, Hu would like to understand how lithium travels through a battery. At each stage in a journey that involves diffusing through a cathode, an anode and migrating through the electrolyte, lithium interacts with its neighbors. How it interacts with these neighbors determines how fast it travels. 

Finding lithium during these interactions, however, can be even more challenging than searching for Waldo in a large picture, because lithium is small, travels quickly and can alter its journey depending on the structure of the cathode and anode.

Ideally, understanding the journey would lead to more efficient batteries. The obstacles and thresholds a lithium ion needs to cross mirror the ones that Hu sees in everyday life and he believes he needs to circumvent these obstacles to advance in his career.

One of the biggest challenges he faces is his comfort zone. “Sometimes, [comfort zones] prevent us from getting exposed to new things and ideas,” he said. “We have to be constantly motivated by new ideas.”

A cathode expert, Hu has pushed himself to learn more about the anode and the electrolyte.

A resident of Stony Brook, Hu lives with his wife, Yaqian Lin, who is an accountant in Port Jefferson, and their son Daniel, who attends Setauket Elementary School.

Hu and Lin met in China, where their families were close friends. They didn’t know each other growing up in Hefei, which is in the southeast part of the country.

Hu appreciates the support Lin provides, especially in a job that doesn’t have regular hours.

“There are a lot of off-schedule operations and I sometimes need to leave home at 10 p.m. and come back in the early morning because I have an experiment that requires my immediate attention. My wife is very supportive.”

As for his work at BNL, Hu said he “loves doing experiments here. It has given me room for exploring new areas in scientific research.”

Sean Clouston

By Daniel Dunaief

Every year, the country pauses on 9/11, remembering the victims of the terrorist attacks and reflecting on the safety and security of the country. At the same time, a Stony Brook University study continues not only to remember the first responders but also to understand the physical and mental consequences of the work police, firefighters and other first responders performed in the immediate aftermath of the attacks.

Benjamin Luft

Recently, Sean Clouston, an associate professor in the Department of Family, Population & Preventive Medicine at SBU Renaissance School of Medicine, and Ben Luft, the director of the SBU WTC Health and Wellness Program since 2003, published research in which they demonstrated a link between a protein commonly connected with Alzheimer’s disease to post-traumatic stress disorder, or PTSD, in first responders.

In a small preliminary study, the researchers found a difference in the level of the protein between first responders who are battling chronic PTSD and those who aren’t battling the condition. The Stony Brook scientists published their work in the journal Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring.

The researchers cautioned that the presence of the markers doesn’t necessarily indicate anything about present or future changes in cognitive function.“We don’t know the specificity of the markers,” Luft explained in an email.

Amyloid is generally considered the earliest marker of Alzheimer’s disease, which includes cognitive decline. Some people, however, have significant amounts of amyloid and don’t develop problems with their thinking. Neurodegenerative diseases without amyloid rarely have severe symptoms, which don’t appear to worsen with time.

“This paper doesn’t look at cognitive symptoms,” Clouston said. “We do have papers looking at cognitive impairment and other memory-based differences. It wasn’t a part of this paper.”

The newest research is part of an ongoing program in which the university follows 11,000 responders who came to the World Trade Center. The study for this paper involved a smaller subset of this population. This type of research can and does have application to other studies of people who have traumatic experiences, the scientists suggest.

Most traumatic experiences are unique to each person, as people who suffer physical and emotional trauma in combat often confront the aftereffects of head injuries. Among the first responder population who survived the attacks on 9/11, most of them “faired pretty well physically,” Clouston said. 

“We didn’t have a lot of head injuries. Understanding PTSD in this crowd is really useful for the literature as a whole because it allows us to focus on the long-term psychiatric fallout of an event without worrying about exposures that are different.”

The scientists had at least some idea of the timing and duration of exposures. This research suggests that it might be helpful to think about the kinds of problems that cognitive impairment can cause, which might involve managing other health-related problems.

Luft added that the population they are studying shows the benefit of immediate care. “One thing for sure is that the care of the first responders has to occur very quickly,” he said. “Now that we know the history, the greatest chance you have in mitigating the effect of this type of trauma is to deal with the problem from the get-go.” 

Sean Clouston with his daughter Quinn at Benner’s Farm in Setaukt. with his daughter Quinn. Photo by Rachel Kidman

First responders have benefited from psychotherapy as well as from various pharmacological treatments. Luft suggested that they might even benefit from having therapists available in the field, where they can receive near instantaneous psychological support.

In addition to the psychological trauma, first responders have had physical effects from their work in the aftermath of the attacks, such as respiratory and gastrointestinal problems, as well as autoimmunity issues.

People have these problems because “of the pro-inflammatory effect of PTSD itself,” said Luft. The researchers believe trauma can affect the immune system and the brain.

According to Clouston, the next step with this work is to replicate it with a larger scale. The experiment was “fairly expensive and untried in this population and novel in general, so we started small,” he explained in an email. The scientists would like to “get a larger range of responders and to examine issues surrounding symptomatology and other possible explanations.”

Clouston has been at Stony Brook for six years. Prior to his arrival on Long Island, he worked on a collaborative project that was shared between University College London and the University of Victoria. 

An expert in aging, he felt like his arrival came at just the right time for the WTC study, as many of the first responders were turning 50. After giving talks about the cognitive and physical effects of aging, he met Luft and the two decided to collaborate within six months of his arrival.

Clouston is focused on whether PTSD caused by the terrorist attacks themselves have caused early brain aging. A self-proclaimed genetics neophyte, he appreciates the opportunity to work with other researchers who have considerably more experience in searching for molecular signatures of trauma.

Clouston said his family has suffered through the trauma of cognitive decline during the aging process. His family’s struggles “definitely bring [the research] home,” reminding him of the “terror that many family members feel when they start noticing problems in their siblings, parents, spouses, etc.”

As for his work on the recent study, he said he is excited about the next steps. “Little is known about the subtypes of amyloid,” he suggested and there’s a “lot more to explore about the role [of this specific type] in the population. I do think it could be really informative about the types of symptoms.”

Alexander Orlov, right, with former students, Peichuan Shen and Shen Zhao. File photo

By Daniel Dunaief

Alexander Orlov knows first-hand about the benefits and dangers of technology. A native of the Ukraine, Orlov and his family lived close enough to Chernobyl that the 1986 nuclear power plant disaster forced the family to bring a Geiger counter to the supermarket. In his career, the associate professor in the Material Science and Chemical Engineering Department at Stony Brook University has dedicated himself to unlocking energy from alternatives to fossil fuels, while he also seeks to understand the environmental consequences of the release of nanoparticles.

Orlov, who is a member of a US-EU working group on Risk Assessment of Nanomaterials and has served as science adviser to several congressmen, the EU Commission and governments in Europe and Asia, recently spoke with Times Beacon Record News Media about this expanding scientific field.

Alexander Orlov File photo

TBR: Is a big part of what you do understanding the way small particles can help or hurt people and the environment?

Orlov: Yes, we have two lines of research. The first is to make efficient nanoparticles, which can help create sustainable energy by creating energy from water or by taking carbon dioxide, which is greenhouse gas, and converting it into fuel. On the other side, we have a project, which is looking at the dangers of nanoparticles in the environment, because there are more and more products, thousands, which contain nanoparticles. We are trying to understand the mechanism of release of those particles.

TBR: How do you monitor the release of nanomaterials?

Orlov: We use labels, and we track them. If they are released from consumer products, it’s not necessarily that they are immediately dangerous. They can be. We are trying to quantify how much is released.

TBR: How do you determine toxicity?

Orlov: In the scientific arena, there is a qualitative discussion, if chemicals or nanomaterials are released, they will be toxic. That is only the beginning. We need to discuss how much is released. There’s a principal in toxicology that everything is toxic. If you drink too much water, it can be toxic and you can die. Similar [rules] apply for nanomaterials. If there is a little released, the danger might be minimal. If it’s too much, that’s where you might get concerned. [The amount of a nanomaterial released] is often not quantified. That’s what we are trying to do.

TBR: How do you determine what might be toxic over a prolonged period of time?

Orlov: What we have in our studies are determined by funding. Normally, funding for scientific research has a three-year window. The studies have been done over the course of years, but not decades, and so the cumulative exposure is still an open question. Another problem is that different scientific groups study nanomaterials which are not the same. That means there are so many variants. Sometimes, navigating the literature is almost impossible.

TBR: Are the studies on toxicity keeping up with the development of new products?

Orlov: [The technology is] developing so fast. New materials are coming from different labs and have so many potential applications, which are exciting and novel in their properties. People studying safety and toxicity often can’t catch up with what they are studying in their lab.

TBR: Are there efforts to recapture nanomaterials released into the environment?

Orlov: Once released, it’s difficult to recapture. [It’s almost] like air pollution, where as soon as it’s in the atmosphere, it can go anywhere. There are industries that use nanomaterials. Soon, you’ll see 3-D printers in the household; 3-D printers would use polymers and embedded nanomaterials. There are already products like this. The question is how you would minimize consumer exposure. There are several ways: design safer products where nanomaterials aren’t going to be released; apply the standard methods of occupational safety; put equipment in ventilated environment; and you can also try to calculate the exposure.

TBR: Are you monitoring nanomaterials in some of these applications?

Orlov: The research we’ve done demonstrated that, even though you have something in polymer or in consumer products, [there is] still [the] possibility of release of nanomaterials, even though it is considered safe. The polymer itself can degrade.

TBR: Do you have any nanoparticle nightmares?

Orlov: Often, the only nightmares I have is that my understanding of the field is so minuscule given that the field is expanding so fast. The amount of knowledge generated and papers published in this is so vast that no single individual can have a comprehensive knowledge in this field. The only way to address it is to collaborate.

TBR: How is the funding environment?

Orlov: In the United States, there’s a significant amount of funding in both fundamental and applied research, but the policy priorities change in certain areas such as environmental protection, so that affects scientists who are working in the environmental area. I teach environmental classes at Stony Brook. Students ask whether it makes sense to go into environmental protection because of the current funding and general policies.

TBR: What do you advise them to do?

Orlov: I tell them priorities change. At the end of the day, would they like to have clean water and a healthy environment and healthy humans? You can find a niche. It doesn’t make sense to abandon this area.

TBR: You experienced the fallout from Chernobyl firsthand. How often do you think about this?

Orlov: I do think about this often for several reasons. There is an overlap in energy and the environment. This idea that scientific discoveries have positive and negative impacts on humanity came during that time. When I was in the Ukraine and disaster happened, I think about this a lot of times.

TBR: How does a career in science compare to your expectations?

Orlov: My original thinking is that after you get to a certain level, you have a more measured life, in terms of free time and time spent in research. I didn’t realize that the amount of funding or probability of getting funding is becoming very low. When I looked at my colleagues who were scientists 30 years ago, they had a five times higher chance of getting funding compared to right now. Being in science is not as relaxing and it can be stressful and the thing is, if you only focus on getting funding, the creativity can suffer.

TBR: Are there other examples of the dichotomy between scientific promise and destruction?

Orlov: In my introductory lecture to chemical engineers at Stony Brook, one scientist who affected more people than Stalin or Hitler was a German scientist who developed the process of converting nitrogen [gas] to ammonia [which is used for fertilizer]. Half of the population exists because of this scientific discovery. [One of the inventors, Fritz Haber, received the Nobel Prize in Chemistry in 1918 for this work, called the Haber-Bosch process].

TBR: What else did he do?

Orlov: Haber had a dark side to him. He was involved in developing chemical weapons for Germans [which were used during World War I and World War II]. The [extension of his] discoveries killed millions of people [including Haber’s relatives in World War II after he died]. Considered the father of chemical warfare, he developed the process of weaponizing chlorine gas. This is [a way] to discuss the ethics of scientific discovery.

TBR: How would people learn about these examples?

Orlov: Stony Brook and other universities are trying to teach ethics to engineers and scientists because this is a perfect example of the dark side of science and how science and policy overlap.

Staff from Brookhaven National Laboratory and Germany’s Centre for Advanced Materials during a recent meeting to discuss a future collaboration, from left, Oleg Gang, group leader for Soft and Bio Nanomaterials; Norbert Huber, the director of the ZHM; Charles Black, the director of the CFN; Patrick Huber, a principal investigator; Priscilla Antunez and Dario Stacchiola, group leader for the Interface Science and Catalysis team. Photo by Joseph Rubin/BNL

By Daniel Dunaief

Priscilla Antunez is a scientist with some unusual expertise. No, she doesn’t run experiments using a rare or expensive piece of equipment; and no, she hasn’t developed a way to understand the properties of unimaginably small particles that assemble themselves and may one day help run future technology.

What Antunez brings to the Center for Functional Nanomaterials, or CFN, at Brookhaven National Laboratory is a background in business. That puts her in a position to help the scientists who run experiments at the CFN or the researchers at BNL, or elsewhere, who study the properties of catalysts or self-assembling small materials.

“This opportunity for me is a maximization of my impact on science,” said Antunez, who joined BNL from Illinois’ Argonne National Laboratory in December. If she were to run her own lab, she would be involved in a project or a handful of projects. “[At BNL] I have the opportunity to help many scientists with their work,” she said.

Priscilla Antunez Photo by Joseph Rubin/BNL

Her assistance will take numerous forms, from acknowledging and celebrating the science the 30 researchers at the CFN and the 600 scientists from around the world who visit the center perform, to developing broader and deeper partnerships with industry.

Her long-term goal is to build a strategy around specific projects and establish partnerships to advance the science and technology, which might include industry.

“We are trying to make [the information] widely available to everyone,” Antunez said. “We are proud of what they’re doing and proud of how we’re helping them accomplish their goals. We’re ultimately getting their science out there, helping them with viewership and readership.”

She is already writing the highlights of scientific papers, which she hopes to share widely.

In addition to sending research updates to the Department of Energy, which sponsors the BNL facility, Antunez will also try to broaden the audience for the research by sharing it on LinkedIn, posting it on the website, and, in some cases, sending out email updates. The LinkedIn page, for now, is by invitation only. Interested readers can request to join at https://www.linkedin.com/groups/8600642.

Antunez takes over for James Dickerson, who has become the first chief scientific officer at Consumer Reports, where he leads the technical and scientific aspects of all activities related to CR’s testing and research, including food and product safety programs. Antunez and Charles Black, the director of the CFN, decided to expand Antunez’s role as assistant director.

Her job is “to help the CFN develop its overall strategy for making partnerships and nurturing them to be successful and have impact,” Black explained in an email.

“For the CFN to thrive in its second 10 years of operations will require us to form deeper relationships with scientific partners, including CFN users, research groups around the world, industries and other national labs,” he said.

Indeed, Black, Oleg Gang, who is the group leader for Soft and Bio Nanomaterials, Dario Stacchiola, the group leader for the Interface Science and Catalysis team, and Antunez recently met with Norbert and Patrick Huber, from Hamburg’s Centre for Advanced Materials.

“We had group and individual discussions to explore complementary areas of research,” said Antunez.

After scientists from the centers meet again to develop research plans, she can “help as much and as early as the CFN scientists need.” She can also coordinate between the CFN and the Contracts Office if the center needs a Cooperative Research and Development Agreement.

The scientist encourages CFN scientists to visit whenever they believe they have an idea that might have an application. She’s had meetings with the Tech Transfer Office and CFN groups and is hoping to put more such gatherings on the calendar.

The CFN is continuing to grow and will be adding five or six new scientific staff positions, Black said. Antunez will “oversee a strategy that helps all CFN staff form deep, productive partnerships that produce new nanoscience breakthroughs.

Black explained that it was an “exciting, challenging, important job and we’re thrilled to have someone as talented and energetic as [Antunez] to take it on.”

Indeed, Antunez was such an effective researcher prior to venturing into the business world that the CFN had tried to hire her once before, to be a postdoctoral researcher in the area of self-assembly. At that time, Antunez had decided to move toward business and took a job at Argonne National Laboratory. “In the end it has worked out well for CFN, because [Antunez] gained valuable experience at Argonne that she has brought to BNL and is using every day,” said Black.

The CFN has divided the work into five groups, each of which has a team leader. Antunez is working on their current partnerships and recruiting needs. She meets with the group leaders during regular management meetings to discuss overall plans, work and safety and the required reports to the DOE.

Antunez lives in Mineola with her husband, Jordan S. Birnbaum, who is the chief behavioral economist at ADP. When she was in college at Universidad de Sonora, Antunez wanted to double major in science and contemporary dance. At the public university in Mexico at the time, she had to choose one or the other, despite an invitation from one of the founding professors of the school of dance to major in dance.

Nowadays, Antunez, who earned her doctorate in chemistry from the University of Southern California, goes to the gym and takes yoga and dance classes, but doesn’t study the art form anymore.

With her science background, Antunez anticipated becoming a teacher. Her current work allows her to share her expertise with scientists. She has also been able to work with some postdoctoral researchers at BNL.

As for her work, Antunez appreciates the opportunity to build connections between scientists and industry. “Most of our technologies are on the basic research side and so the partnerships are much more fluid, which gives us a lot more flexibility in terms of our strategic partners,” she said.

Tobias Janowitz with research technician Ya Gao at Cold Spring Harbor Lab Photo by ©Gina Motisi, 2019/CSHL

By Daniel Dunaief

It’s a low-tech setting with high stakes. Scientists present their findings, often without slides and pictures, to future colleagues and collaborators in a chalk talk, hoping faculty at other institutions see the potential benefit of offering them an employment opportunity.

For Tobias Janowitz, this discussion convinced him that Cold Spring Harbor Laboratory was worth uprooting his wife and three young children from across the Atlantic Ocean to join.

Chalk talks in most places encourage people to “defend their thinking. Here, it was completely different. They moved on from my chalk talk quickly,” said Janowitz in a recent interview.

Research technician Ya Gao and Tobias Janowitz at Cold Spring Harbor Lab. Photo by ©Gina Motisi, 2019/CSHL

Janowitz recalled how CSHL CEO Bruce Stillman asked him “what else will you do that’s important and high risk. He moved me on from that discussion within five minutes and essentially skipped a step I’d usually spend at another institution. It’s a very special place.”

Janowitz, who earned a medical degree and a doctorate from the University of Cambridge, came to the lab to work in a field where he’s distinguished himself with cancer research that points to the role of a glycoprotein called interleukin 6, or IL-6, in a specific step in the progression of the disease, and as a medical oncologist. He will work as a clinician scientist, dedicated to research and discovery and advancing clinical care, rather than delivering standard care.

As CSHL continues to develop its ongoing relationship with Northwell Health, Janowitz said he expects to be “one of the intellectual bridges between the two institutions.”

In his research, the scientist specializes in understanding the reciprocal interaction between a tumor and the body. Rather than focusing on one type of cancer, he explores the insidious steps that affect an organ or system and then wants to understand the progression of signals and interactions that lead to conditions like cachexia, in which a person with cancer loses weight and his or her appetite declines, depriving the body of necessary nutrition.

CSHL Cancer Center Director David Tuveson appreciates Janowitz’s approach to cancer.

“Few scientists are ready to embrace the macro scale of cancer, the multiple organ systems and body functions which are impaired,” Tuveson said. Janowitz is “trying to understand the essential details [of cachexia and other cancer conditions] so he can interrupt parts of it and give patients a better chance to go on clinical trials that would fight their cancer cells.”

A successful and driven scientist and medical doctor, Janowitz “is very talented and could be anywhere,” Tuveson said, and was pleased his new colleague decided to join CSHL.

Janowitz suggested that the combination of weight loss and loss of appetite in advancing cancer is “paradoxical. Why would you not be ravenously hungry if you’re losing weight? What is going on that drives this biologically seemingly paradoxical phenomenon? Is it reversible or modifiable?”

At this point, his research has shown that tumors can reprogram the host metabolism in a way that it “profoundly affects immunity and can affect therapy.” Reversing cachexia may require an anti-IL-6 treatment, with nutritional support.

As he looks for clinical cases that could reveal the role of this protein in cachexia, Janowitz has seen that patients with IL-6-producing tumors may have a worse outcome, a finding he is now seeking to validate.

At this point, treatment for other conditions with anti-IL-6 drugs has produced few side effects, although patients with advanced cancer haven’t received such treatment. Researchers know how to dose antibodies to IL-6 in the human body and treatment intervals would last for a few weeks.

Scientists have long thought of cancer as being like a wound that doesn’t heal. IL-6 is important in infections and inflammation.

Ultimately, Janowitz hopes to extend his research findings to other diseases and conditions. To do that, he would need to take small steps with one disease before expanding an effective approach to other conditions. “Are disease processes enacting parts of the biological response that are interchangeable?” he asked. “I think that’s the case.”

Eventually, Janowitz hopes to engage in patient care, but he first needs to obtain a license to practice medicine in the United States. He hopes to take the steps to achieve certification in the next year.

He plans to gather samples from patients on Long Island to study cancer and its metabolic consequences, including cachexia.

Several years down the road, the scientist hopes the collaborations he has with neuroscientists can reveal basic properties of cancer.

Tuveson believes Janowitz has “the potential of having a big impact individually as well as on everyone around him,” at Cold Spring Harbor Laboratory. “We are lucky to recruit him and want him to succeed and solve vexing problems so patients get better.”

Janowitz lives in Cold Spring Harbor Laboratory housing with his wife Clary and their three children, Viola, 6, Arthur, 4, and Albert, 2.

Clary is a radiation oncologist who hopes to start working soon at Northwell Health.

The Janowitz family has found Long Island “very welcoming” and appreciates the area’s “openness and willingness to support people who have come here,” he said. The family enjoys exploring nature.

The couple met at a production of “A Midsummer Night’s Dream,” which was performed by a traveling cast of the Globe in Emmanuel College Gardens in Cambridge, England.

As with many others, Janowitz has had family members who are living with cancer, including both of his parents. His mother has had cancer for more than a decade and struggles with loss of appetite and weight. He has met many patients and their relatives over the years who struggle with these phenomena, which is part of the motivation for his dedication to this work.

Most cancer patients, Janowitz said, are “remarkable individuals. They adjust the way that they interact with the world and themselves when they get life changing diagnoses.” Patients have a “very reflected and engaged attitude” with the disease, which makes looking after them “incredibly rewarding.”

Stony Brook University’s Larry Swanson, center, with fellow Ocean Acidification Task Force members Carl Safina, left, and Malcolm Bowman, right. Photo from Stony Brook University

By Daniel Dunaief

Larry Swanson has led research teams over far-flung water bodies, worked for the National Oceanic and Atmospheric Administration as a commissioned officer for 27 years and has been a fixture at Stony Brook University for over three decades. 

A former dean at the School of Marine and Atmospheric Sciences at SBU and current professor, Swanson, who is a member of New York’s Ocean Acidification Task force, was recently interviewed by Times Beacon Record News Media about his life in science.

TBR: How has science changed over the years?

Swanson: Some of the most significant things are the electronic tools that we have today. If you go back to when I was starting, if you wanted a water sample, and to collect temperature at five miles deep in the ocean, it was a very, very long tedious process. 

When you got that water sample on deck, if you wanted to simply measure salinity, you had to do a chemical titration. If you were doing that over five miles deep, below the first 1,000 meters, you might take a sample every half a mile or something like that. You couldn’t take a lot of samples. 

Now, you lower an instrument and you get a continuous trace of temperature, salinity, dissolved oxygen and other parameters, every few tenths of a meter. We are sort of overwhelmed with data now.

TBR: That must change the way people conduct experiments.

Swanson: When I first started, every data point you collected was extremely valuable and if you lost it, you really lost a lot of time, a lot of energy. It was something you could never recover. With modern instrumentation, you can do so much more and do much of it remotely; you don’t have to go to sea for seven or nine months to do that.

TBR: What are some of the biggest discoveries in your field?

Swanson: This is not necessarily things I have done. The theory of plate tectonics was established. We drilled through the crust of the earth to the mantle and we have discovered hydrothermal vents. We’ve got enough data now that we’re collecting through satellites, direct measurement in oceans in more detail, that we can really talk about changes in the global environment, whether it’s temperature increase, carbon dioxide increase and so forth. 

Those are all things that have taken place over my lifetime in oceanography. We can see what we’re doing to ourselves much more clearly today because of new technology.

TBR: What is one of the great debates in science today?

Swanson: I think trying to understand the impacts of climate change is at the forefront for everyone that’s dealing with ocean and atmospheric sciences. We don’t know all the answers and we haven’t convinced everyone it’s an issue. 

Whether or not it’s driven by people, that [debate] will continue for years to come. We’re going to bear some of the consequences of climate change before we’ve adequately convinced people that we’ve got to change our lifestyle.

TBR: What about local challenges?

Swanson: The notion of ocean acidification and how rapidly it’s changing is a local challenge. What will the consequences of it be if we don’t try to ameliorate it and what do we need to do in order to make it less of a problem? How are we going to build resiliency and reverse it?

TBR: Is there a scientific message you wish people knew?

Swanson: Scientists in general do not communicate well with the public and part of the problem is because we speak in jargon. We don’t talk to [the public] in proper ways that meet their level of understanding or knowledge. We’ve done that poorly. 

For another thing, scientists can be faulted with regard to developing policy. The scientists’ work is never done. If you go to Congress and they ask, “What are we going to do to fix the problem?,” scientists will say, “Give me more money for research and I’ll get back to you.” 

So, there’s a disconnect in terms of time frames over which we operate. [Members of Congress] operate 2 to 4 years out, while scientists operate sometimes over lifetimes. We haven’t been able to bridge that gap.

TBR: Is that improving at all?

Swanson: One of the great things that Stony Brook now has is the Alan Alda Center for Communicating Science, which is helping all the scientists here that are willing to participate in trying to do a better job of communicating. It’s making a difference and having an impact that is meaningful. It’s always good to try to put your science in the most simplistic terms possible, even if it’s a drawing or cartoon that’s helpful.

TBR: What are your future goals?

Swanson: I am hopeful  the new task force can come up with a meaningful ocean acidification action plan. I’m very pleased to be part of that group.

TBR: If you were to start your oceanography career today, what would you do differently?

Swanson: If I were to start over, I would get a master’s degree in oceanography, not a doctorate, and then I would try to get an environmental law degree. The reason I would probably do that is that I think environmental law is the best way to make an immediate impact on society. I firmly believe that one should not be an environmental lawyer until one is a fairly good scientist.

TBR: How many more years before you retire?

Swanson: I’d say a maximum of three and a minimum of one. I’m often asked, “Why are you still working?” First of all, I enjoy it and I think one of the exciting things about being an oceanographer is that there’s never been a dull day. 

Hyunsik Kim and Erin Kang. Photo from Matthew Lerner’s lab

By Daniel Dunaief

This is the second half of a two-part series on autism research conducted by Hyunsik Kim and Erin Kang.

 Last week we focused on the work of Stony Brook University graduate student Hyunsik Kim, who used three criteria to diagnose autism. This week we will feature the work of another SBU graduate student in the Department of Psychology, Erin Kang, who specifically explored the types and severity of communication difficulties autistic children have. 

Words and the way people use them can offer clues about autism. Looking closely at pronoun reversals, speech delays, perseveration and 10 other characteristics, Kang determined that the number of features was a “powerful predictor of an autism spectrum disorder diagnosis.” 

In a paper published online in the Journal of Clinical Child & Adolescent Psychology, Kang grouped children from 6 to 18 years old into different subgroups based on their communication patterns and used a statistical method that allows the data to “speak for itself,” in terms of finding groups based on the patterns of how the communication difficulties are associated and to classify them.

According to Kang, heterogeneity is an important feature of autism spectrum disorder. “There has been a greater effort into understanding whether subgroups exist in ASD populations,” she explained in an email. By examining the atypical communication characteristics, she found four subgroups. These groups differed from each other, not only with autism, but on multiple measures, including the occurrence of anxiety or depression and with intellectual disabilities.

The communication difficulties occur at different rates within the autism children throughout Long Island that Kang studied.

Kang said her work has been “building on the previous literature,” although many of the previous studies focused on characterizing autism for children who were younger than 6.

“There are few studies on specific symptoms (e.g., stereotyped speech) across the body of literature,” she explained, adding that she’s passionate about exploring the trajectory of development over time with or without intervention. 

She and her co-authors, Ken Gadow and Matthew Lerner, who are also at Stony Brook University, are working on a follow-up paper that attempts to explore how changes in the pattern of communication challenges examined in the paper relate to other clinical aspects and outcomes.

Kang believes her results have clinical implications that will help in understanding autism. Atypical communication features are a good predictor of diagnostic status. “This can provide an advantage in assessing social communication profiles in autism,” she said. “It’s hopefully valuable in a low-resource setting.”

Parents might be asked 13 questions on a checklist, which could serve as an initial screening for more comprehensive autism evaluations, rather than a multiple checklist that could take a while for parents to complete. The different categories had specific features that distinguished them. 

“There’s been quite a bit of work in the speech and language field,” said Lerner, an associate professor of psychology, psychiatry and pediatrics in the Department of Psychology at Stony Brook University and Kang’s mentor. “This approach allowed us to ask about some of the specific types of language differences we often see.”

Lerner said what Kang found is that specific characteristics do tend to cluster together in “interesting and unique ways that can tell us more about the communicative phenotype of autism.”

One of the groups, which she called “little professors,” had speech patterns with considerable perseveration. In perseveration, a person repeats a word or phrase, even when a question or stimulus that might elicit that phrase no longer continues. As an example, Dustin Hoffman in the movie “Rain Man” frequently repeated the number of minutes until Judge Wapner was on TV.

“These kids would benefit more from a group-based social skills intervention that specifically integrated interacting with peers,” Kang said. People in this group had the highest percentage of wanting a friend, but difficulty with relating to peers.

“They will benefit especially from interventions that help them build skills in interacting with peers,” she explained.

She also suggested that the best way to make a reliable diagnosis is to collect as much information as possible, which could include observations and electrophysiological data.

Kang acknowledged that some of the responses from the parents or teachers of people with autism contain bias. “There can be a lot of potential especially in terms of these subjective measures,” she said.

Indeed, through Lerner’s lab, Kang has been trying to include more uses of neurological measures and other methodology that is less subject to biases.

“Hopefully, by looking at these more objective measures, we can help integrate information from these different levels,” she said.

A resident of East Northport, Kang lives with her husband, musician Sungwon Kim, who works as a freelancer on Broadway musicals. The couple, who have a young son, met in Boston when she was working at Boston Children’s Hospital and he was a student at Berklee College of Music. 

Kang’s first experience with autism was in high school, when she acted as a mentor to a second grader. When she entered college at the University of California at Berkeley, she studied molecular and cellular biology and psychology.

Lerner said that Kang is a “truly remarkable young scholar” and is “among the best I’ve seen at her stage to be able to look at her clinical experiences, which drive the questions that strike at the core of how we understand and treat autism.”

Lerner appreciates how she is driven to understand autism from neurons in the brain all the way up to the classification and treatment.

“She is somebody who is completely undaunted by taking on new questions or methodologies because she has an idea of what they’re going to mean,” Lerner said. “She has worked with [autistic children] and has tried to understand where they are coming from.”

Kang questions assumptions about what autism is, while also exploring its development.

“She is able to see and discover clinical strengths that manifest in the kinds of questions she asks,” explained Lerner. “She is a part of the next generation of where my field is going, and I hope we can catch up to her.”

Kang appreciates the work-life balance she has struck on Long Island, where she feels like the pace of life is “quiet and calm during the week,” while it’s close enough to New York City to enjoy the cultural opportunities.