Tags Posts tagged with "Power of 3"

Power of 3

From left, Mikala Egeblad and Xue-Yan He. Photo from Constance Brukin

By Daniel Dunaief

They both have left Cold Spring Harbor Laboratory, but the innovative research they did on Long Island and that they continue to do, is leaving its mark.

From left, Mikala Egeblad and Xue-Yan He at the American Association for Cancer Research (AACR) annual meeting in New Orleans, Louisiana in 2022. Photo from Xue-Yan He

When Xue-Yan He was a postdoctoral researcher in the lab of Mikala Egeblad, who was Associate Professor at CSHL, the tandem, along with collaborators, performed innovative research on mice to examine how stress affected the recurrence and spread of cancer in a mouse model.

In a paper published in late February in the journal Cancer Cell, He, who is currently Assistant Professor of Cell Biology & Physiology at Washington University School of Medicine in St. Louis, discovered that stress-induced neutrophil extracellular traps (NETs), which typically trap and kill bacteria, trigger the spread of cancer.

“The purpose of our study is to find out what stress does to the body” of an animal model of cancer, said He.

The data in mice demonstrated that targeting NETs in stressed animals significantly reduced the risk for metastases, He explained, suggesting that reducing stress should help cancer treatment and prevention. The researchers speculate that drugs preventing NET formation can be developed and used as new treatments to slow or stop cancer’s spread.

To be sure, this finding, which is encouraging and has generated interest among cancer scientists and neurobiologists, involved a mouse model. Any potential application of this research to the diagnosis and treatment of people will take considerably more effort.

“I want to stress that the evidence for the link between stress, NETs, and cancer is from mouse studies,” Egeblad explained. “We will need to design human studies to know for sure whether the link also exists for humans.”

Still, Egeblad hopes that eventually reducing stress or targeting NETs could be options to prevent metastatic recurrence in cancer survivors. “One major challenge is that a cancer diagnosis by itself is incredibly stressful,” she explained. The results of these experiments have attracted considerable attention in the scientific community, where “there is a lot more to learn!” 

Three part confirmation

When she was a postdoctoral researcher, He removed neutrophils from the mice using antibodies. Neutrophils, which are cells in the immune system, produce the NETs when they are triggered by the glucocorticoid stress hormone.

She also injected an enzyme called DNAse to destroy NETs in the test mice. The former CSHL postdoctoral researcher also used genetically engineered mice that didn’t respond to glucocorticoids.

With these approaches, the test mice developed metastasis at a much lower rate than those that had intact NETs. In addition, chronically stressed mice who didn’t have cancer had NETs that modified their lung tissue.

“Stress is doing something to prepare the organs for metastasis,” said He.

Linda Van Aelst, CSHL Professor and a collaborator on the study, suggested that this work validates efforts to approach mental health in the context of cancer.

“Reducing stress should be a component of cancer treatment and prevention,” Van Aelst said in a statement.

After He removed the primary tumor in the mouse models, the stressed mice developed metastatic cancer at a four-fold higher rate than the mice who weren’t stressed but who also previously had cancer.

The CSHL scientists primarily studied breast cancer for this work.

He appreciated the help and support from her colleagues at CSHL. “To really understand the mechanism” involved in the connection between stress and cancer, “you need a mouse model in the lab, an expert in neuroscience and an expert in the cancer field,” she said.

As a neuroscientist, Van Aelst offered suggestions and comments and helped He conduct behavioral tests to determine a mouse’s stress level. The work for this project formed the focus ofHe’s postdoctoral research, which started in 2016 and ended in 2023.

The link between stress and cancer is receiving increasing attention in the scientific community and has attracted attention on social media, He said.

CSHL “provided a great environment to perform all these experiments,” said He. The numerous meetings CSHL hosts and the willingness of principal investigators across departments made the lab “one of the best places” for a postdoctoral scientist.

“If you need anything from a neural perspective or a technical perspective, you can always find a collaborator” at CSHL, He added.

Born and raised in Nanjing, China, He enjoyed living on Long Island, visiting vineyards and trying to explore every state park. In the harbor, He caught blue crabs while her husband Chen Chen, who was a postdoctoral researcher at CSHL in the lab of Camila dos Santos, went fly fishing at Jones Beach.

In her current research, where she manages a lab that includes a senior scientist, a postdoctoral researcher and an undergraduate, He is extending the work she did at CSHL to colorectal cancer, where she is also analyzing how stress affects the spread of cancer.

“When you’re stressed, you can develop gastrointestinal problems, which is why I wanted to switch from breast cancer to colorectal cancer,” she said.

Extensions of the work

As for context for the research at CSHL, Egeblad wrote that doctors treating patients where the known risk of recurrence is high might use NETs in the blood as a biomarker.

The scientists think cancers that tend to metastasize to the liver, lung or spleen are the strongest candidates to determine the effect of NETs and stress on cancer.

“We have not seen any effects of targeting NETs for metastasis to the bone or the brain in our mouse model and similarly, the studies that have linked NETs to metastasis in human patients have mostly been cancer that has spread to the liver or the lung,” Egeblad said.

Egeblad appreciated the “fantastic job” He did on the work and described her former researcher as being “fearless.”

“She found that stress increased metastasis early in her project but it was a lot of work to discover it was the NETs that were responsible and to conduct studies to ensure that the results were applicable to different types of cancer,” Egeblad explained.

While the two researchers have gone to different institutions and are leading other lab efforts, Egeblad said she’d be happy to collaborate with her former student, who shares the same sense of humor.

Egeblad recalled how He ended her talks by telling the audience that her results showed that Egeblad should give her a “long vacation.”

“I think indeed that she has deserved one after all this work!” Egeblad offered.

Georgios Moutsanidis, Photo by Ram Telikicherla

By Daniel Dunaief

In the best of times, water provides a serene background, offers an escape from searing summer heat, serves as a livelihood for the fishing industry, and supports a range of aquatic life that shimmers just below the surface.

In the worst of times, that same water can threaten communities that line coasts, bringing a powerful surge of destructive force that takes lives and destroys homes, buildings and infrastructure.

Recently, Georgios Moutsanidis, Stony Brook University Assistant Professor in the department of Civil Engineering, received a $500,000, five-year Faculty Early Career Development grant from the National Science Foundation to conduct research that could increase the resilience of coastal structures.

Rigoberto Burgueño, who is the chairman of the Civil Engineering department and who helped recruit Moutsanidis to Stony Brook in 2020, is pleased with the recognition from the NSF.

It is “one of the highest achievements for an individual investigator in terms of their potential as future leaders in their field and future mentors and teachers,” Burgueño said. The prestige from the award “will provide opportunities and bigger audiences to communicate his findings and his work.”

Amid climate change, the need for efforts to improve resilience from a range of water-driven forces increases, as rising sea levels encroach on coastlines and stronger storms driven by higher ocean temperatures threaten buildings and infrastructure.

“What we are trying to do with this project is to develop state-of-the-art computational tools that engineers and other researchers will use to incorporate in their work and study the resilience of structures against extreme hydrodynamic events” such as storm surges and tsunamis, said Moutsanidis.

Engineers, city planners and builders have used what Moutsanidis described as mostly outdated empirical models to test the resilience of structures. Moutsanidis, however, hopes to enhance those models by taking a physics-based numerical approach to understanding the damage a surge of water could do to various structures.

Moutsanidis is using established and well-known equations. He will contribute to solving them more accurately and efficiently.

Other models “could simulate water hitting a structure, but they were unable to capture the detailed response of the structure, with cracks, fractures, fragmentation and collapse,” Moutsanidis said. He hopes the new computational methods he will develop will predict the type and extent of damage more accurately.

The model he plans to create, with the help of graduate students he will hire who will use new high-performance computers he expects to use the funds to purchase, can address site-specific features of an area that would affect the likely speed, amount and force of any water surge.

Burgueño described Moutsanidis as being “at the forefront of very advanced computational simulations that take into account interactions of water with a structure.”  

By generating better estimates of the actual loads imposed on a structure, “we will be better prepared as engineers to either strengthen existing structures or to design future ones better,” Burgueño said.

Checking his work

While the information he’s using to construct these models relies on physics and deploys established equations, the Stony Brook Assistant Professor and his students will perform verification and validation. They will compare their results with existing experimental data and other computational approaches.

In addition, Moutsanidis’s lab will conduct experiments in a flume, which is a water tank in which he can vary the amount and speed of water approaching models of coastal communities. With a high-speed camera, he can evaluate how these simulated structures respond. In buildings that might collapse or fracture, he can test a slightly different fortified design, run a similar analysis and determine if the modifications led to a better outcome.

At this point, Moutsanidis has completed a proof of concept article in the journal Engineering with Computers, where he demonstrated the idea and the equations he’s solving. He hopes to produce a useful package that engineers and the public can use within the next four to five years, which he will release through an open source platform such as GitHub.

Moutsanidis is “very eager to start this work” as storm surges, flooding and tsunamis threaten coastal communities every year.

Larger context and other projects

In the bigger picture, Moutsanidis seeks to use computational methods and software to solve problems of engineering driven by physics. He has also worked in the aerospace community, studying the interaction of solids with hypersonic flow.

The goal is to “design more efficient aerospace vessels” that can withstand high temperatures and pressure as they travel five times the speed of sound or more, he said. The temperature is so high that the air undergoes a chemical reaction.

Moutsanidis has also worked with the impact of blast waves on structures, simulating the response to the shock wave or blast.

The goal is to make structures “more resilient or resistant to extreme events” such as a terrorist attack or an accident that triggers an explosion.

From Karditsa to Queens

Born and raised in a small town in the center of Greece called Karditsa, Moutsanidis is the son of two engineers. “In my early childhood, I was influenced by them, but I chose a different engineering path,” he said.

Moutsanidis, who completed postdoctoral research at Brown University before joining Stony Brook, lives in Queens. 

Moutsanidis is impressed with the students at Stony Brook, whom he described as “very engaged.” As for his work, he explained that his field is “quite competitive” and he was surprised and pleased to receive this award.

By Daniel Dunaief

Eating machines even more focused than teenagers approaching a stocked refrigerator, snakes slither towards foods other animals assiduously avoid.

In a recent and extensive study of snakes using the genetics, morphology and diet of snakes that included museums specimens and field observations, a team of scientists including Pascal Title, Assistant Professor in the Department of Ecology & Evolution at Stony Brook University, showed that the foods skin-shedding creatures eat as a whole is much broader than the prey other lizards consume.

At the same time, the range of an individual snake’s diet tends to be narrower, marking individual species as more specialized predators, a paper recently released for the cover of the high-profile journal Science revealed.

“If there is an animal that can be eaten, it’s likely that some snake, somewhere, has evolved the ability to eat it,” Dan Rabosky, senior author on the paper and curator at the Museum of Zoology and Professor of Ecology and Evolutionary Biology in the College of Literature, Science and the Arts at the University of Michigan, explained in a statement.

The research, which explored the genetics and diets of snakes, suggested that snakes evolved up to three times faster than lizards, with shifts in traits associated with feeding, locomotion and sensory processing.

“This speed of evolution has let them take advantage of new opportunities that other lizards could not,” Rabosky added. “Fundamentally, this study is about what makes an evolutionary winner.”

No singular physical feature or characteristic has enabled snakes to specialize on foods that are untouchable to other animals.

“It seems to be a whole suite of things” that allows snakes to pursue their prey, Title speculates.

One unique aspect of many advanced snakes is that they have more mobile elements in their skulls. Rock pythons can stretch their jaw around enormous prey, making it possible for them to swallow an entire antelope. Garter snakes, meanwhile, can eat Pacific newts that have a high concentration of a neurotoxin. Snakes also can eat slugs and snails that have evolved a defensive ability to secrete toxins.

A change to textbooks

Title, who is the co-lead and first author on the paper, suggested that the comprehensive analysis of snakes, particularly when compared with lizards, will likely change the information that enters textbooks.

“I think the analysis of lizard and snake diets in particular could potentially enter herpetology textbooks because diet is such a fundamental axis of natural history and because the visuals are so clear,” Title said. He doesn’t believe an analysis of dietary resolution that encompasses snakes and lizards has been shown like this before.

With a few exceptions, the majority of lizards eat terrestrial arthropods. Snakes have expanded into eating not only invertebrates, but also aquatic, terrestrial and flying vertebrates.

“They have absolutely evolved the ability to prey on semi-aquatic and aquatic prey,” said Title.

Title and his collaborators gathered considerable amounts of sequence data from GenBank. They also collected data from samples and specimens in the literature.

“Our dataset involves specimen-based data from museum collections that span the globe over the better part of the last century,” he explained.

The project started with the realization that several authors were generating high-quality sequence data for separate projects from biodiversity hotspots for lizards and snakes, such as in Australia, Brazil and Peru. The researchers realized that combining their data provided unprecedented coverage.

After Title completed his PhD at the University of Michigan, he took a leading role in building the phylogeny and conducting many of the analyses.

Indeed, the list of coauthors on this study includes 19 other scientists from the United States, the United Kingdom, Australia, Brazil and Finland.

As for his work, Title is broadly interested in the ecological/ environmental/ geographic/ evolutionary factors that lead to different species richness. He is not restricted to lizards and snakes.

“I do think snakes are unbelievable,” he said. “I’ve seen sidewinder rattlesnakes flip segments of their body forward across the sand in California, I’ve seen snakes climb straight up trees and walls, I’ve seen long, skinny snakes carefully navigate tree branches, and I’ve seen semi-aquatic snakes swim with their head above water. It’s mesmerizing.”

‘Snakes are cool’

Co-lead author Sonal Singhal, Assistant Professor in Biology at California State University, Dominguez Hills, met Title when she was a PhD student and he was an undergraduate at the University of California, Berkeley.

Singhal is excited that readers can “learn cool facts about snakes from our paper,” she explained. “Research papers don’t always inspire a sense of wonder in the reader.” She hopes people “walk away from this study thinking that snakes are cool.”

Singhal suggested that Title is leading a group of collaborators to create a package that will enable other researchers to download the data from this paper quickly and easily and use it in their own work.

As a whole, snakes are moving around in their diet space at a much more rapid clip than lizards in general, Title suggested.

While snakes have evolved rapidly over short periods of time, it’s unclear how these creatures are responding to changes in the environment on smaller time scales, such as through what’s currently occurring amid climate change.

The scale, Title explained, is different, with climate changes affecting the world over decades and centuries, while snake evolution, particularly regarding specialized diets, transpired over the course of millions of years.

Grad school encounter

Title, who lives in East Setauket, met his wife Tara Smiley when both of them were graduate students.

An Assistant Professor in the Department of Ecology & Evolution at Stony Brook University, Smiley is a paleoecologist specializing in small mammals.

The couple enjoys taking their son Micah, who is almost three years old, on camping trips and spending time outdoors.

As for the paper scoring the coveted spot on the cover of Science, Title suggested the exposure validates “that lizards and snakes, and their natural history, are inherently intriguing to all sorts of people, regardless of whether or not they are trained biologists.”

He hopes the work will not only inspire young scientists to learn more about snakes and lizards, but also to seek to quantify and explore the different axes of biodiversity and to “appreciate the value of supporting natural history museum collections.”

———————————————————————————–Within a day of snake research published on the cover of Science last week, reports surfaced about the discovery of what may be the largest snake in the world. Scientists from the University of Queensland found a northern green anaconda in the Ecuadorian Amazon that was close to 21 feet long.

Pacal Title, Assistant Professor in the Department of Ecology & Evolution at Stony Brook University and first author on the recent Science paper, offered his thoughts in an emailed question and answer exchange about the anaconda, which was not a part of his recent research.

TBR: Is this a particularly compelling find?

Title: This is compelling as it provides an example of broadly distributed, large species of snakes having pretty significant genetic differentiation. There are quite a few examples, both within snakes and in other groups, where populations look superficially similar, but turn out to have been genetically independent of one another for quite a long time.

TBR: How does a discovery of what might be the largest snake in the world fit into the context (if at all) of your research? Does this species validate the radiative speciation you described?

Title: It shows that the number of known snake species is likely to be an under-estimate, although this is likely to be true for most groups out there. This fits well into the perspective that snakes have incredibly high global species diversity.

TBR: Do you have any guesses as to what the diet of this snake could be?

Title: The article describes anaconda diets as generally consisting of terrestrial vertebrate prey, despite the species being semi-aquatic.

TBR: What, if any, predators might pursue this snake?

Title: Jaguars have been known to prey on anacondas.

TBR: What scientific, life history, genetic or other questions would you address, if any, about this species?

Title: Now that the green anaconda is being considered as two separate species, all morphological, ecological and natural history attributes will need to be re-examined to evaluate whether or not the two species actually differ along any of these axes.

TBR: Is the ongoing attention snakes receive positive for the study of snakes?

Title: It is great that snakes are receiving positive attention. Such new studies are essential for conservation, and for the study of biodiversity and ecosystems.

From left, Prerana Shrestha, Sunghoon Kim (Postdoc), Andrew Gallagher (Research Support Specialist), Miura Traficante (SOAR Fellow, Summer undergrad researcher), Keith Yeung (Undergraduate researcher), Matthew Dickinson (PhD student), Saheed Lawal (PhD student), and Olivia Tabaka (MS student)

By Daniel Dunaief

An increasingly complex time filled with extreme stressors such as man-made and natural disasters creates conditions that can lead to post traumatic stress disorder.

PTSD, which can cause anxiety even amid safer conditions, can have adverse effects on the ability to enjoy life.

Prerana Shrestha

Stony Brook University Assistant Professor Prerana Shrestha, who joined the Department of Neurobiology and Behavior at the Renaissance School of Medicine in 2021, recently received a four-year $2.2 million grant from the National Institute of Mental Health to study the molecular mechanisms underlying stabilization of emotional memories in the brain, which is relevant for PTSD.

“Her work will help us understand how the brain stores these traumatic memories,” said Alfredo Fontanini, chair of the Department of Neurobiology and Behavior. “The tools she has developed really are making possible a series of experiments that, before, were impossible to think about.”

Shrestha hopes to develop a druggable target that could “block a key machine inside neurons that are relevant for traumatic emotional memories,” she explained.

Using a mouse model, Shrestha plans to understand the neural signature at the level of molecules, neurons, and neural circuits, exploring the creation and stabilization of these potentially problematic memories and emotional reactions through a multi-disciplinary study.

Shrestha has developed and applied chemogenetic tools to block a key part of the memory process inside neurons that store traumatic emotional memories.

By developing tools to explore neural circuits in particular areas of the brain, Shrestha can help scientists understand the molecular mechanism involved in PTSD, Fontanini said.

‘From the ground up’

In humans, memories from traumatic events are over consolidated, creating an excessive avoidance behavior that can be a debilitating symptom.

“We are trying to understand the neurological basis for why these memories are so robust,” Shrestha said. She is looking at “what can we do to understand the mechanism that supports these memories from the ground up.”

With her chemogenetic tools, Shrestha can block protein synthesis in specific neuron populations in a time period of a few hours. She is developing new tools to improve the precision of blocking the protein synthesis machinery from hours to minutes.

Shrestha is trying to weaken the salient emotional memory while leaving all other processes intact.

The Stony Brook Assistant Professor said she has methods to create a targeted approach that limits or minimizes any off target or collateral damage from inhibiting the synthesis of proteins.

“Up until now, whenever scientists wanted to study the role of the synthesis of new proteins in memory formation” including those involved in the formation of aberrant memories such as those in PTSD, they had to “use drugs which would manipulate and affect protein synthesis everywhere in the brain,” said Fontanini.

The plan over the next four years is to understand and develop molecules to target cells in the prefrontal cortex, which, Shrestha said, is like the “conductor of an orchestra,” providing top-down executive orders for the brain.

She is focusing on neurons that interact specifically with the amygdala, which is the emotional center of the brain, exploring what happens in these streams of information between brain regions.

By increasing or reducing protein synthesis in the prefrontal cortex, Shrestha can see an enhanced or diminished avoidance response in her mouse experiments.

She is interested in how a memory is stabilized, and not as much in what is involved in its retrieval.

Shrestha works with inbred mice that are more or less genetically identical. Her experimental group has the transgenic expression of the chemogenetic tool to block protein synthesis and receive a drug after learning that triggers the tool to block the machinery from making new proteins.

When she introduces the inhibitor of protein synthesis, she found that the wave involved in stabilizing what the animal previously learned is finite in time.

Using a drug to block protein synthesis within an hour alters future behavior, with the animal showing little or no fear. Blocking protein synthesis after that hour, however, doesn’t affect the fear response.

In the first year of the grant, which started in December, Shrestha would like to send out some papers for publication based on the research her team members — postdoctoral researcher  Sunghoon Kim and graduate student Matthew Dickinson —  has already done. She also hopes to use some of the funds from this grant to hire another postdoctoral researcher to join this effort.

She has data on how the regulators of ribosomes are recruited in the prefrontal cortex, which stabilizes memories.

In other preliminary data, she has identified neurons in the prefrontal cortex that project into the amygdala that are selectively storing information for recent parts of emotional memory.

To be sure, while this research offers a potential window into the mechanisms involved in forming emotional memories in a mouse model, it is an early step before even considering any new types of diagnostics or treatment for humans.

Nepal roots

Born and raised in Kathmandu, Nepal, Shrestha received a full scholarship to attend Bates College, in Maine, where she majored in biological chemistry. She received a Howard Hughes Medical Institute fellowship for an internship at Harvard Medical school during her junior year. While preparing for a pre-medical track, she “got spoiled after getting a taste of research in my junior year,” she said. “The idea of trying something new for the first time and seeing how things work was so cool.”

Shrestha lives about eight miles west of Stony Brook and is married to Sameer Maskey, the founder and CEO of an advanced machine learning company called FuseMachines Inc. They have a nine-year old daughter and a two-year-old son.

As for her ongoing work, Shrestha is eager to combine her expertise with those of people from different backgrounds.  “It’s a fascinating time to combine molecular approaches,” she said. 

Fontanini, who helped recruit Shrestha, has been impressed with the work she’s done.

“She’s on an outstanding trajectory,” he said.

Katie Engel submitted a video of her spinning on the ice to demonstrate the work of Emmy Noether.

*This article was updated  Feb. 13 to reflect a change in the Jocelyn Bell Burnell lecture from Feb. 13 to Feb. 14 due to the weather.

By Daniel Dunaief

And the winner is … women in science! 

While Stony Brook University’s Institute for Advanced Computational Science (IACS) announced the winners of its inaugural challenge to celebrate the scientific and engineering achievement of women on Feb. 7, the organizers and participants feel like they’ve already come out ahead.

The inaugural competition, which 195 students kindergarten through 12th grade in schools on Long Island entered by submitting a one-minute video, included prizes for the 13 finalists. The winner received $1,000 prize, the runner up got $750 and the third-place finisher collected $500.

Marivi Fernández-Serra

“The goal of it was to celebrate the International Day of Women and Girls in Science, while simultaneously promoting the important role that women had in science in the last century,” explained Marivi Fernández-Serra, Professor in the Physics and Astronomy Department and at the Institute for Advanced Computational Science.

In their videos, the students selected one of nine scientists that included experiments showcasing the work of these researchers by using computers or household products to demonstrate the search for dark matter, explore the laws of conservation, create homemade telescopes, simulate a volcano with lava and many more.

Fernández-Serra, who had helped with a similar effort at the Institute for Theoretical Physics in Madrid, Spain, brought the idea for the competition to Mónica Bugallo, Professor of Electrical and Computer Engineering, Vice Provost for Faculty Affairs and Diversity, Equity and Inclusion and affiliated member of the IACS  Faculty Director of the Women in Science and Engineering Honors Program, who immediately supported it.

Fernández-Serra thought the competition might attract 10 entrants in its inaugural year while Bugallo, who reached out to Long Island schools to showcase the competition, was confident local students would embrace the opportunity.

“Wait for a tsunami of participants,” Bugallo said she told Fernández-Serra, with whom she’s been a colleague and friend for years. “I was not surprised” by the contributions from the 103 teams, which included entrants from individual students and groups of as many as three students.

Bugallo, who recommended computer scientists Grace Hopper and mathematician and writer Ada Lovelace as important scientists for the competition, was impressed with the student effort.

“It was extremely tough to come up with the finalists,” said Bugallo.

Stony Brook plans to share the videos from the finalists after naming the winners.

Figure skating and conservation

One of the finalists, Katie Engel, a senior at Cold Spring Harbor High School, chose to demonstrate the work of Emmy Noether.

A German mathematician, Noether contributed to theoretical physics and abstract algebra. A theorem named after her, the Noether Theorem, explains that any continuous symmetry in a system has an associated conservation law. That helps explain how the speed of someone spinning in a chair changes depending on how far their arms re-extended.

Mónica Bugallo

An ice skater since she was six who is also interested in studying computer science or engineering, Engel had never heard of Noether but was intrigued with the physics and with the person who helped discover ways to characterize it.

In her entry, Engel explained the mathematical principals on a white board and then recorded a video of herself spinning on ice. When she learned about Noether’s life, Engel discovered that Noether was an important contributor to her field, despite some resistance to her work from men. “Reading about her stories is really inspiring,” said Engel.

Engel is stunned at the conclusions Noether reached with the tools at her disposal.

Currently working as an intern for Peter Koo at Cold Spring Harbor Laboratory, Engel suggested she is committed to pursuing her interest in science, technology, engineering and math fields during and after college.

Engel was also a member of the robotics team at Cold Spring Harbor High School that won the regional conference and went to the World Championships in Houston last year. In robotics, Engel said the number of girls on the team declined from 10th through 12th grades. 

She is, however, heartened to learn that 180 boys and 200 girls attended a recent research fair at her school.

New teaching tools

Fernández-Serra and Bugallo are hoping that teachers at all levels can use the videos to inspire students and help them connect with scientists whose contributions continue to resonate with current researchers. The purpose of activities like the competition is to “spark interest, so students want to investigate more,” said Bugallo.

Stony Brook plans to build on this experience in future years through either similar efforts or ongoing programs or initiatives. “Our intent was to have these challenges year after year if this was successful, and it obviously was,” said Bugallo.

In the immediate future, Fernández-Serra encourages students in the area to attend the upcoming talks given by University of Oxford astrophysicist Jocelyn Bell Burnell, who discovered the pulsar, as a part of the Della Pietra lecture series at the Simons Center for Geometry and Physics on Stony Brook University’s West Campus from February 13 through Feb. 15.

Bell Burnell is giving a general public lecture on Feb. 14 at 5 p.m., with a reception at 4:15 p.m. in the Simons Center Lobby. The lecture will also be livestreamed at scgp.stonybrook.edu/live.

Bell Burnell will also offer a special talk for high school students titled You Are Made of Star Stuff! on Feb. 15 at 11 a.m. that examines how and where elements in the human body were created in the cosmos. Both lectures will be held in the Della Pietra Family Auditorium (room 103).

A curiosity outside the classroom

For scientists, what they learn and study often stays with them long after they finish an assignment or submit or publish a paper.

Fernández-Serra, who studies the fundamental properties of liquid water using quantum mechanical simulations, thinks about how amazing water atoms are that are holding her when she swims.

As for Engel, thoughts of Noether will stay with her when she figure skates. “I probably can’t do a spin without thinking about her,” she said.

Heroes with staying power

For Fernández-Serra, Mildred Dresselhaus, one of the celebrated scientists of the past who was a part of the contest, was a “number one hero” in condensed matter physics.

Called the “Queen of Carbon,” Dresselhaus earned numerous awards, including the Presidential Medal of Freedom and the National Medal of Science and Engineering.

“She was a positive and brilliant scientist who never lost her enthusiasm and curiosity,” Fernández-Serra explained.

Stony Brook’s IACS team hopes this competition, the Bell Burnell lecture, and other efforts ignite such enthusiasm in the next generation of STEM students.

The new species named, Booralana nickorum, may play a crucial role in maintaining the health of the ecosystem. Photo courtesy of OceanX

By Daniel Dunaief

Oliver Shipley recently shared one of the mysteries of the heavily photographed but lightly explored deep sea areas near the Bahamas’ Exuma Sound.

Oliver Shipley

A Research Assistant Professor at Stony Brook University, Shipley and his colleagues published a paper in the journal Zootaxa describing a new species of isopod they named Booralana nickorum.

A few inches long, this isopod, which was found at a depth of about 1,600 feet, sheds light on some of the mysteries in these waters, offering a glimpse into areas mostly too deep for sunlight to penetrate.

“The level of knowledge on deep sea biodiversity anywhere in the Caribbean is very poor,” said Shipley. The scientists were specifically studying the biomass housed areas around The Exuma Sound.

In the Bahamas, the researchers are interested in preserving species biodiversity and identifying links between the shallow and deep-sea ecosystems, which can inform management of marine resources and help conserve biodiversity.

Shipley suggested it was “exciting” and, perhaps, promising that this area has already produced two isopods that are new species, both of which he described with low-cost technologies deployed off small boats.

“We haven’t even genetically sequenced 95 percent of the creatures that we’ve captured” which includes fish and sharks, Shipley said.

Brendan Talwar, a co-author on the paper describing the isopod and a Postdoctoral Scholar at Scripps Institution of Oceanography at UC San Diego, added that “this discovery is representative of the lack of knowledge” in this area. “You can swim from one environment, where almost every species is known or has been studied, to a place where almost nothing is known and almost nothing is studied.”

Finding new species could have numerous benefits, including in the world of drug discovery. To be sure, such findings require “many years of work and analysis” he said.

Still, such a possibility for future benefits exist, particularly as researchers catalog and study these creatures.

In the meantime, understanding individual species and the ecosystems in which they live can reveal information about how, depending on the biomass of various species, different places affect the cycling of gases such as carbon dioxide.

“When you find high biomass of a new species, it could have potentially huge implications for mitigating climate change,” said Shipley. “We have a primitive understanding of the Caribbean deep sea ecosystem. We don’t know the full effects or benefits and services of organisms that live in the deep ocean environment.”

In addition to finding organisms that might provide various benefits, scientists are also hoping to understand the “food web dynamics of the eastern Bahamas,” said Talwar.

Long road to identification

Shipley first saw an individual of this isopod species in 2013. Over time, he has since identified numerous other individuals.

Dorsal views of the newly described Booralana nickorum on left and previously known Booralana tricarinata highlight distinguishing characteristics between the two species. Image courtesy of Oliver Shipley

The region in which Shipley identified this isopod has several potential food or energy sources. The deep sea area is in close proximity to shallower sea grass beds, which are closer to the surface and use light to generate food and energy through photosynthesis.

The tides and currents wash that sea grass into the deeper territory, sending food towards the deeper, darker ocean.

Energy also likely comes from coral reef productivity as reefs line the edge of the drop off.

Additionally, animals that traverse the shallower and deeper areas, whose poop and bodies sink, can provide food sources to the ecosystem below.

“There may be multiple sources of productivity which combines to promote a high level of biodiversity” in the ecosystem below, said Shipley.

The isopod Shipley and his collaborators identified lives in a pressure that is about 52 times the usual atmospheric pressure, which would be extremely problematic for organisms like humans. Isopods, however, have managed to live in most major ecosystems around the planet, including on mountains, in caves and in the deep sea.

“There’s something about that lineage that has supported their ability to adapt to a variety of environments,” said Shipley.

To bring the creatures back to the surface for study, researchers have used deep sea traps, including crustacean and eel traps, that are attached to a line. People working on boats then retrieve those traps, which can take one to two hours to pull to the surface. 

When they are brought to the surface, many animals suffer high mortality, which is a known sensitivity of deep-sea fisheries.

“We must gain as much knowledge as possible from each specimen,” Shipley explained

Scratching the surface, at depth

Talwar and Shipley have each ventured deep into the depths of The Exuma aboard a submersible.

The journey, which Talwar described as remarkably peaceful and calm and akin to an immersive aquarium experience, is “like a scavenger hunt,” he said.

When scientists or the sub pilot see a new species of sea cucumber, the pilot can move the sub closer to the organism and deploy the manipulator arm to store it in a collection box. Shipley and others hope to explore deep sea creatures under conditions akin to the ones in which they live in high pressure tanks on land.

Talwar described Shipley as “an extremely productive scientist” who works “incredibly hard.” Talwar also appreciates how Shipley will put collaborative projects at the top of his list, which is “fairly unique in a field where people are so busy with their own stuff.”

Shipley, who lives in Austin, Texas with his girlfriend Alyssa Ebinger, explained that researchers are pushing to support scientific leadership by Bahamians to conserve marine resources threatened by climate change.

Looking under rocks

As a child, Shipley, who grew up in York, England, spent about three years in Scotland, where they spent time at a beach called Trune.

“I remember looking in rock pools, picking up stuff and inspecting it,” he said. He was naturally inquisitive as a child.

While Shipley enjoys scuba diving and is a committed soccer fan — his favorite team is Leeds United — he appreciates the opportunity to build on his childhood enthusiasm to catalog the unknowns of the sea. He’s so inspired by the work and exploration that it “doesn’t feel like a job,” he said. He’s thrilled that he gets paid “to do all this exciting stuff.”

 

Evan Musterman with lead SRX beamline scientist Andrew Kiss at the SRX beamline. Photo by Kevin Coughlin/Brookhaven National Laboratory

By Daniel Dunaief

When he took over to lead the sub micron resolution X-ray spectroscopy, or SRX, beamline at Brookhaven National Laboratory on January 1, 2020, Andrew Kiss expected to balance between improving the machinery and helping visiting scientists use it. The pandemic, however, altered that balance.

BNL received components for the beamline in December 2019, when the researchers were going to try to take a fraction of the available x-ray time to install and commission it, all while still running experiments. The pandemic, however, kept scientists from visiting the site. That meant Kiss and his colleagues could dedicate more time to technical enhancements.

“Since the pandemic shut down the user program, this gave us an opportunity to focus all of our time on the new equipment” that visiting researchers could tap into when they returned, he explained in an email.

The beamline, which postdoctoral researcher Evan Musterman is enhancing further with diffraction techniques to reveal information about strain (see related story here), is in high demand. During the current cycle, 324 researchers applied for beamline time, while 99 time slots were allocated.

Scientists have a range of ways of discovering which beamline might best suit their research needs, including word of mouth. Kiss has had conversations with researchers who describe how they read something in a research paper and have similar goals.

Scientists “usually have a good idea of what instrument/ facility to use and why it is good for their research so informal conversations at conferences and seminars can be very useful,” Kiss said.

Most of Kiss’s time is dedicated to ensuring the stability and reliability of the beamline, as well as extending its capabilities to scan larger regions with less overhead, he explained.

“All of this is to help the researchers that come to the beamline, but my hope is that with this baseline of reliable and fast data acquisition, I can focus more on scientific topics such as metal additive manufacturing,” Kiss wrote.

With the SRX, Kiss can explore applied questions related to corrosion effects or how a material is modified by exposure to different gases, liquids or other parameters.

Working at the beamline has given Kiss an unusual perspective outside the lab. A few years ago, he received a notification about a recall on baby food he purchased that could have elevated levels of something unhealthy in it. His second thought, after making sure he didn’t give any to the child, was to wonder how much was in the food and if he could measure it. Before he could bring it to the lab, the contaminated food was already taken away with the garbage.

Kiss enjoys his work and suggested that the field attracts a “certain type of person and, once you are there, it is tough to pull yourself away from the instrument and the community of researchers around you,” he explained.

In addition to making basic discoveries in fields such as materials science, Earth science and biological sciences, the SRX beamline has played an important role in studies that have affected public policy.

Indeed, a study in 2022 showed that veterans who worked in Iraq and Afghanistan near burn pits had oxidized particles of iron and titanium in their lungs. “This is not direct evidence it came from a burn pit, but these were not seen in healthy lungs,” Kiss said. Only a few places in the world had the kind of machinery with a bright enough source and high enough resolution to discover these particles.

Kiss and collaborators from other laboratories, universities and medical institutions appreciated the opportunity to have a “positive impact on these soldiers’ lives by providing the measurements to get them help,” he said. The discovery of these elements in the lungs of veterans who lived near burn pits and suffered health consequences, which the study at SRX and other facilities helped demonstrate, led to the Pact Act, which President Joe Biden signed into law in 2022 and which provides $280 billion in federal funding for the health effects veterans suffer after exposure to such toxins.

SRX has high spatial resolution and is highly sensitive to trace concentrations for elemental mapping and chemical composition. SRX is an x-ray fluorescence microscope with “high spatial resolution and highly sensitive to trace concentrations for elemental mapping and chemical composition,” Kiss said. “If that can be used to help people’s lives, that is a wonderful thing.”

Evan Musterman at the SRX beamline. Photo by Kevin Coughlin/Brookhaven National Laboratory

By Daniel Dunaief

It’s everywhere, from holding the water we drink to providing a cover over the Norman Rockwell painting of “The Three Umpires” to offering a translucent barrier between our frigid winter backyards and the warm living room.

While we can hold it in our hands and readily see through it, glass and its manufacture, which has been ongoing for about 4,000 years, has numerous mysteries.

Indeed, given enough temperature and time, glass crystallizes. Controlling the process has been used to increase strength and chemical durability, tailor thermal properties and more over the last several decades.

Evan Musterman, who studied the way lasers served as a localized heat source to induce single crystal formation in glass when he was a graduate student at Bethlehem, Pennsylvania-based Lehigh University, joined Brookhaven National Laboratory in September as a postdoctoral researcher.

Musterman, who received funding for nine months at the end of his PhD program through the Department of Energy’s Office of Science Graduate Student Research program when he was at Lehigh that enabled him to work at BNL, is adding scanning x-ray diffraction mapping as a more user-ready technique at the Submicron Resolution X-ray Spectroscopy beamline (or SRX) that he used as a graduate student. 

The beamline looks at x-ray fluorescence measurements, which provide information about the elemental distribution and chemical information, such as oxidation state and bond distances, in an experimental sample. The next component scientists are looking for is using diffraction to inform the crystal structure of the material and to gather information about strain, explained Andrew Kiss, the lead beamline scientist for the SRX.

Musterman hopes to build on the electron diffraction mapping he did during his PhD work when he studied the crystals he laser-fabricated in glass. X-rays, he explained, are more sensitive to atomic arrangements than electrons and are better at mapping strain.

Musterman’s “background in materials science and crystal structures made him an excellent candidate for a post-doc position,” Kiss said.

The SRX has applications in material science, geological science and biological imaging, among other disciplines. 

Glass questions

For his PhD research, Musterman worked to understand how glass is crystallizing, particularly as he applied a laser during the process. He explored how crystal growth in glass is unique compared with other methods, leading to new structures where the crystal lattice can rotate as it grows.

Musterman finds the crystallization of glass ‘fascinating.” Using diffraction, he was able to watch the dynamics of the earliest stages after a crystal has formed. In his PhD work, he used a spectroscopy method to understand the dynamics of glass structure before the crystal had formed.

Musterman started working at the SRX beamline in June of 2022. He was already familiar with the beamline operation, data collection and types of data he could acquire, which has given him a head start in terms of understanding the possibilities and limitations.

In his postdoctoral research, he is developing diffraction mapping and is also finishing up the experiments he conducted during his PhD.

Himanshu Jain, Musterman’s PhD advisor at Lehigh who is Professor of Materials Science and Engineering, was pleased with the work Musterman did during his five years in his lab. Jain sees potential future extensions and applications of those efforts.

Musterman’s research “forms a foundation for integrated photonics, which is expected to revolutionize communications, sensors, computation and other technologies the way integrated circuits and microelectronics did 50-60 years ago,” Jain explained in an email. The goal is to “construct optical circuits of single crystal waveguides in a glass platform.”

Musterman’s work “showed details of these optical elements made in glass by a laser,” he added.

Jain, who is an alumnus of BNL, indicated that his lab is continuing to pursue the research Musterman started, with his former graduate student as a collaborator and guide.

Musterman appreciates the opportunity to work with other scientists from different academic and geographic backgrounds. In addition to working with other scientists and helping to refine the functionality of the SRX beamline, he plans to continue glass and glass crystallization research and their interactions with lasers. As he refines techniques, he hopes to answer questions such as measuring strain.

As glass is heated, atoms form an ordered crystalline arrangement that begins to grow. The nucleation event and crystal growth occurs at the atomic scale, which makes it difficult to observe experimentally. Nucleation is also rare enough to make it difficult to simulate.

Most theories describe crystal nucleation and growth in aggregate, leaving several questions unanswered about these processes on single crystals, Musterman explained.

As they are for most material processing, temperature and time are the most important factors for glass formation and glass crystallization.

Historically, studies of glass structure started shortly after the discovery of x-ray diffraction in 1913. In the 1950’s, S. Donald Stookey at Corning discovered he could crystallize glass materials to improve properties such as fracture resistance, which led to a new field of studies. Laser induced single crystal formation is one of the more recent developments.

Musterman and his colleagues found that laser crystallization does not always produce the same phase as bulk crystallization, although this is an active area of research.

Musterman created videos of the earliest stages of crystal growth under laser irradiation by direct imaging and with electron and x-ray diffraction.

Kiss anticipates that Musterman, who is reporting to him, will build infrastructure and understanding of the detection system in the first year, which includes building scanning routines to ensure that they know how to collect and interpret the data.

Once Musterman demonstrates this proficiency, the beamline scientists believe this expanded technical ability will interest scientists in several fields, such as materials science, energy science, Earth and environmental science and art conservation.

Pitching in with former colleagues

While Musterman is not required to work with other beamline users, he has helped some of his former colleagues at Lehigh as they “try to get their best data,” he said. He has also spoken with a scientist at Stony Brook University who has been collecting diffraction data.

A native of Troy, Missouri, Musterman lives in an apartment in Coram. When he was younger, he said science appealed to him because he was “always curious about how things worked.” He said he frequently pestered his parents with questions.

His father John, who owns a metal fabrication and machining business, would take various ingredients from the kitchen and encourage his son to mix them to see what happened. 

As for the future, Musterman would like to work longer term in a lab like Brookhaven National Laboratory or in industrial research.

Jin Koda and Amanda Lee at the recent 243rd annual meeting of the American Astronomical Society in New Orleans. Photo by Jenny Zhang

By Daniel Dunaief

Hollywood is not the only place fascinated with the birth of stars. Indeed, researchers at Stony Brook University, among many other academic institutions, have focused considerable time, energy and effort into understanding the processes that lead to the creation of stars.

Astronomers had tried, unsuccessfully, to detect molecular clouds in the galaxy outskirts, which is how stars form in the inner part of galaxies.

About 18 years ago, a NASA satellite called GALEX discovered numerous newly formed stars at the edges of a spiral galaxy M83, which is 15 million light years from Earth. 

Leading an international team of scientists, Jin Koda, Professor in the Department of Physics and Astronomy at Stony Brook University, together with his former undergraduate student Amanda Lee, put together data and information from a host of sources to describe how these stars on the outer edge of the galaxy formed.

Their work demonstrated star-forming molecular clouds in this outer area for the first time.

“These molecular clouds at the galaxy edge are forming stars as much as the molecular clouds in normal parts of galaxies” such as molecular clouds around the sun, Koda explained.

Before their discovery, Koda said astronomers had considered that new-born stars at galaxy edges could have formed without molecular clouds.

Koda recently presented this work at the 243rd annual meeting of the American Astronomical Society in New Orleans.

Indeed, partnering with scientists from the United States, Japan, France and Chile, Koda, who is the Principal Investigator on the study, and Lee found evidence of 23 of these molecular clouds on the outskirts of the M83 galaxy.

Combining data from a host of telescopes for this research, Koda and Lee found “higher resolution than before,” Lee said. “We could see a peak of atomic hydrogen in that region, which we didn’t know before.”

While helium also exists in the molecular clouds in the galaxy edges as well as in the atomic gas and in stars, it does not emit light when it’s cold, which makes its signature harder to detect.

Scientists are interested in “why we weren’t able to detect these molecular clouds for such a long time,” Lee said. “We ended up using a different tracer than what is normally used.”

The group came up with a hypothesis for why the molecular clouds were difficult to find. Carbon monoxide, which typically helps in the search for such clouds, is dissociated in the large envelopes at the galaxy edges. Only the cores maintain and emit this gas.

A collaboration begins

When Lee, who grew up in Queens, started at Stony Brook University, she intended to major in physics. In her sophomore year, she took an astronomy class that Koda taught.

“I was very interested in studying galaxies and the evolution of galaxies,” Lee said.

After the course ended, she started working in Koda’s lab.

“Her tireless efforts made her stand out,” Koda explained in an email. Koda appreciates how speaking with students like Lee helps him think about his research results.

Lee is “particularly good at identifying and asking very fundamental questions,” he added.

At one point about two years before she graduated in 2022, Lee recalled how Koda shared a picture of M83 and described the mystery of star formation at the outskirts of galaxies.

Two years later, by delving into the data under Koda’s supervision, she helped solve that mystery.

“I didn’t know my work would end up contributing to this project,” Lee said. “It’s really exciting that I was able to contribute to the big picture of star formation” in distant galaxies.

Since graduating from Stony Brook, Lee has been a PhD student for the last year and a half at the University of Massachusetts at Amherst.

At this point, Lee is still working towards publishing a paper on some of the work she did in Koda’s lab that explores the formation of stars in the inner disk of M83.

“Broadly,” she said, the two research efforts are “all related to the same picture.”

For her part, Lee was pleased with the opportunity to work with such a geographically diverse team who are all contributing to the goal of understanding star formation.

Future focus

The area they observed is relatively small and they would like to see more regions in M83 and other galaxies, Koda explained.

Finding so many molecular clouds at once in the small region “encourages us to hypothesize that the process is universal,” although scientists need to verify this, Koda said.

The researchers also discovered more atomic gas than they would expect for the amount of molecular clouds. A compelling discovery, this observation raised questions about why this abundant atomic gas wasn’t becoming molecular clouds efficiently.

“We need to solve this mystery in future research,” Koda explained. He is pleased with the level of collaboration among the scientists. “It’s very interesting and stimulating to collaborate with the excellent people of the world,” he said.

A resident of Huntington, Koda grew up in Tokyo, where he earned his bachelor’s, master’s and PhD degrees. When he moved to the United States, Koda conducted post doctoral studies for six years at Cal Tech. 

About 15 years ago, he moved to Stony Brook, where he replaced Professor Phil Solomon, who was one of the pioneers of molecular cloud studies in the Milky Way galaxy.

Science appeals to Koda because he is “interested in how things work, especially how nature works,” he said.

In this work, Koda suggested that the molecular clouds have the same mass distribution as molecular clouds in the Milky Way, indicating that star formation is the same, or at least similar, between the Milky Way and galaxy edges.

Koda made the discovery of the molecular clouds and the hypothesis about the carbon monoxide deficient cloud envelope in 2022. Since then, he and his team have obtained new observations that confirmed that what they found were the “hearts of molecular clouds,” he said.

James Konopka. Photo by Susan Watanabe

By Daniel Dunaief

Most of the time, the fungus Candida albicans, which is ubiquitous on the skin, inside people’s mouths, throat, and guts, among other places, doesn’t cause problems. It can, however, be an opportunistic infection, particularly in people who are immunocompromised, leading to serious illness and even death.

Antifungal infections work best during the early stage of an infection. Once a severe infection becomes established, it responds less well to drugs, as resistance can become a problem.

James “Jamie” Konopka, Professor in the Department of Microbiology and Immunology in the Renaissance School of Medicine at Stony Brook University, is working to find the mechanism that enables C. albicans to resist attack by the immune system. His long term goal is to identify ways to make the fungus more vulnerable to immune defenses.

In a paper published recently in the journal mBio, which is published by the American Society of Microbiology, Konopka identified the mechanism by which hypochlorous acid, which is produced by cells in the immune system, attacks C. albicans.

He expanded this by testing forms of the fungus that lack specific genes. These mutants can be more vulnerable to attack by hypochlorous acid, which is produced by neutrophils and is also called “human bleach.” Longer term, Konopka hopes to find ways to sensitize the fungus to this acid, which would bolster the ability of the immune system to respond to an infection.

His study showed that hypochlorous acid disrupts the plasma membrane, which is a layer of lipids that surround the cell. Once this is breached, parts of the cell leak out, while more bleach can damage the fungus.

Hypochlorous acid reacts with proteins, lipids and DNA.

The activated immune system produces several chemicals known as “reactive oxygen species.” In some cells, particularly neutrophils, hydrogen peroxide is converted into hypochlorous acid to strengthen and diversify the attack.

To be sure, the discovery of the mechanism of action of hypochlorous acid won’t lead to an immediate alternative therapeutic option, as researchers need to build on this study.

Future studies will examine how some genes promote resistance, and which are likely to be the most promising targets for drug development, Konopka explained.

Increase sensitivity

These are C. albicans cells growing invasively into tissue in a mouse model of an oral infection. The candida hyphae are stained black, and the tissue is stained a blue/green. Image from James Konopka

Konopka suggested that increasing the sensitivity of the fungus to hypochlorous acid would likely prove more effective and less potentially toxic than increasing the amount of the acid, which could also damage surrounding tissue.

“Our idea is to sensitize fungal pathogens” to hypochlorous acid “rather than upping the dose of bleach, which could lead to negative consequences,” Konopka said. Ideally, he’d like to “take the normal level and make it more effective” in eradicating the fungus.

Other scientists funded by the National Institutes of Health created a set of about 1,000 different strains of the fungus, which provides a valuable resource for Konopka and others in the scientific community.

In a preliminary screen of plasma membrane proteins, Konopka and his team found that most of the mutants had at least a small increase in sensitivity. Some, however, had stronger effects, which will guide future experiments.

One of the challenges in working with a fungus over pathogens like bacteria or viruses is that fungi are more closely related biologically to humans. That means that an approach that might weaken a fungus could have unintended and problematic consequences for a patient.

“Although they may look very different on the outside, the inner workings of fungi and humans are remarkably similar,” Konopka explained in an email. This has made it difficult to find antifungal drugs that are not toxic to humans.

An ‘overlooked’ ally

Konopka suggested that scientists have been studying hydrogen peroxide, which is also made by immune system combatants like macrophages and neutrophils.

“It seemed to us that somehow bleach had been overlooked,” Konopka said. “It hadn’t been studied in the fungal world, so we launched” their research.

Konopka also believes the plasma membrane represents an effective place to focus his efforts on developing new drugs or for making current drugs more effective. 

Hydrochlorous acid “fell into our wheel house,” he said. In initial tests, Konopka discovered that human bleach caused damage to the membrane within minutes if not sooner, allowing outside molecules to enter freely, which could kill the potentially dangerous infection.

Considering the ubiquitous presence of the fungus, immunocompromised people who might conquer an infection at any given time could still be vulnerable to a future attack, even after an effective treatment. Even people with a healthy immune system could be reinfected amid a large enough fungal load from a biofilm on a medical device or catheter.

Providing vulnerable people with a prophylactic treatment could lower the risk of infection. When and if those patients develop an ongoing and health-threatening infection, doctors could use another set of drugs, although such options don’t currently exist.

In other work, Konopka has identified proteins in C. albicans that help CoQ, or ubiquinone, protect the plasma membrane from oxidation by agents such as hydrogen peroxide and hypochlorous acid.

People can purchase ubiquinone at local stores, although Konopka urges residents to check with their doctors before taking any supplement.

Fish and beer

An organizer of a department wide Oktoberfest, Konopka was pleased that faculty, post doctoral researchers and students were able to decompress and enjoy the fall festival together for the first time since 2019.

In addition to a range of beer, attendees at the event, which occurred half way between the start of the semester and final exams, were able to partake in German food from Schnitzels in Stony Brook Village, which was a big hit.

An avid fly fisherman who catches and releases fish, Konopka said he caught some bigger striped bass this year than in previous years.

When he’s fishing, Konopka appreciates the way the natural world is interconnected. He pays attention to variables like the weather, water temperature, bait fish and the phases of the moon.

He particularly enjoys the wind and fresh air. This year, Konopka marveled at the sight of a bald eagle.

As for his work, Konopka said basic research may have an immediate effect or may contribute longer term to helping others in the scientific community build on his results, which could lead to the next breakthrough.