Tags Posts tagged with "Elof Axel Carlson"

Elof Axel Carlson

Photo by METRO

By Elof Axel Carlson

Elof Axel Carlson

Nedra and I have been in self-quarantine at Indiana University’s retirement community where we settled in November of 2019. The lockdown, if I may call it that, began in mid-March and continues until the President or Governor calls an end to staying at home as a health precaution during the pandemic of 2020. 

I consider myself extroverted and certainly my students think I am extremely extroverted because who else would stand before 500 students and share the pleasures of learning science? As a child, however, I was insecure, terrified of being called on in class, and would hide my head behind the person in front of me so I wouldn’t be called on. 

I like being with people, but I also like times of solitude. I learned to appreciate solitude when I read Michel de Montaigne’s essays. On his estate he had a silo constructed not to store grain but to have his books in a circular library that lined the structure’s lumen. He had his desk and writing supplies and would seclude himself to write his essays and read his treasured collection of books, most of them reflecting the civilizations of Greece and Rome. 

I also appreciated novels about solitude, like Alexandre Dumas’ The Count of Monte Cristo and how Edmond Dantès spent his years in prison before his escape. Or Daniel Defoe’s Robinson Crusoe and how the title character had to reinvent the skills of survival as a shipwrecked sailor. I also enjoyed reading Henry David Thoreau’s Walden, his journal of his self-imposed solitude in the woods and a lake near his home in Massachusetts.

Charles Darwin’s The Voyage of the Beagle is another masterpiece of writing during a round-the-world trip using his cramped shipboard quarters as a place to write from his field notes and away from contact with his scientific colleagues and friends in England.  

In February, before we were forced into solitude, we read for our monthly book discussion group Amor Towle’s The Gentleman in Moscow, a novel about a Russian leisure class survivor of the Revolution who was under house arrest in the Metropol Hotel for some 20 years and who managed to fill his life with adventures and the mental treasures of civilization.  

The hard part is not seeing our children and grandchildren except through Zoom or reading their comments on Facebook and seeing pictures they send. The easy part is using the time to write. Since the quarantine I submitted the galleys for a book in production, signed a contract for a second book, and got my editor to agree to look at ten works I had abandoned over the years when I was too busy teaching and doing research to complete novels, scholarly books, and other writings.

I am sending her a summary of each of these ten books and at age 88 I am in a race with the Grim Reaper to see how many of them I can get published before the scythe is swiped. While this sounds morbid, I am a realist and my life is so filled with the pleasures of living and having enjoyed so much mentoring with my students and solitude with my creative works, that I have no fears or terrors of the Reaper winning the race. 

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

by -
0 4205
Stock photo

By Elof Axel Carlson

Elof Axel Carlson

Most people are probably unaware that their cells contain ribosomes. They probably know each of their cells has a nucleus and within that nucleus are chromosomes and that the chromosomes contain their genes. 

But most people do not know what other organelles in their cells are present and what they do. One of them is the ribosome. When you look at an electron micrograph of a cell, you see the cytoplasm (the goop between the cell membrane and the nucleus) has many membranous folded sheets called the endoplasmic reticulum on which are thousands of tiny dots. Those dots are the ribosomes. 

In the 1950s, after DNA was shown to be the hereditary material and present in the chromosomes of cells, some biologists began exploring how the structure of DNA is treated to the functions carried out by genes. One of these was how information (the genetic code) was carried by the genes and how that became the traits we see of the organism. 

One theory quickly proven was that DNA made another copy with a slightly different chemical composition, called RNA. In fact, there were three types of RNA − a copy of the gene sequence called messenger RNA, a groups of small RNA molecules that carried one of the 20 different amino acids that compose protein molecules, and an RNA that is present in a molecular machine called the ribosome. 

The ribosome takes the messenger RNA coming from the genes, enters the ribosome and begins plugging amino acids whose tips contain a three-letter sequence corresponding to one of the 20 different amino acids. 

The ribosome is a complex molecule, much bigger than hemoglobin in our cells, and carries out the protein synthesis for the cell, each messenger RNA producing a specific type of protein from a specific gene. 

All that mouthful of scientific events you can translate into this thought. When I eat my three meals a day, how does so much of it become me? Well, one thing to thank is your ribosomes. They take the digested bits of proteins from your foods and convert them into the proteins (enzymes, structural components of your cell organelles, and switches used to turn genes on an off or make fertilized eggs into embryos, fetuses, babies and ultimately you). 

I read an interesting memoir by a Nobel molecular biologist (who started his career as a physicist) who worked on the structure of the ribosome. It has a large and a small protein mass. It also has several ribosomal RNA regions that allow the messenger RNA to enter, the transfer RNAs to deposit their individual amino acids, and the ribosomal RNA to move them along and grow the protein chain. It took about 40 years to work out the details of this molecular machine. 

For science buffs, I recommend reading Venki Ramakrishnan’s 2018 book “Gene Machine: The Race to Decipher the Secret of the Ribosome.” It is a wonderful memoir about the many blind alleys, goofs, luck, hard work, competition and numerous tools used by scientists to bring about the solution to a complex system invisible to the naked eye and it requires the disciplines of physic, chemistry and biology to solve it. 

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

Stock photo

By Elof Axel Carlson

Elof Axel Carlson

Most of us would say that our sense of self exists in our head, more specifically in our brain, and for those with some memory of high school or college biology, in the frontal lobes of our cerebral hemispheres of the brain where memory, language and sense perceptions are stored and coordinated. 

That is a 20th-century view of where we are. 

If you asked that question earlier, you would get a variety of answers in, let us say, ancient Rome, the golden age of Greece, the Middle East at the time of the rise of Christianity or even before there were written histories. 

Vestiges of these beliefs exist in our language. We say we have “gut feelings” about issues that are central to our beliefs. We say we give heartfelt thanks for things that touch us deeply or spiritually. 

Our ancestors a millennium or so ago also believed that our brains cooled the blood and terms like “hot-headed” or “cold-blooded” reflected the differences in brain heated or chilled states. These phrases reflect the belief that our soul or being was in our intestines or in our heart. How did we shift our self from the gut or the heart to the brain? 

The heart was known to beat, and it responded to emotions by racing and thumping. Galen in ancient Rome believed the blood entered the right ventricle and passed through invisible pores into the left ventricle where it was “vitalized.”

Servetus in the 1550s believed blood entered the right ventricle and then passed into the lungs from the pulmonary artery and returned aerated, into the left ventricle. Thus, he identified the role of the lungs as air exchange and established there was a pulmonary circulation.

William Harvey in 1628 did experimental work to prove that the circulatory system was more complex. He showed veins had valves and arteries did not. He argued (and demonstrated) that the heart is a pump and the blood from the body enters the right atrial chamber, goes into the lungs through the pulmonary artery, exchanges air in the lungs through microscopic vessels (later seen and called capillaries) and returns to the left atrial chamber, goes into the left ventricle, and then gets pumped through the aorta to the rest of the body. 

What neither Servetus nor Harvey knew was that they were scooped by Ibn al Nafis (1213-1288) who was born in Damascus and died in Cairo. He was a celebrated Arab physician and rejected Galen’s views of the role of the heart and claimed there was a pulmonary circulation that went into the right chambers and entered the lungs and returned to the left chambers with refreshed blood. 

The history of science is a wonderful field because it teaches us that knowledge is gained piecemeal and often each generation has an incomplete understanding of the most important parts of who we are and how we work and what composes our body and our understanding of the universe. 

We tend to drop out of memory the predecessors whose partial insights were a mixture of valid insights and false interpretations. We make do with what we know and guess at what we think is complex and reduce it to our understanding, and later generations fix our errors and drop out conclusions. 

I like to think of this analysis with “heartfelt” thanks for the pleasure it gives to have this insight. I also feel, “deep in my gut,” that reason, and not my bowels, is the basis of my success as a scientist in my career. That reason I associate with my brain and the neurons whose connections and synaptic associations (most still to be worked out by future generations of scientists) which allow my “cool-headed” capacity to think and to suppress my “hot-headed” or fevered brain saturated with emotion to be subdued. 

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

The elderly were exempt from fasting on holidays in Iceland in 1200 CE. Painting by Johan Peter Raadsig

By Elof Axel Carlson

Elof Axel Carlson

We start our journey as a zygote, or fertilized egg, and become an embryo and fetus forming organ systems. We then become infants and children, then adolescents, and finally achieve adulthood and a heap of rights and activities as we raise families and enter our careers.  

We become old, mature, age and become senescent in a dependent way requiring assisted living and then die. Biologists call this a life cycle. It is true of all multicellular life. Each stage of the life cycle has its vulnerabilities and its diverse activities. I am now 88 years old and Nedra and I will be shifting to the senescent age of our life cycles as we enter assisted living in a retirement community that is affiliated with Indiana University.  

As a historian of science and a biologist, I am interested in how things originate. Humans have cared for the elderly at least as long ago as 500,000 BCE when fossil human remains revealed it was that of a cared for person we would classify as senescent. Canes have been retrieved from burials of Egyptian mummies some 30,000 years ago. The oldest dentures date back to 700 BCE. 

Multigenerational households were constructed in Rome in 100 BCE. In the Christian era, in Iceland in 1200 CE persons over 70 were exempt from fasting on holidays. The Catholic Church cared for the elderly in Europe until the Protestant revolution, when the burden shifted to the government, and it introduced poor laws and the creation of almshouses, poor houses and poor farms. These were often poorly supported and dismal in their environment with the psychotic residents often chained or placed in strait jackets and the elderly were neglected because funding from taxes was minimal.  

Poor houses were established in the Colonies shortly after the Pilgrims arrived. The first home for the aged in the U.S. was in 1823 in Boston. It was Dorothea Dix whose social work led to the separation of the paupers, “lunatics” and the aged from such poor houses and poor farms. 

The germ theory was introduced in the 1870s and 1880s and the number of people surviving to old age increased dramatically, but it was not until 1935 that the U.S. and President Franklin Roosevelt introduced Social Security as a separate tax-gathering organization, allowing unemployed people in their old age to live in their own homes. It was not until 1965 when President Lydon Johnson’s Great Society created Medicare and Medicaid that the aged could shift from boarding houses and nursing homes to communities of assisted living.  

Today there are 32,000 assisted living communities in the U.S. With humans living longer because of medical advances and these social measures, the population of those in their 60s or older will increase dramatically in the 21st century, and we will see far more assisted living communities that incorporate the hospitality of resorts with the medical care needs of the aged and the opportunities for music, lecture, exercise and a variety of eating choices for those who live in these facilities.  

It will also lead to higher taxes and debates on how society should respond to these needs when the opportunities for acquiring private wealth are limited for most of our citizens whose incomes provide little surplus funds for investment in their future retirement. 

It is our biology, not our ideology, that dictates our needs. It is our ideology or politics that dictates how we accommodate those needs.  

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

Stock photo

By Elof Axel Carlson

Elof Axel Carlson

Wishful thinking is part of our lives. As a guide to our hopes, it often is realized and that might mean a happy marriage, a successful occupation and a healthy mind and body.  

But reality often thwarts these ideals and desires. This may be through our faults as well as by bad luck. Scientists hope for success when exploring the unknown, but they are taught not to trust wishful thinking.

In my fields of genetics and biology I have witnessed wishful thinking when science is applied to practical ends. The tobacco industry used wishful thinking for over 50 years, denying that tobacco smoke caused cancers, emphysema and heart disease. They blamed instead an unhealthy lifestyle, an unhealthy work environment or stress itself.  

Similarly, nuclear reactor companies used wishful thinking (and still do) to minimize or deny hazards of radiation except at very high doses of exposure. Most geneticists use a linear relation of dose received to gene mutations produced. They have based this on dozens of peer-reviewed publications. Wishful thinking by those who deny harm to a population from low doses of radiation include a belief that at worst small doses of radiation lead to resistance of radiation or that small doses of radiation are negated by strengthening the immune system to repair any damage done to the DNA.  

In our generation wishful thinking has appeared in discussions of severe and more numerous instances of climate change. Here, opponents of ecological response by international treaty argue that such changes are just normal responses to Earth’s cycles of warming and cooling leading to ice ages or long arid climate or that unpredictable ocean currents might shift and bring about these changing weather patterns.  

Critics of government regulations downplay the discharge of waste into rivers, lakes and oceans, and they use wishful thinking in their arguments, claiming “nature repairs itself” whether it is chopped down forests, over farmed land, open pit mining, fracking for natural gas or lands saturated with pesticides and herbicides. They call scientists raising alarm “tree huggers.”  

It would be a wonderful world if everything we did had no harmful long-lasting unintended consequences of what we do. Wishful thinking saves money and effort to prevent toxic products from entering the environment. It allows abusers to create erosion from bad practices clearing land for agriculture. It allows the discharging of massive quantities of carbon dioxide, believing a dwindling ecosystem will sop up the atmospheric carbon dioxide, producing luxuriant plant growth with massive emissions of oxygen. 

What scientists know is that environments are more complex, and we can disturb it with bad consequences for both local and global environments. The needs of 7 billion people can create substantial changes to Earth and we (thanks to wishful thinking) tend to be unaware or choose to deny such bad outcomes.   

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

By Elof Axel Carlson

Elof Axel Carlson

When I first read a biography of Darwin as a teenager, I was attracted to his reputation of having “an enlarged curiosity.” It also described my own personality.  

I never got museum fatigue going through New York’s museums. They were free during the 1940s and my brother and I would enjoy many trips with our mother during the summer to visit them. 

It was fun to study paintings to see how artists differed in the way they drew facial features. It was fun to go through the fossils of dinosaurs and see how much their skeletons resembled those of birds. 

I could imagine being an unseen witness to the huge teeth and claws of meat-eating dinosaurs. I loved looking at gems in the mineral display gallery. I learned about New York City history by looking at the dioramas on the first floor of the American Museum of Natural History.

Curiosity is natural to children and they delight in discovering new facts. That curiosity is often stifled by parents who tire of an overload of questions. When a child becomes curious and discovers items parents do not want their children to know about, they often are told that “curiosity may kill a cat.”  

I often satisfied my curiosity at home reading in the Encyclopaedia Britannica, which my father bought on installment just before I was born. He argued that I could sleep in an open suitcase on the kitchen table and buying the encyclopedia was more important than the type of bedding an infant slept in. I bless him for that foresight.  

Random reading on rainy days in the encyclopedia filled me with facts about the universe. I read about the art of bonsai or miniaturized trees in Japanese gardens. I read about Egyptian mummies and learned under the topic Bubastis, that there was a city devoted to cats and their burial in ancient Egypt. The isolated facts over the years became a treasure trove of information. 

Curiosity is essential for science. It motivates adolescents and young adults to find careers in science and fields of scholarship. In antiquity, scholars like Aristotle or Pliny (both uncle and nephew) sought to amass all known knowledge and their works are a major source of what we know about Greek and Roman civilizations.  

William Bateson, who coined the term “genetics” in 1906 for my field, said, “Treasure your exceptions” because from them new fields may arise. How true that was for me when I found an unusual fly in an exercise in one of H. J. Muller’s classes as a graduate student. That unusual fly turned out to be a rare instance of two pieces of a gene being united in a new way. It led to my doctoral dissertation study.  

Today many scholarly tasks are done by computers. Wikipedia is now an essential starting tool to explore a topic and obtain several scholarly references to extend a search for knowledge. While the tools for scholars may change, the curiosity fueling scholarship cuts across all disciplines.

 Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

Tiny nematodes like this one were found to be unexpectedly hardy, reviving after thousands of years frozen in Arctic ice. Stock photo

By Elof Axel Carlson

Elof Axel Carlson

Back in 1968 I gave a futuristic public lecture at UCLA in which I predicted that the mummified tissue of long dead people could be used to reconstruct their genotypes and, if the chemical tools became available, this could lead to what I called “necrogenetic twinning.”

That got on the wire services and I got clippings with headlines like “King Tut may become a papa.” I also got letters from the public including one irate lady who said, “If you were my son, I’d beat you with a broomstick.” Well there is a field of paleogenetics today, and it is being used to work out the genomes of Neanderthal ancestors and may some day be used to bring back old favorites like passenger pigeons and dodos.

But there is a more immediate source of bringing back a few of the presumed long dead that are present in permafrost. The term was coined in 1943 in a report carried out by the U.S. Army. It is an acronym for permanently frozen soil. That is not ice in waterlogged soil. When permafrost is subject to warm temperatures, it thaws. It does not melt. But from that thawed material the organic matter can be isolated and dated by carbon-14 techniques to get the age. 

Recently, Russian scientists studying thawed permafrost discovered samples (one 32,000 years old and the other 42,000 years old) that produced live nematodes that had been frozen for a very long sleep. They began moving a few weeks after removal and eating bacteria and protozoa on a petri dish. These are roundworms related to vinegar eels as they are called, which can be seen in organic vinegars served in restaurants. Hold such a cruet of vinegar to the light and you will see what look like tiny flakes jittering about in the vinegar.

It is not just cold temperature that can preserve life for centuries. Date palm seeds that are more than a thousand years old have been planted and produced fruit bearing dates. The record of the deepest sleep, however, goes to bacterial spores isolated from salt crystals in rock that was present 250 million years ago. They hatched from their protected state and formed bacterial colonies.

I would not be surprised to find future core samples from ocean cores taken in rock that may be as old as the first life-forms on Earth (viruslike) whose sequences might reveal the first genotypes capable of sustaining life in the organic soup thought to be present when the lifeless Earth was formed. That is a speculation that appeals to the imagination. But we humans can also imagine other possibilities that are less charming than alarming.

What if these early life-forms, whether from permafrost or ocean dredgings, contain pathogens that find humans a suitable host? Ancient viruses would not be treatable by antibiotics, and vaccines might be needed to check their spread. Ancient bacteria might be contained by present-day antibiotics, but some might not.

But is that not true of humans who have explored Earth? Many have come down with diseases they did not know existed in the ruins of ancient civilizations. When Darwin was in the Amazon, he contracted Chagas disease, which made him sickly in his later life. My father was in the Merchant Marine in his youth and came down with malaria and had summer chills when the sporozoans decided to celebrate.

That is why my wife Nedra and I had to get several vaccinations when we traveled on Semester at Sea. When we approached equatorial countries, we had to take anti-malarial medication to prevent coming down with a life-threatening malaria infection. Life is full of risks and not all are predictable, but using knowledge often thwarts unknown threats we may encounter.

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

Johannes Gutenberg, depicted on the right, was the inventor of printing. File photo

By Elof Axel Carlson

Elof Axel Carlson

Knowledge can be conveyed by oral tradition or by written language. 

The earliest writings were on mud tablets (cuneiform tablets in Sumerian culture) or paper (papyrus sheets in Egypt in the ages of the pharaohs). Paper replaced mud or wooden tablets during the Middle Ages and some monasteries made copying texts (mostly religious commentaries and bibles) a major activity for monks. 

Most of humanity was illiterate until the 15th century. What changed? One of the greatest inventions was movable type, which allowed words to be arranged from metal letters. They could be aligned into sentences and pages and then placed in a wooden press and smeared with an oil-based ink. 

The inventor of this technology was Johannes Gutenberg (1400-1468). He raised the money from Johann Fust. Gutenberg’s son-in-law marketed the books Gutenberg printed (the Bible being his first large-scale project). 

Printed books became affordable to the new middle class emerging in Renaissance Europe.  They also became more diverse and translations (into Latin) of Greek texts were in heavy demand. The first biology text printed in 1476 was “De Animalibus” by Aristotle (translated from the Greek to Latin because Latin was the universal language of scholars throughout Europe until the 19th century). 

The first book in a different language was a German book in 1461. The first book in English was in 1475. Euclid’s “Elements of Geometry” was printed in 1482. The first book printed in North America, “The Bay Psalm Book,” was printed in 1640.

The problem with an oral tradition is its vulnerability to change with time and a high risk of losing lots of information. Written language can survive if preserved copies are kept in libraries, monasteries or royal households. The explosion of knowledge that came during the Renaissance owed much of its success to printing. 

Books were translated into Latin (and during the later Enlightenment into vernacular German, Italian, English and other languages). They could also be written to reflect new knowledge and commentary on any topic. 

Before printing, it took a monk about a year to copy a book using pen, ink and paper. Gutenberg’s press could produce 240 sheets of pages per day. It was not until the 1820s that steam-driven presses became available to scale up the production of books and newspapers. It also required the introduction of paper mills to mass produce paper from discarded clothing or from wood pulp. 

When Martin Luther led his Reformation movement and separated his followers from the authority of the Vatican, he ordered placing the Bible as the prime authority for religious instruction. He shifted it to German so it could be read by all Lutherans. This shifted printing from limited printings of scholarly or commercial technical books to mass production of texts where education was compulsory for all children and for mass production of Bibles so every household would have a Bible. 

As in many instances of new technology, these changes could not be anticipated when Gutenberg first introduced his printing press.  Once made available, more books appeared.  More books led to more readership. More readership led to the spread of diverse views of life and society. Once more diversity entered so did a ferment of ideas on how we should live, what we should revere, and what careers would emerge as new knowledge spread. 

For the scholar it led to the university and to higher degrees certifying an exposure to knowledge in dozens of fields old and new. 

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

By Elof Axel Carlson

Elof Axel Carlson

My mentor, Nobel laureate Hermann Joseph Muller, described science to his graduate students as “the winning of the facts.” Three implications exist in that interpretation. 

First, it is not easy to do science. It takes skills at using instruments to obtain facts, design experiments or infer connections among isolated facts. Second, the scientist may be in competition with alternate ways to interpret the same data. The scientist may have biases that were not controlled adequately in the experimental design, or the scientist may be a victim of wishful thinking. Third, science has implications for our lives that may be received with resistance or disbelief by those who prefer their advantages for the world as they are presently enjoying it.

A good example is the effort it took Muller to work out some findings about the gene. When he joined Thomas H. Morgan’s laboratory in 1912, the gene was just an abstract idea. Its chemistry was unknown. Morgan had just found that there were genes associated with sex and that genes were associated with chromosomes in the cell. 

In 1913 Morgan’s student Alfred H. Sturtevant showed those genes could be mapped. In 1915 Morgan’s student Calvin B. Bridges showed cell division could be imperfect and an extra or missing chromosome may be present in a fertilized egg. Go fast forward about 50 years and in humans that explained why some children have Down syndrome (with three instead of two chromosomes for number 21 of 23 pairs of chromosomes). 

Muller took 15 more years after joining Morgan’s laboratory before he worked out genetic stocks to do an experiment that showed X-rays induce mutations. That did not make many people in the health industries happy because most of the mutations induced by X-rays had harmful effects (loss of function). 

After Hiroshima and Nagasaki, Muller’s findings interpreted cell death from broken chromosomes by high doses of radiation created radiation sickness in tens of thousands of people who lived in Hiroshima and Nagasaki when our atomic bombs exploded. During the Cold War, many legislators felt that concern over radiation exposure was a Communist plot to delay development of nuclear weapons and the need to test them in the atmosphere, at sea or on land. Muller tried to strike a balance between political fears and the need for radiation protection. 

The debate over consequences of low doses versus high doses of radiation exposure is still ongoing. The values of military needs for new or renewed weapons dominate concerns over low dose exposure. Those in the nuclear reactor industries feel the permissible doses add expenses that are not necessary because they feel no mutations are produced at low doses. 

The overwhelming number of experiments done to test radiation exposure is that it is proportional to dose or linear for thousands of roentgens to fractions of a roentgen. The experiments are difficult to do with low doses in mice or fruit flies. Fortunately, most dentists give a lead apron to patients before doing X-rays, and newer X-ray machines give a much lower dose to get even sharper images with better X-ray machines. Fortunately, most health providers protect themselves and their staff from exposure to X-rays and do not have to be in the same room with the patient. 

Basic science provides knowledge we may not want to know. But it also provides knowledge we can use to protect ourselves. It is not usually the scientists who make these findings who prevail in how science is received or used by the public. The winning of the facts is often a struggle that may be ongoing for years or decades before consensus occurs.

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

Felix Hoppe-Seyler

By Elof Axel Carlson

Elof Axel Carlson

I enjoy doing history of science because I learn so much when delving into the past. If I am reading about cell theory and the types of tissues there are, I remember the course in microscopic techniques I took as an undergraduate at NYU.

I did not know then that the microtome to cut slices of tissue for making slides was first introduced by Johannes Purkinje. I did not know that growing bacteria on agar plates or slants in test tubes to obtain pure cultures was first done by Robert Koch. I did not know that the word “mutation,” as a change in heredity, was first introduced by Hugo de Vries. Similarly, I did not know that Bernhard Tollens first showed carbohydrates were composed of sugars.

It was William Cheselden who first demonstrated that the role of saliva was to break down food for digestion. I did not know the chemical notation for representing molecules, like CO2 being carbon dioxide was invented by Jöns Berzelius. I did not know the first person to show that oxygen binds to hemoglobin was Felix Hoppe-Seyler. But I did know that Albrecht Kossel was the first to isolate and name the nitrogenous biases of nucleic acid and he called them adenine, guanine, thymine, cytosine and uracil. 

I did not know ringworm was shown to be a fungal parasite by Johann Schönlein. He also changed the name “consumption” to “tuberculosis” and made a third contribution: He was the first science professor to teach in his native tongue, German, instead of Latin to his students. It was Rudolf Leuckart who worked out the nematode parasite causing trichinosis in pork, and his work led to compulsory meat inspection in most industrial countries. The first phylogenetic tree for evolutionary history of plants or animals was constructed by Ernst Haeckel (that I did know).

Even the nouns I use as a scientist have known origins: Tissue was first introduced by Marie François Xavier Bichat at the time of the French Revolution (his 20 different tissues became the four basic tissues I learned as an undergraduate).

The cell theory was first promoted by Matthias Schleiden and Theodor Schwann in 1838. It was changed to a cell doctrine (all cells arise from preceding cells) by Robert Remak and Rudolf Virchow. Most of the names I have mentioned lived in the 1700s and 1800s. We remember the names of 20th century scientists partly because they are published in textbooks. But if one studies a field and looks at old textbooks of about 100 years ago or more, lots of terms used in those past generations have disappeared. Also, the names of then recent scientists are abundant.

It is a curious honor to be a discoverer of something important and then 100 years after your death your role in it is no longer present in texts or scientific articles. Who remembers that Karl Gegenbaur first introduced the idea of homology into comparative anatomy (your hands, a bat’s wings and a horse’s forefeet are homologous because they have an embryonic common formation from an initial limb bud)?   

Scientists do science because they enjoy the opportunity to make discoveries. Very few will be remembered for centuries like Galileo, Newton or Darwin. All who have published will be dug up centuries from now by historians curious about the origins of ideas and processes of our own generation.

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.