Tags Posts tagged with "Daniel Dunaief"

Daniel Dunaief

Athi Varuttamaseni. Photo couresty of BNL

By Daniel Dunaief

Athi Varuttamaseni is like an exterminator, studying ways pests can gain entry into a house, understanding the damage they can cause and then coming up with prevention and mitigation strategies. Except that, in Varuttamaseni’s case, the house he’s defending is slightly more important to most neighborhoods: They are nuclear power plants.

The pests he’s seeking to keep out or, if they enter, to expel and limit the damage, are cyberattackers, who might overcome the defenses of a plant’s digital operating system and cause a range of problems.

Varuttamaseni, an assistant scientist in the Nuclear Science & Technology Department at Brookhaven National Laboratory, started his career at BNL by modeling the failure of software used in nuclear power plant protection systems. Last year, he shifted toward cybersecurity. “We’re looking at what can go wrong with nuclear power plants” if they experience an attack on the control and protection systems, he said.

Varuttamaseni is part of a team that received a grant from the Department of Energy to look at the next generation of nuclear power plants, which are controlled and managed mostly by digital systems. A few existing plants are also looking to replace some of their analog systems with digital. “We asked what can go wrong if a hacker somehow managed to breach the outer perimeter and get in to control the system, or even if that is possible at all,” he said. By looking at potential vulnerabilities in the next generation of power plants, engineers can find a problem or potential problem ahead of time and can “go back to the drawing board to put in additional protection systems that could save the industry significant cost in the long run,” Varuttamaseni said.

Robert Bari, a physicist at BNL and a collaborator on the cybersecurity work, said Varuttamaseni, who is the lead investigator on the Department of Energy project, played “a major role” in putting together a recent presentation Bari gave at UC Berkeley that outlined some of the threats, impacts and technical and institutional challenges. The presentation included a summary and the next steps those running or designing nuclear power plants can take. Bari said it was a “delight” to collaborate with Varuttamaseni.

A colleague, Louis Chu, had recruited Varuttamaseni to work at BNL in another program, and Bari said he “recognized his abilities” and “we started to collaborate.” Varuttamaseni and Bari are going through a systematic analysis using logic trees and other approaches to explore vulnerabilities. The BNL team, which is collaborating with scientists at Idaho National Laboratory, shared the information and analysis they conducted with the Department of Energy and with an industrial collaborator.

In his second year of the work, Varuttamaseni said he is looking at the system level and is pointing out potential weaknesses in the design. He then shares that analysis with designers, who can shore up any potential problems. In the typical analysis of threats to nuclear power plants, the primary concern is of the release of radioactive material that could harm people who work at the plants or live in the communities around the facility.

Varuttamaseni, however, is exploring other implications, including economic damage or a loss of confidence in the industry. That includes the headline risk attached to an incident in which an attacker controlled systems other than a safety function and that are not critical to the operation of a plant. In addition to exploring vulnerabilities, Varuttamaseni is studying a plant’s response. Most of the critical systems are air-gapped, which means that the computer has no physical or wireless connection. While this provides a layer of protection against cyberattacks, it isn’t flawless or impenetrable. An upgrade of the hardware or patching of a hardware system might create just the kind of opening that would enable a hacker to pounce.

The Nuclear Regulatory Commission and the industry are “aware of those scenarios,” Varuttamaseni said. “There are procedures in place and mitigation steps that are taken to prevent those kinds of attacks.” Ideally, however, the power plant would catch any would-be attacker early in the process. Varuttamaseni is working on three grants that are related to systems at nuclear power plants. In addition to cyberattacks, he is also analyzing software failures in the protection system and, finally, he’s also doing statistical testing of protection systems.

Varuttamaseni, who was born in Thailand, lives in Middle Island. He appreciates that Long Island is less crowded than New York City and describes himself as an indoor person. He enjoys the chance to read novels, particularly science fiction and mysteries. He also likes the moderate weather on Long Island compared to Bangkok, although threats from hurricanes are new to him. Next June, Varuttamaseni will present a paper on cybersecurity at the American Nuclear Society’s Nuclear Plant Instrumentation, Control & Human-Machine Interface Technology Conference in San Francisco.

Varuttamaseni is “always on the lookout for insights into possible attack pathways that an attacker could come up with,” he said. “The mitigating factor of my work is that we’re looking at a longer-term problem. There’s still time to [work with] many of these potential vulnerabilities.”

From left, Robert Catell, chairman of the board, Advanced Energy Research and Technology Center; Vyacheslov Solovyov; Sergey Gelman, a Stony Brook engineering student; and Yacov Shamash, vice president for economic development at Stony Brook University. Photo from Stony Brook University

By Daniel Dunaief

It’s lighter, cheaper and just as strong. In the age of manufacturing the latest and greatest high-technology parts, that is a compelling combination. Indeed, the Department of Energy recently awarded the Brookhaven Technology Group, a business incubator tenant of the Advanced Energy Research and Technology Center at Stony Brook University, $1.15 million to develop a high-temperature superconductor cable with a new architecture. The grant supports the research of Vyacheslav Solovyov, an adjunct professor in the Department of Electrical Engineering at SBU and the principal investigator at Brookhaven Technology Group.

“Very few projects are funded, so we’re very excited that ours was chosen,” said Paul Farrell, the president at BTG. The potential applications for Solovyov’s Exocable, as the new architecture is called, span a wide range of uses, including in high field magnets for a new breed of accelerator. The work entails creating a high-temperature superconducting cable that is an integral ingredient in creating the superconducting machinery. The BTG process produces a high-temperature superconducting cable after removing the substrate, which is a single-crystal-like material. Solovyov transfers the superconducting layer to a supporting tape that can be engineered for strength and not for crystallinity.

This work reduces the weight of the tape by as much as 70 percent per unit length for the same current capacity. The potential for this new cable is that it can contribute to the growing field of research at Stony Brook and Brookhaven National Laboratory on superconductivity, said Jim Smith, assistant vice president of economic development at Stony Brook. “Maybe this is the next industry that replaces the Grummans and the aerospaces that have left,” he said. Semiconductors are of particular interest to manufacturers because they transmit energy with no resistance. Right now, about 6.5 percent of energy transmitted around the United States is lost in distribution wires, Smith said. Maintaining the energy that’s lost in the wires would have “tremendous benefits.”

To be sure, while the research at BTG could contribute to lower cost and improved efficiency in high-temperature superconductivity, there are hurdles to making this process and the applications of it work. For starters, the company needs to produce kilometers of ExoCable. “The challenge is to demonstrate that the properties will be as uniform as they were before the substrate removal,” explained Solovyov, who has been working in superconductivity since 1986.

Recently, Smith said he, Farrell and Solovyov met to discuss the wiring for their facility. “A lot of power and wiring will be installed in the next four to five weeks,” Smith said. Scientists who worked with Solovyov expressed admiration for his work and optimism about his results. Solovyov’s “new activity will definitely advance the long-promised practical application of superconductivity electrical power transmission, as well as in the development of high-field magnets for both industrial and scientific application,” David Welch, a former collaborator and retired senior materials scientist at Brookhaven National Laboratory, wrote in an email. Welch explained that Solovyov focused on methods for making composites of superconducting material with normally conducting metals in the form of wires, tapes and cables necessary for their practical application. “Such a combination of talents is unusual,” Welch continued. Early on, it was clear “that [Solovyov] was going to become an important member of the scientific staff at BNL.”

Solovyov started working on this process with BTG about a year and a half ago. When he first started collaborating with BTG, the company was working on a superconducting project funded by the army. When that work ended, Solovyov and BTG worked together to submit new proposals to the DOE. According to Solovyov, Stony Brook has been “very helpful in terms of providing facilities and lab space.” Stony Brook’s goal, Smith said, is to help companies like BTG succeed and measures that success in the number of new jobs created in the energy field.

Solovyov, who grew up in the Ukraine, said he has had several breakthroughs in his career. He helped develop a patented technology that can speed up the processing of superconducting materials by a factor of 10. “That has been used in production and I’m very proud of it,” Solovyov said. The professor lives in Rocky Point with his wife Olena Rybak and their two children, Natasha, 19, who attends Suffolk County Community College, and Dennis, 14, who is in high school. Solovyov said he enjoys Long Island, where he can fish for striped bass and bluefish. He pan fries what he catches.

As for his work, Solovyov has four patents and applications for three more. He and Farrell said the company is looking for opportunities for expansion. He is exploring ways to work with large-scale generators and wind turbines. Farrell explained that BTG has ambitions to become a larger company. BTG would “like to become a major contributor in this field,” Farrell said. That could include adding staff and developing more products that can be sold and used worldwide. “If our product is successful, in the sense that it improves the capability of superconductors to be used commercially, we’ll be adding people.” This work will need more funding, which the company plans to get either from the Department of Energy, from private investors or both.

“If you can improve the usefulness of superconductors and reduce the cost of the wire, there’ll be wider use than there is right now,” Farrell said.

Front row, from left, Liliana Dávalos, Heather Lynch and Christine O’Connell; back row, from left, Robert Harrison, IACS director and STRIDE PI, Arie Kaufman, and Janet Nye. Photo from Stony Brook University

By Daniel Dunaief

If Stony Brook University has its way, the university will stand out not only for the quality of the research its graduate students produce but also for the way those budding scientists present, explain and interpret their results to the public and to policy makers.

Pulling together faculty from numerous departments across the campus, Robert Harrison, the director of the Institute for Advanced Computational Science, created a program that will teach graduate students how to use big data sets to inform difficult decisions.

The institute recently received a $3 million grant from the National Science Foundation Research Traineeship for this effort, called Science Training & Research to Inform DEcisions, or STRIDE. The grant will be used for students in the departments of Applied Mathematics and Statistics, Biomedical Informatics, Computer Science, Ecology and Evolution and the schools of Journalism and Marine and Atmospheric Sciences.

“This is unique,” said Arie Kaufman, a distinguished professor and chair of the Department Computer Science at Stony Brook. “It’s a new kind of approach to training and adding value to Ph.D. students.” Indeed, the students who complete the STRIDE training will earn their doctorates and will also receive a certificate for their participation in this program. Students in the participating departments will need to apply for one of the 10 positions available in the program next year. The partners involved in this program expect it to expand to 30 students within five years.

Kaufman said what enabled this collaboration was the range of skill sets across Stony Brook, including the Alan Alda Center for Communicating Science, which is a growing program that already offers the type of training more typical for an actor studying improvisation techniques than for a scientist studying neurotransmitters or DNA.

The Alda Center is “creating a new course,” said Christine O’Connell, an associate director at the center and assistant professor in the School of Journalism. She is currently working on developing the course description, which will include communicating to decision makers. O’Connell, who has a doctorate in marine and atmospheric sciences, sees her work with the Alda Center and with STRIDE as the “perfect combination in bringing the decision making piece to work with scientists to help them talk about their research.”

Scientists who take courses at the Alda Center with STRIDE learn how to understand their audience through various role-playing scenarios. They will also develop their abilities to present their goals or messages in a visual way and not just talk about their work.

Heather Lynch, an associate professor in the Department of Ecology and Evolution who is also a co-principal investigator on the STRIDE grant, will help design the program, mentor students and develop courses. She’s been involved with this proposal since its inception, over three years ago. “In many ways,” she explained in an email, “my interest stems from my own difficulties communicating effectively with policy makers, and finding tools and visualizations that are compelling to a non-scientist.” Lynch recounted her frustration with presenting science to help a policy making body, such as a committee, with the kind of analysis she believed they were seeking. After she did her best to answer the question, the committee sometimes dismissed her work as not being what they wanted. “That’s frustrating because that means I failed at the outset to define the science question and that’s what I hope we can teach students to do better,” Lynch explained.

Lynch said she wishes she had the training these students will be getting. For scientists, computers are an invaluable tool that can help delve into greater breadth and depth in analyzing, interpreting and collecting information. The STRIDE effort includes a greater awareness of the way computers can inform political or social science. Researchers generate “tremendous amounts of data that can be used to analyze trends or detect diseases,” Kaufman said. “The data science is tremendous in every discipline.”

The faculty who are a part of this program said they have already benefited from the interactions they’ve had with each other as they’ve developed the curriculum. “I know a few people in Ecology and Evolution and I know more people in Marine Sciences, but these particular individuals were new to me,” said Kaufman. “We have already been communicating about ideas for how to use the Reality Deck for other projects.”

Completed in late 2012, the Reality Deck is a $2 million rectangular room in the Center of Excellence in Information Technology building. The room has hundreds of monitors that cover the wall from floor to ceiling and provides a way for researchers to study images in exquisite detail.

Other scientists in the program include Liliano Dávalos, an associate professor in the Department of Ecology and Evolution, Janet Nye, an assistant professor in the School of Marine and Atmospheric Sciences, Joel Saltz, the founding chair of the Depatment of Biomedical Informatics, Erez Zadok, a professor in the Department of Computer Science and Mighua Zhang, a professor in the School of Marine and Atmospheric Sciences.

Lynch said the program will bring in people who are working on real-world problems, including those in government, industry and nongovernmental organizations who are “in a position to take science and use it for practical purposes.” As a part of the program, the scientists will monitor the progress of the STRIDE candidates, O’Connell said.

The evaluations will check to see if “they become better communicators and better at interpreting their data for different audiences,” O’Connell said. “The evaluation piece built in will help us assess the program.”

Dave Jackson. Photo courtesy of CSHL

By Daniel Dunaief

If we get a text message that our son just gained admission to his first choice for college, we might throw our arms in the air, pick up the phone and call him, or stand on the top of our desk and shout our joy to the room. We might feel, in that instant, as if he can achieve anything and, as a result, so can we.

While plants don’t send and receive text messages, they process and react to a range of signals, some of which can determine how and when they grow, which can be key parts of determining how much food they produce.

Recently, David Jackson, a professor at Cold Spring Harbor Laboratory, explored a mutation that causes corn, or maize, to experience growth that is so out-of-control that the corn becomes a disorganized mess. Jackson wondered what caused this growth and disrupted the creation of succulent rows of juicy, yellow bits ready to explode off the cob.

Stem cells can grow to become any type of cell. In this pathway, which was disrupted in the mutant and caused the uncontrolled growth, Jackson showed that the signal came from the leaves, which is likely responding to its surroundings. He discovered that fine tuning that mutation — or weakening the “grow-out-of-control” signal — was enough to cause a regular ear of corn to include as much as 50 percent more food. “What was surprising about our work is that we found this new stem cell pathway that had not been discovered in Arabidopsis,” which is, as Jackson described, considered the equivalent of the well-studied fruit fly in the plant world. “We had gone on to show that it was also present in Arabidopsis.”

At this point, he’s hoping to introduce these mutations or alleles into breeding lines to try to generate a similar increase in yields that he’s seen in the lab. He’s collaborating with DuPont Pioneer on that testing. “As in all areas of science, we make a basic discovery and hope it’ll be applicable,” he said. “We can’t guarantee it’ll work until” it’s checked in the field. “People cure cancer in mice, but find it’s more complicated in people. We’re hoping cumulative knowledge will lead to breakthroughs,” he added.

Sarah Hake, the director of the USDA Plant Gene Expression Center at the University of California at Berkeley, described the work as “important.” In an email, she suggested that “translation to more corn yield can take time, but this information will be crucial for thinking about breeding.”

Jackson received the mutated maize from a breeder in Russia. He then altered a wild type, or normal plant, to cause a similar mutation that produced more food. Jackson is excited about the potential to use the gene-altering technique called CRISPR, in which researchers can edit a genome, changing one or multiple base pairs at a time.

Above left, normal corn and, right, corn with a weakened Fea3 mutation. The mutated corn has up to 50 percent more yield. Photo by Byoung Il Je
Above left, normal corn and, right, corn with a weakened Fea3 mutation. The mutated corn has up to 50 percent more yield. Photo by Byoung Il Je

Jackson is not adding new genes but, rather, is “tweaking” the ones that are already there. He said agricultural companies can use CRISPR instead of dumping in a foreign DNA. In past experiments, Jackson has worked to produce a greater number of seeds in his experimental plants. In that work, however, he increased the number of seeds, although the size of the seeds was smaller, so the overall yield didn’t increase. In this study, however, he and his postdoctoral student Byoung Il Je produced more seeds that generated greater yield. The gene involved in this signaling pathway is called Fea3. It is part of the signaling network that tells the plant to pump more into the ear of the corn to produce more yield. Jackson named the gene Fea because of the way the corn looked. Fea stands for fasciated ear. He and the members of his lab had already characterized another gene, called Fea2.

Jackson has been working on this gene for 20 years, although the intensive work occurred more in the last four or five years. He said he’s benefited from the ability to take a mutant and identify the gene. When he started out 25 years ago, a graduate student could take five years to characterize a mutation and find a gene. “It was like looking for a needle in a haystack,” he said. Now, genome sequencing and fast mapping enables researchers to find a gene in as little as a few months. When he first produced the weaker mutation, Jackson wasn’t anticipating a higher yield but, rather, was hoping to prove that this gene was the one responsible for this uncontrolled growth that created a pulpy mess of corn. Jackson said he is “excited about the stem cell pathway” his lab discovered. He hopes this finding can lead to a better understanding of the signals that determine how a plant uses its resources.

A resident of Brooklyn, Jackson lives with his wife Kiyomi Tanigawa, an interior designer, and their eight-year-old son Toma.

Jackson, whose lab has seven postdoctoral researchers and one lab manager, plans to start experiments on tomatoes and rice to see how this gene is involved in similar signals in other food crops. He is also working on similar mutations to other genes like Fea3, which also might affect a plant’s decision to produce more food.

Ivan Bozovic. Photo courtesy of BNL

By Daniel Dunaief

How long and how much work does it take to defy conventional wisdom? Often, the prevailing belief about anything has backers who support the idea and aren’t eager to change or replace what they know with something new.

Recognizing this, Ivan Bozovic, the Oxide Molecular Beam Epitaxy (MBE) group leader at Brookhaven National Laboratory, checked and rechecked his work, spending close to a decade for parts of it, repeating his steps and checking the accuracy of his data points to make sure his case, which flew in the face of what so many others believed, was airtight.

Engineers, researchers and corporations have known about so-called high-temperature superconductivity for over a century. Using objects called cuprates, which are oxides of copper, researchers have created substances that can conduct electricity with close to no resistance at temperatures that are well above the requirements for most superconductivity.

While the name high-temperature superconductivity might suggest materials that allow the passage of energy through them in a sauna, the reality is far from it, with the temperatures coming in closer to negative 163 degrees Fahrenheit. While cold by everyday standards, that is still well above the record critical temperature before cuprates, which stood at – 418 degrees F.

Up until Bozovic’s study, which was recently published in Nature, scientists believed superconductivity in these cuprates occurred because of the strength of electron pairing. Carefully and in great detail, Bozovic demonstrated that the key factor in leading to this important property was the density of electron pairs, which are negatively charged particles.

Other scientists suggested Bozovic’s study was an important result that flew against the prevailing explanation for a phenomenon that holds promise for basic science and, perhaps one day, for the transmission of energy in the future.

Bozovic’s study “shows that [the] standard picture fails quite astonishingly in copper oxides that show high temperature superconductivity,” Davor Pavuna, a professor at the Swiss Federal Institute of Technology at Lausanne, explained in an email. “We are only begining to grasp how dramatic” this latest discovery is.

Pavuna described how he was recently at an event in Corsica, France and that his colleagues believed “this is a clear signal that we will have to develop much more advanced theoretical framework for cooperative phenomena, like superconductivity.”

Bozovic’s work and his latest result “show that our physics understanding and models require some new physics framework,” Pavuna said.

Bozovic and his colleagues studied over 2,150 samples. He explained that cuprates are complex for standards of condensed matter physics because some of them have 20 to 50 atoms in unit cells. That means that when engineers synthesize them, cuprates can have a mixture of unwanted secondary phases that could “spoil the experiment.”

Ivan Bozovic with his granddaughter Vivien at Vivien’s first birthday party last year in California. PhotoPhoto by Julie Hopkins, cameracreations.net
Ivan Bozovic with his granddaughter Vivien at Vivien’s first birthday party last year in California. Photo by Julie Hopkins, cameracreations.net

The number of samples necessary to demonstrate this property is a matter of personal standards, Bozovic suggested. He made sure he kept “checking and double checking and triple checking to be sure that what we had closed all the loopholes,” Bozovic said. He wanted “no possibility of an alternative explanation.”

The way Bozovic and his colleagues approached the problem was to start with a cuprate composition. They then replaced one atom at a time by another, which provided a series of samples that were almost identical, but slightly different in chemical composition. He was able to show how the critical temperature changes with electron density in small increments.

“What’s really impressive here is [Bozovic’s] ability to use a molecular beam epitaxy system — that he designed — to place single atomic layers on to a substrate, layer by layer,” James Misewich, the associate lab director for Energy & Photon Sciences at BNL explained in an email.

Bozovic’s work is “an exciting finding that could have wide-ranging impacts on how we identify, design, and build new superconducting materials,” continued Misewich.

As with other science, Bozovic said the answer to one question leads to a series of follow up questions, which include why do small pairs of electrons form in cuprates and not in anything else.

A resident of Mount Sinai, Bozovic lives with his wife Natasha, who is a mathematician. The couple has two daughters, Dolores, a professor of Physics and Astronomy at UCLA and Marijeta, an assistant professor of Slavic Languages and Literatures at Yale, where Bozovic is an adjunct professor of Applied Physics.

Born and raised in the former Yugoslavia, Bozovic is the son of two medical doctors. His father, Bosislav Bozovic, was twice nominated for the Nobel Prize for his work on the relation between cancer and the immune system. He was also a major general in the medical corp and the head of the Medical Division of the National Academy of Sciences.

His mother, Sasha Bozovic, wrote a best-selling memoir, devoted to a daughter she lost in World War II. His mother was also a colonel in the medical corps who worked in the army until she retired as the highest ranking woman in the army. “I had some big shoes to fill,” Bozovic acknowledges.

As a teenager, Bozovic played the lead guitar in a rock band. Nowadays, he strums nursery rhymes for his granddaughter Vivien using FaceTime.

A scientist who suggests a sense of humor is extremely important, especially in a field that can include disappointments and setbacks, Bozovic jokes that he speaks “zero” languages, a conclusion he reached after listening to an online description he gave of his recent work. In reality, he can read about four languages, although he has studied more.

As for his work, Bozovic is looking forward to discussing his recent results with theorists like Gabriel Kotliar, a Rutgers Professor of Physics and Astronomy who has a part time position at BNL. Kotliar is leading a new materials theory center at BNL.

“I hope that we’ve given them new pointers about where to look and what to calculate,” Bozovic said. “I’m pretty optimistic that there will be feedback from them.”

Tony Zador. Photo courtesy of Cold Spring Harbor Laboratory

By Daniel Dunaief

For some people, the frontier lies deep in space, further than the eye can see. For others, the frontier resides at tremendous pressure beneath the surface of the ocean. For Tony Zador, the chair of neuroscience and professor of biology at Cold Spring Harbor Laboratory, the frontier is much closer to home, in the collection of signals in our brains that enable thought and direct our actions.

Recently, Zador and his research team helped explore that frontier, developing a technological innovation that allowed them to see where nervous system cells from one important region projected into other areas.

About six years ago, Zador came up with the idea to barcode the brain. Zador and his former graduate student Justus Kebschull explored the connections between the locus coeruleus (LC) and other parts of a rodent brain. The LC is responsible for reacting to stressful situations, allowing an animal to stimulate areas that might help save its life, including those responsible for visual or auditory processing.

Researchers believed that the intercom system that connected the LC to the rest of the brain could stimulate all areas at once, like a building-wide announcement coming over the public address system. What scientists didn’t know, however, was whether that communication system could send messages to individual areas.

“People knew before our work that neurons in the locus coeruleus broadcast their signals throughout the cortex,” Zador said. “What was not known was whether there was any specificity. It was always assumed.”

Zador found that individual neurons had precise connections to different parts of the brain. While this doesn’t prove that the LC can selectively activate one area, the way a superintendent might send a signal to one wing of a building, it demonstrates the specificity of the connections, which “raises the possibility” of selective signals.

Indeed, if each neuron diffusely spread out across the entire cortex, there would be no way to achieve localized control over cortical functions through the LC system. The visual cortex, for example, would be alerted at the same time as the auditory and frontal cortex.

Ultimately, Zador is interested in the brain’s neuronal network. The way nervous system cells communicate in our brains can help us understand how we process and interact with the world around us. Down the road, he is hoping to help create something called a connectome, which will provide a map of that network.

This information, at a basic level, could provide a better understanding of neurological conditions such as autism, schizophrenia, depression and addiction.

At this stage, however, Zador is building a network called the projectome, which provides a map of the specific regions neurons go in the brain. He collects this information by inserting a deactivated virus with a unique genetic code into the brain. These viruses act as a label, allowing Zador and his colleagues to trace the areas where individual neurons go. This technique, he said, doesn’t indicate whether neuron one is connected to neuron two, three or four, but, rather, it indicates whether neuron one is connected to a bunch of neurons in regions one and two but not in three and four.

Zador “had to develop a method of bar coding each neuron so that it is unique and a technique of detecting each bar code individually,” said Bruce Stillman, the president and chief executive officer of Cold Spring Harbor Laboratory. By collecting numerous samples of where these neurons go, Zador, his collaborators and other scientists can determine the natural range of variability for animal models of individuals with typical behaviors and reactions. Once they establish that range of typical wiring, they can compare that to animal models of neurological challenges, like autism. Zador wants to “create a baseline against which we can compare neuropsychiatric models of disease.”

Stillman explained that Zador’s focus at CSHL has been on cognition — how the brain makes decisions, retains memory and pays attention to tasks at hand. Zador, Stillman suggested, is “one of the pioneers in establishing the rodent cognition area.”

To understand cognition, however, Zador needed to see what regions of the brain are connected to other areas, providing a road map of the brain. Even though he didn’t have a background in molecular biology, Zador benefited from working with specialists at CSHL to create this bar coding, Stillman explained. Stillman described Zador as “bright” and “broad thinking.”

Zador said the next step in his work will be to relate the projections to the individual cells’ function in the brain. He would also like to see their neuron-to-neuron connectivity. He said he is pursuing both goals and hopes to submit a paper in the next month or two describing such a method for the first time.

“Although we can sequence the codes” from neighboring neurons, “we still have work to do to figure out connectivity,” Zador said. “That involves significant molecular tricks that we’re refining.”

Georgio Ascoli, a collaborator with Zador and the director of the Center for Neural Informatics at the Krasnow Institute of Advanced Study at George Mason University, described Zador as an “internationally renowned, highly respected scientist,” whose best known contributions relate to the challenge of understanding how the brain can seamlessly decide which stimuli in a varied environment like a cocktail party to listen to among numerous choices.

A resident of Laurel Hollow, Zador lives with his wife Kathy Shamoun, who practices Chinese medicine at CSHL and is a childbirth educator and doula. The couple has two sons, Ronin, 10, and Bowie, 6.

As for the benefits of this bar-coding approach, Ascoli explained that the technique is “potentially revolutionary because of its inherent scalability to full mammalian brain mapping, which is currently out of reach for alternative approaches.”

by -
0 689

To reply all, or not to reply all, that is the question. But, seriously, when is replying to everyone by email necessary? I know we live in a world where we share every thought that occurs to us because we can. Distributing our thoughts electronically to as many people as possible gives new meaning to the words “publish
or perish.”

Still, something about replying all is the equivalent of spraying graffiti, with your initials on it, in my email box. I already get more than enough emails from all the stores that send me hundreds of discounts a day. With all these discounts, I feel like an idiot for paying the listed price for anything. But I digress.

I know there are times when replying all is helpful. You see that the conference room is unavailable. Sharing the news will allow everyone to be more productive through the day.

There might be a time when you need everyone on a list to know something, like not to park on a side street where the permit-parking-only signs might be hard to see.

But do all 100 of us on a long email distribution list really need to know that you, specifically, received the email? Not only do people tell us they got the message we all received, but some of them feel the need to embarrass themselves in the process.

A teacher asks all the parents in her six classes to confirm that they received her message. A reply-all message that says: “The Smiths received the email and couldn’t be more excited about the start of a new school year. Every morning, Johnny can’t wait to sit in your class,” is a surefire way to sabotage Johnny as he navigates through the middle school minefield.

Then there are the simple emails that don’t require any reply, such as an email with the address of a field or a meeting.

“Got it, Dan. We’ve been there so many times before.”

Of course you know where it is — everyone knows where it is. The directions and the address for the GPS make it possible for everyone to get there.

Seasonal greetings are not, repeat not, an opportunity to hit reply all, especially when the group includes people you’ve never met.

An email that “wishes everyone a healthy and a happy start to the new school year” is not an opportunity to echo the same, exact thoughts to strangers.

“So do we” is not an appropriate reply-all response, nor is “Ditto for us” or “Same to everyone else” or “The Dunaiefs feel the same way.” Adding emojis doesn’t make the email message more personal. It’s like doodling next to your graffiti. Cut it out, people — we’re not all 12.

I’m tempted, when these reply-all messages come through, to write something snarky, but in a distribution list that includes people I don’t know, someone will undoubtedly take it the wrong way because, let’s face it, there’s always someone ready to take offense.

Then there are the reply-all messages that seem to highlight a specialized talent or experience. Someone might, for example, be asking people to bring baked goods to a party, a meeting or a fundraiser. By indicating that you’ll bake miniature tarte tatin, crème brûlée or flourless chocolate soufflé, you seem to be bragging first and contributing to something a distant second.

It reminds me of that old joke about an 80-year-old man who goes to a priest to confess that he spent a magical evening with two 25-year-old women. The priest, in shock, asks the gentleman how long it’s been since last confession.

The man said, “Confession? I’ve never gone to confession. I’m not religious.”

The skeptical priest replied, “So why are you telling me this?”

“Are you kidding?” the man answered. “I’m telling everyone I know.”

by -
0 687
Martian water, in a lab. Maria-Paz Zorzano, of the Centro de Astrobiologia in Madrid, Spain, recreates the conditions in which perchlorate salts would melt water during the Martian summer night. Photo from Maria-Paz Zorzano

By Daniel Dunaief

It’s not exactly an oasis filled with unexplored life in the middle of a barren dessert. Rather, it is likely a small amount of liquid water that forms during the night and evaporates during the day. What makes this water so remarkable and enticing, however, is that, while it’s in our solar system, it is far, far away: about 225 million miles.

The rover Curiosity, which landed on Mars in the summer of 2012 after a 253-day journey from Earth, has gathered weather data from the Gale Crater on the Red Planet for the last year. That data has suggested the likely presence of liquid water.

“The cool part of this is the present-day nature of it,” said Tim Glotch, an associate professor at the Department of Geosciences at Stony Brook University, who studies the role of water in shaping the surface of Mars. “It’s there right now.”

The Rover Environmental Monitoring Station  on NASA’s Curiosity Mars rover includes temperature and humidity sensors mounted on the rover’s mast. Photo from Maria-Paz Zorzano
The Rover Environmental Monitoring Station on NASA’s Curiosity Mars rover includes temperature and humidity sensors mounted on the rover’s mast. Photo from Maria-Paz Zorzano

The liquid water is in the form of brine, which is a mix of water and salts. The perchlorate salts on or near the surface of Mars melt the ice that forms during the cold parts of the Martian night. It’s similar, Glotch said, to the way salts melt black ice during a frigid Long Island evening.

Curiosity, which is about the size of a small car, can’t detect this liquid water because its electronics don’t operate during temperatures that plunge at night to around 100 degrees below zero Fahrenheit.

The findings, which were reported last week in the journal Nature Geosciences, have competing implications. For starters, said lead author Javier Martin-Torres, who works at Lulea University of Technology in Sweden and is a part of the Spanish Research Council in Spain and a member of Curiosity’s science team, the water is in one of the least likely places on Mars.

“We see evidence of conditions for brine in the worst-case scenario on Mars,” Martin-Torres said in a Skype interview last week from Sweden. “We are in the hottest and driest place on the planet. Because we know that perchlorates are all over the planet — which we have seen from satellite images — we think there must be brine everywhere.”

Given the radiation, temperature fluctuations and other atmospheric challenges, however, the conditions for life, even microorganisms, to survive in these small droplets of water are “terrible,” Martin-Torres said.

Still, the fact that “we see a water cycle, in the present atmosphere, is very exciting,” Martin-Torres said. “This has implications in meteorology.”

Deanne Rogers, an assistant professor in the Department of Geosciences at Stony Brook, said the likelihood of water bound to perchlorate salts directly affects her own research.

“Something I work on is sulfate minerals on Mars,” she said. “They can take on water and get rid of them easily by exchanging water vapor with the atmosphere.” She may incorporate perchlorates into future grant proposals.

Briny water, Rogers said, may also explain the dark streaks that appear on Mars at mid and low latitudes. These streaks look like running water going down a slope.

“People try to explain what these are,” she said. “It can’t be pure liquid water. It might be perchlorates taking on water vapor and producing dark streaks.”

By landing on the planet and sending readings back to researchers, Curiosity and other land-based vehicles can offer firsthand evidence of environmental conditions.

“Direct measurements are way more precise than what we can do from orbit,” Rogers said.

In the first week after the paper came out, Martin-Torres said he spent about 85 percent of his work time talking to the media, scientists or people asking questions about his studies. He has also received more than 10 times the typical number of requests from prospective Ph.D. students who would like to work in his lab while scientists from around the world have reached out to form collaborations.

Rogers explained that students might react to this kind of discovery the same way she did to other data and images from Mars in the early stages of her career.

“When Pathfinder landed in 1997, I saw the beautiful, colorful panoramas in the newspaper,” she said. “That’s when I knew what I was going to do. I hope that kids feel the same way.”

Martin-Torres, who said he has already submitted additional research proposals based on this discovery, described the current era of Mars research as the “golden age of Mars exploration.”

by -
0 464

By Daniel Dunaief

In the course of a month, two events have occurred that, perhaps some time in the next several decades, may help people make that incredibly long journey to Mars.

First, Scott Kelly went up in space. OK, so, that’s not such a shocker. Kelly is an astronaut and that’s what astronauts do. What makes Kelly’s trip different, however, is that he plans to spend an entire year at the International Space Station, setting an American record for the longest time away from Earth.

Kelly’s identical twin Mark, a retired astronaut and husband of former Congresswoman Gabrielle Giffords, will of course spend that same year on Earth. Having identical twins in two places for the same period of time presents an incredible opportunity. Mark is in reality the “control” in the experiment, giving NASA, doctors and anyone else interested in the effects of prolonged periods of time in space an opportunity to see how the two brothers react differently to different environments. Identical twins present that rare opportunity to rule out the nature part of the nature-nurture dynamic.

Some day, the information NASA records from the Kelly twins will help us understand the kinds of preparations necessary to safeguard any would-be space traveler from the harmful effects of higher radiation and no gravity for a journey to Mars that by current technology would take some 250 days. After all, our genes have evolved over thousands of years to life on Earth. Just because we’ve figured out to send ourselves deep into space doesn’t mean we can suddenly fine-tune the gift of our biological systems the way we might raise a heat shield on a space module.

A month after Scott Kelly returned to the ISS, where he’d spent considerable time on previous missions, a team of scientists, led by Javier Martin-Torres, a Spanish researcher who is a professor in Sweden and used to work in the United States at NASA, published a study based on a year’s worth of meteorological data from the Red Planet.

As it turns out, Martin-Torres and his team have determined it is highly likely Mars has liquid water — today. It’s not enough water to open a super-exclusive pool club or to plant a couple of dozen grape trees to cultivate a deep-space vineyard for the elite and refined palates of the world’s wealthiest wine lovers.

The scientists recorded readings through the Mars rover Curiosity of water that likely evaporates during the Martian day and forms again during the cold night as perchlorate salts melt any frozen water vapor.

This study, Martin-Torres suggested, may have implications for planetary protection policies. The Committee on Space Research may look carefully at places where spacecraft couldn’t land on Mars out of concern that any vehicle might contaminate the planet by introducing new organisms.

The presence of water speaks to us because it makes up more than 60 percent of our own bodies. Water also is a key element to life on our blue planet, raising the question about whether life, even in the form of small microbes, could use it to survive.

This Martian water, however, isn’t exactly a refreshing stream. It’s probably up to three-and-a-half times as salty as the water in the Dead Sea, Martin-Torres said.

The saltiness, radiation and numerous other factors make that water inhospitable to life, even on a microbial scale.

“The conditions are terrible,” admitted Martin-Torres. Still, “it’s better to have water than not to have it.” Besides, while it’s likely that any life on Mars would struggle to survive in that water, “nature always surprises us.”

by -
0 538

By Daniel Dunaief

What Hillary Clinton needs is a slogan. Now that she’s declared that she is, indeed, running for president, she needs to let the world know what she’s all about.

The problem is she’s spent the last quarter of a century in the public eye. How can someone who lost the presidential primary in 2008, whose husband’s peccadilloes provided endless fodder for the late-night TV hosts and whose every move, comment or speech let us know who she is and what she’s all about?

I have a few suggestions:

• “Campaign Clinton IV”: The first two were about Bill, the third one was a dress rehearsal and the fourth time is the real thing.
• “She’s nicer than you think”: That’s not hard to imagine. She doesn’t exactly come across as warm, fuzzy and relatable. She has the opposite public persona of her husband, whose charm and hospitality play so well on TV.
• “25 years in the making”: A woman who has written two autobiographies and who was the first lady for eight years may finally make it out of the primaries.
• “Long day’s journey into the White House”: Borrowing from Eugene O’Neill, Clinton has gone through many dramas, subplots and struggles on her way to running for the most important job in the land.
• “About Time”: Did you see that charming movie with this title with Rachel McAdams? This slogan could suggest it’s about time a woman became president. Then again, maybe if, like the movie, she could travel back in time, she’d change a few things.
• “Let the first family back in”: The Democrats seem to love her these days. Why not suggest that she and her biggest fan, largest supporter and No. 1 asset and liability, return to the White House together?
• “We’ll be back”: I know Arnold Schwarzenegger is a Republican, but wouldn’t it be cool if he introduced her campaign in his Austrian Terminator accent? (Or, perhaps, borrowing from “Jaws II”: “Just when you thought it was safe to go back to the White House again.”)
• “Interns need not apply”: OK, that’s a cheap shot.
• “The ultimate battle of the sexes”: Let’s see who runs the country better, a wife or her husband? We’ve had fathers and sons — the Adamses and the Bushes — and the Roosevelt cousins. How about we try a married couple?
• “Time for new revelations”: Every so often, it seems as if there’s a new revelation about the Clintons. Think about how many more revelations from staff members, former cooks and the U.S. Secret Service we might have if the Clintons once again occupy the White House?
• “The publishing business needs this”: Book publishing and publishing in general don’t seem to be as profitable as in the past. Bookstores are closing and small publishers are struggling to keep up with the endless space in the Internet. Surely a Clinton campaign and, possibly, a presidency would give new life to an industry that desperately needs a few more blockbuster political books before it finds the next Charles Dickens?
• “It’s time to watch late-night TV again”: “Saturday Night Live” and late-night talk show hosts must be cheering the possibility. They don’t even need to create new characters or find people who can look and act like the Clintons.
• “Grandma knows best”: Forget about her role as first lady, senator or secretary of state, who would dare argue with a grandma?

Let battle commence but it’s going to be a long, drawn-out affair. There are still 572 days to go, whatever the slogan.

Social

9,235FansLike
0FollowersFollow
1,143FollowersFollow
33SubscribersSubscribe