Tags Posts tagged with "Codagenix"

Codagenix

By Daniel Dunaief

Born in Berlin just before World War II, Eckard Wimmer has dedicated himself in the last 20 years to producing something that would benefit humankind. A distinguished professor in molecular genetics and microbiology at Stony Brook University, Wimmer is hoping to produce vaccines to prevent the spread of viruses ranging from influenza, to Zika, to dengue fever, each of which can have significant health consequences for people around the world.

Using the latest technology, Wimmer, Steffen Mueller and J. Robert Coleman started a company called Codagenix in Melville. They aim to use software to alter the genes of viruses to make vaccines. “The technology we developed is unique,” said Wimmer, who serves as senior scientific advisor and co-founder of the new company.

Mueller is the president and chief science officer and Coleman is the chief operating officer. Both worked for years in Wimmer’s lab. Despite the potential to create vaccines that could treat people around the world facing the prospect of debilitating illnesses, Wimmer and his collaborators weren’t able to attract a pharmaceutical company willing to invest in a new technology that, he estimates, will take millions of dollars to figure out its value.“Nobody with a lot of money may want to take the risk, so we overcame that barrier right now,” he said.

Eckard Wimmer in his lab. Photo by Naif Mohammed Almojarthi

Codagenix has $6.2 million in funding. The National Institutes of Health initially contributed $600,000. The company scored an additional $1.4 million from NIH. It also raised $4.2 million from venture capital, which includes $4 million from TopSpin and $100,000 from Accelerate Long Island and a similar amount from the Center for Biotechnology at Stony Brook University.

Stony Brook University recently entered an exclusive licensing agreement with Codagenix to commercialize this viral vaccine platform. Codagenix is scheduled to begin phase I trials on a vaccine for seasonal influenza this year.

The key to this technology came from a SBU collaboration that included Wimmer, Bruce Futcher in the Department of Molecular Genetics & Microbiology and Steven Skiena in the Department of Computer Science. The team figured out a way to use gene manipulation and computer algorithms to alter the genes in a virus. The change weakens the virus, giving the attack dog elements of the immune system a strong scent to seek out and destroy any real viruses in the event of exposure.

Wimmer explained that the process starts with a thorough analysis of a virus’s genes. Once scientists determine the genetic code, they can introduce hundreds or even thousands of changes in the nucleic acids that make up the sequence. A computer helps select the areas to alter, which is a rapid process and, in a computer model, can take only one afternoon. From there, the researchers conduct experiments in tissue culture cells and then move on to experiment on animals, typically mice. This can take six months, which is a short time compared to the classical way, Wimmer said.

At this point, Codagenix has a collaboration with the Universidad de Puerto Rico at the Caribbean Primate Research Center to treat dengue and Zika virus in primates. To be sure, some promising vaccines in the past have been taken off the market because of unexpected side effects or even because they have become ineffective after the virus in the vaccine undergoes mutations that return it to its pathogenic state. Wimmer believes this is unlikely because he is introducing 1,000 changes within a vaccine candidate, which is much higher than other vaccines. In 2000, for example, it was discovered that the polio vaccines involve only five to 50 mutations and that these viruses had a propensity to revert, which was rare, to the type that could cause polio.

Colleagues suggested that this technique was promising. “This approach, given that numerous mutations are involved, has the advantage of both attenuation and genetic stability of the attenuated phenotype,” Charles Rice, the Maurice R. and Corrine P. Greenberg professor in virology at Rockefeller University explained in an email.

While Wimmer is changing the genome, he is not altering the structure of the proteins the attenuated virus produces, which is exactly the same as the virus. This gives the immune system a target it can recognize and destroy that is specific to the virus. Wimmer and his associates are monitoring the effect of the vaccines on mosquitoes that carry and transmit them to humans. “It’s not that we worry about the mosquito getting sick,” he said. “We have to worry whether the mosquito can propagate this virus better than before.” Preliminary results show that this is not the case, he said.

Wimmer said there are many safety precautions the company is taking, including ensuring that the vaccine candidate is safe to administer to humans. Wimmer moved from Berlin to Saxony after his father died when Wimmer was 3. He earned an undergraduate degree in chemistry in 1956 at the University of Rockstock. When he was working on his second postdoctoral fellowship at the University of British Columbia in Vancouver, he heard a talk on viruses, which brought him into the field.

A resident of Old Field, Wimmer lives with his wife Astrid, a retired English professor at Stony Brook. The couple’s daughter Susanne lives in New Hampshire and has three children, while their son Thomas lives in Portland, Oregon, and has one child. “We’re very happy Long Islanders,” said Wimmer, who likes to be near the ocean and Manhattan.

Through a career spanning over 50 years, Wimmer has won numerous awards and distinctions. He demonstrated the chemical structure of the polio genome and worked on polio pathogenesis and human receptor for polio. He also published the first cell-free creation of a virus.

“This was an amazing result that enabled a number of important mechanistic studies on poliovirus replication,” Rice explained. Wimmer has “always been fearless and innovative, with great enthusiasm for virology and discovery.”

With this new effort, Wimmer feels he will continue in his quest to contributing to humanity.