Science & Technology

by -
0 1229
Justin Kinney on the campus of Cold Spring Harbor Laboratory. Photo from Kinney

Justin Kinney is like a supervisor at a factory, except that he doesn’t know what the pieces of equipment do.

The only way he can find out is to modify different parts randomly and see how that affects the final product.

An assistant professor at Cold Spring Harbor Laboratory, Kinney’s factory isn’t in a sprawling suburban building but, rather, is genetic material. The regulatory sequence of DNA is the assembly line; binding sites, which attach to proteins, are like the individual machines. The final output of the factory is gene expression.

Kinney is working to understand regulatory sequences of DNA and is trying to develop an ability to see where proteins bind to genes, explore the role proteins play, and see how proteins and genes interact.

“If we do an experiment on a regulatory sequence, we can identify where proteins bind and how much that sequence affects expression,” Kinney said. “The ultimate goal is to be able to predict these things from DNA sequence alone, without having to do an experiment on every specific sequence we are interested in.”

A physicist by training, Kinney works in an area called molecular biophysics, where he tries to figure out what causes one set of reactions to start, stop or continue based on the way different parts involved, such as proteins, DNA, transcription factors or immune cells, interact.

His work has implications for everything from basic science, to improving drug therapies. He’s also working on understanding basic aspects of the immune system.

Recently, Kinney, partnering with Christopher Vakoc, an assistant professor at CSHL, developed a way to identify new drug targets for treating cancer. “We reached out to [Kinney] about a year or so ago to get his insight and assistance” on a project with drug target discovery, Vakoc said. Using Kinney’s skills as a computational biologist and expertise in biophysics, the researchers “co-developed a way to study the Achilles heel of a large number of cancer types,” Vakoc said.

Since the scientists published their research in May, Vakoc said it has “generated a lot of excitement in cancer research” with other scientists trying to find the vulnerabilities of different types of cancer.

Vakoc said Kinney “developed theories of elegant computational tools” that allowed the researchers to gain greater insight into a modern gene editing tool called CRISPR.

Kinney also worked with Thierry Mora and Aleksandra Walczak at the Ecole Normale Supérieure in Paris on an immunology project.

“How antibodies recognize their targets is an immensely interesting question,” Kinney said. The strength of binding that the antibody has for its target determines how well it works.

Kinney and his partners are mapping out how an antibody’s affinity for its target depends on its protein sequence. “That basic relationship has enormous consequences for how well your immune system works,” Kinney said. It also has implications for how well a pharmaceutical company can engineer an antibody as a potential drug, he added.

By changing the genetic sequence, these researchers can explore how strongly the slightly altered antibody will bind to whatever it’s targeting.

Researchers can explore how DNA responds to a signal mechanistically.

“Just by looking at which sequences correspond to which level, we can identify where specific proteins bind to DNA, what these proteins are and how strongly they interact with each other,” Kinney said. “It’s kind of like decoding a message, making changes to that code, and watching to see the reaction.”

These types of studies can help provide a mechanistic understanding of the relationship between a gene sequence and a gene’s function, he said. Once scientists have a clearer picture of that connection, they might be able to predict what effect a mutation in a specific region might have on a gene.

Kinney visited Cold Spring Harbor Laboratory several times before he became a postdoctoral fellow at the lab in 2009. He took courses dating back to 2005.

“I love the environment,” said Kinney. “I fell in love with this place through courses and meetings. It’s an academic resort.”

Kinney met his wife, Antoinette Sutto, when they were in graduate school at Princeton. They lived on the same floor and Sutto was the first person Kinney met in his graduate dorm. Their first date was at a First Chance Dance for graduate students. Sutto is an assistant professor of history at the University of Mississippi.

A resident of Forest Hills, Kinney enjoys the 45-minute Long Island Railroad commute, where he can read and write without a reliable Internet connection.

As for his work, Kinney said he studies how biological information is encoded in DNA, as well as how this information governs how biological molecules function.

The 15,100-square-foot facility is considered a landmark project of Whitetop Mountain, the Long Island-based commercial real estate firm behind the project. Rendering from Peter Wilk

By Phil Corso

Development has begun in the Village of The Branch community of Smithtown, paving the way for a new medical facility unlike any other in the township.

Long Island-based developer Whitetop Mountain Professional Properties and Islandia-based contractor Stalco Construction announced they had broken ground earlier this week on a new 15,100-square-foot medical and research building at 226 Middle Country Road worth roughly $5 million. The new facility will soon be home to two tenants, North Shore-LIJ Health System’s diagnostic imaging center and the headquarters and product research and development facilities of MIDI, a medical, life sciences and home health care product development consulting firm.

“We are excited to begin the development of the new building, which will complement other medical services facilities already established in the area,” said Christopher Montalbano, Whitetop principal.

Fellow Whitetop principal Gregory Montalbano said the building was a key move for his group that should usher in state-of-the-art services in Smithtown.

“226 Middle Country Rd. is the cornerstone of Whitetop Mountain’s strategy of developing properties for the medical services and product research and development industries,” Gregory Montalbano said. “Our firm focuses on building a portfolio of real estate facilities designed specifically for health care, research and professional services tenants in the greater New York region.”

The structure will house state-of-the-art medical services and research and development facilities. The foundation will feature reinforced-concrete footings and foundation walls. The building will have a steel structural system and six-inch metal frame exterior walls with brick veneer as well as colonial-looking trim to reflect the heritage of the neighborhood, the developer behind the project said.

“The architecture of the new one-story building will reflect the colonial feel of the historic Village of The Branch neighborhood, which dates back to the late 1600s,” said Alan Nahmias, president of Stalco. “The building’s façade will feature brick face, columns and other ornamental architectural elements prevalent in the landmark structures neighboring the new development.”

 

July 10 screening and Q&A will take place at SWR High School

Tesla Science Center President Jane Alcorn, left, and ‘Tower to the People’ director Joseph Sikorski, right, at the Wardenclyffe site after the center purchased the property in 2013. File photo by Erika Karp

By Talia Amorosano

“Can You Believe Most Americans STILL Have Never Heard of Nikola Tesla?!?!” reads the subheading on the Indiegogo campaign Web page dedicated to increasing public awareness of the often overlooked inventor, not to mention raising funds for the restoration of Wardenclyffe, his last surviving laboratory in Shoreham.

Film director Joseph Sikorski said he first learned about Tesla in a bookstore.

“I was shocked that I had gone through the whole educational system without hearing about him,” he said. “He sacrificed so much for humanity. He needed to be vindicated.”

For Sikorski, this vindication came in the form of a film, which is set to premiere on Long Island at Shoreham-Wading River High School this Friday, July 10, at 7 p.m.

“Hopefully, by bringing attention to who he was and dispelling the myths, he’ll have his credit restored,” Sikorski said, regarding the effect he hopes his documentary, “Tower to the People,” will have on viewers.

Thus far, Sikorski has been pleasantly surprised by the reaction his film has received after its first three screenings in New York City, Toronto and Belgrade.

He described the response as “overwhelming,” noting that each venue had “standing room only,” and “people have been crying.”

He said the Long Island premiere would be particularly special, “because it’s happening just a few minutes from where the tower was” and “because all the benefits from the screening will be given to the Tesla Science Center.”

According the Indiegogo Web page, “Tower to the People” is about the past, present, and future of Nikola Tesla’s Wardenclyffe lab, a site from which the genius inventor dreamed of sending free wireless energy to the entire earth.”

It features interviews with celebrity illusionist, Penn Jillette, of Penn & Teller; internet cartoonist, Matthew Inman, of The Oatmeal, who helped launch an online campaign to save the Shoreham site in 2012; award-winning author, Jack Hitt; and Tesla’s closest living relative, William Terbo.

The Tesla Science Center, the nonprofit group that now owns and maintains the site, raised nearly $1.4 million thanks to Inman’s viral campaign and purchased the property in 2013. Sikorski donated $33,000 to Inman’s “Let’s Build a Goddamn Tesla Museum” initiative.

Even the most knowledgeable Tesla fan is sure to learn something new, as the film provides access to rare photographs and documents the first ever ground-penetrating radar investigation into the tunnels under Wardenclyffe.

Sikorski said he hopes the film will motivate viewers to contribute to the effort to restore the Wardenclyffe property.

According to Jane Alcorn, president of the Tesla Science Center at Wardenclyffe, there are still hazardous conditions inside the buildings at this point. But with a $1 million commitment from Elon Musk, inventor, engineer, and CEO of Tesla Motors and SpaceX, to partially fund lab restoration plus funds raised through the Bricks for Nik program, completion within the “next several years” seems promising.

Alcorn expressed hope that the space will eventually encompass a museum, learning center, and maker lab, in which local inventors could learn how to use laboratory equipment to make their visions a reality.

“We would like to support inventors by providing some space for work like that, particularly if it relates to Tesla,” she said.

Sikorski and Alcorn believe that Tesla’s research is still relevant today.

“His ball lightning studies couldn’t be replicated,” Sikorski said. “Because of the way he’s been marginalized, they’ve shunned him and put his research aside.”

Alcorn agreed. “Because he was quite a bit ahead of his time, people looked at him as a bit of a crackpot,” she said. “But much of what he was talking about was very true. … What we’re finding is that a lot of what he was thinking about, including wireless transmission of energy, is a hot topic now. … He’s not taught about in our schools and he deserves to be acknowledged.”

Tickets for the July 10 screening are available at www.Eventbrite.com. Tickets at the door are $12. Seating is limited.

By Elof Carlson

I recently had the pleasure of reading Lee Standlin’s “Storm Kings,” a short work on the history of weather forecasting and how scientists tried to figure out how storms form. The book begins with Benjamin Franklin’s discovery that lightning is electricity. I learned that Franklin was quite a showman as he toured Europe and the Colonies, showing his experiments with electricity.

I knew that much earlier people tried to interpret weather as the acts of gods. For the Norse, Thor was the god of thunder. For the Greeks, Aeolus was the deity who blew gale winds and caused ships to crash and sink under gigantic waves. For the Bible, Genesis describes the “waters above” and the “waters below,” distinguishing oceans from drenching rains as two separate creations of water.

In “Storm Kings,” we follow the bitter controversies of nineteenth century scientists who attempt to explain storm formation. Each participant is hostile to the ideas of rivals and theories collide with the ferocity of storms. But out of those debates, the Army Signal Corps was formed and established first, a series of flags to indicate weather for ships at sea and then, telegraph accounts of weather readings — temperature, barometric pressure, clouds, wind speed and direction — sent to military bases around the United States.

Politics played a role in the rivalry of contending candidates for heading up the Signal Corps and politics limited what it could forecast. Tornadoes were taboo because acknowledging them or determining their frequency would lower land values in the Midwest. The Signal Corps was cut back, had its operations shifted to the Agriculture Department and was renamed the Weather Bureau so it could be more effectively monitored by lobbyists.

After the Civil War, science began to change. Weather was seen as a complex physical process and weather fronts were identified. The collision of warm moist air from the south and cold dry air from the north led to line storms and tornadoes in the Midwest. It was not until World War II that a more thorough weather forecasting was allowed for the Weather Bureau.

What distinguishes the history of weather forecasting as a science from evolution in biology as a science is the relative absence of religious objections to the interpretation of storms and weather phenomena.

Disasters are still thought by some as visitations from God to punish the wicked. But no one would ban the teaching of the physics of storm formation or cloud formation in classrooms.

Astronomy and physics are also downgraded by some religious writers who deny the idea that objects can be more than 10 thousand light years away or that some elements in the earth have a radioactive decay rate measured in millions of years.

The brunt of the attack on science, however, is evolutionary biology, because it deals with life, and we humans are alive and aware of that existence. Most people have no clue what is meant by light years, radioactive half-lives of isotopes of elements, or the dynamics of ocean currents, wind patterns, and rising or descending masses of air. Unfortunately, almost all major religions have their origins hundreds or thousands of years ago when science was relatively new or altogether absent and the religious texts of those times reflect this.

Elof Axel Carlson is a distinguished teaching professor emeritus in the Department of Biochemistry and Cell Biology at Stony Brook University.

Camila dos Santos photo from the scientist

By Daniel Dunaief

Mothers of more than one child have blogged about it for years. When they have their second child, the breastfeeding process is often quicker, with milk available sooner than for the first child. Camila dos Santos, who became an assistant professor at Cold Spring Harbor Laboratory in February, has found a reason.

Cells in the mammary gland go through something called epigenetic changes. That means something affects the genetic machinery, causing them to react differently under the same circumstances. In mouse models, dos Santos discovered changes in cell proliferation and milk production genes to the hormones estrogen and progesterone.

When she was a postdoctoral student in Greg Hannon’s laboratory at CSHL, dos Santos said they “decided to profile the epigenome before and after pregnancy.” At first, she was looking for changes associated with the effects of pregnancy on breast cancer development. The recent work, however, described the presence of epigenetic memory of past pregnancies, which influences milk production in the next pregnancy.

The message from these studies was that those areas where she saw changes “are associated with the genes responsible for lactation and the proliferation of the mammary gland during pregnancy,” said dos Santos.

The implications of this research extend from the potential to enhance breastfeeding in women who struggle during lactation to breast cancer.

Indeed, other studies have shown that women who become pregnant before 25 have a lower risk for all types of breast cancer.

“We believe that such strong protective effect must have an epigenetic basis,” dos Santos said. She would like to “understand how this stable, pregnancy-induced epigenome prevents cancer development,” she continued.

Hannon believes the kind of research dos Santos is conducting holds promise.

“The world of breast cancer prevention is badly in need of very solid underlying molecular biology and I think there’s a fair chance that what [dos Santos] is doing will eventually get us there,” said Hannon, who recently left Cold Spring Harbor Laboratory and is now the Royal Society Wolfson Research Professor at the Cancer Research UK Cambridge Institute at the University of Cambridge.

Dos Santos said her research is exploring ways to turn the changes that occur during pregnancies before the age of 25 into a “preventive strategy to treat women that are high risk and even those that are not.”

To be sure, Hannon and dos Santos cautioned, it’s difficult to know how quickly or even whether this kind of research will lead to any treatment or prevention options.

“The main goal of my lab is to try to understand the effects of pregnancy on normal cells, to devise a strategy to prevent breast cancer from arising,” dos Santos said. She recently published her work in the journal Cell Reports.

Dos Santos and Andrew Smith, a computational biologist from the University of Southern California, along with his postdoctoral fellow Egor Dolzhenko discovered that mice that had been through a single pregnancy had methylation marks that were different from mice of the same age that hadn’t been pregnant. The group connected the changes in the genome to a transcription factor called Stat5a. A transcription factor is a protein that acts like a genetic traffic light, turning on or off genes.

When she joined Hannon’s lab in 2008, dos Santos wanted to study gene regulation throughout cell development. It took her three years to purify stem cells.

Hannon credits dos Santos for developing new techniques.

“She had to build the tools she needed to ask” these questions, Hannon said.

Dos Santos lives in campus housing with her husband, Christopher Vakoc, who is an assistant professor at CSHL. The couple take their young sons hiking and can’t wait for the spring and summer because they hike, swim and kayak. Vakoc and dos Santos met when they were in adjoining labs in Philadelphia.

“We used to have joint lab meetings and one day he asked me on a date,” she recalled.

This summer, dos Santos’ lab will include a premed undergraduate student from Hofstra and high school students from Cold Spring Harbor High School and  Southampton High School. She recently hired a postdoctoral fellow.

“I envision my lab growing according to my needs,” she said. “Right now, I want to continue to work at the bench while training students and postdocs.”

Sacre bleu! Incoming Stony Brook researcher studies mind control in ladybugs

Nolwenn M. Dheilly photo from Dheilly

Mind control may not be unique to scriptwriters, hypnotists or even, as it turns out, humans. A parasitic wasp may have teamed up with a virus to turn an unsuspecting ladybug into a meal ticket and a sentry for its developing larva.

Wasps inject their larva into a ladybug where they turn the insect’s body fat into food for their young. When the larva extracts itself from the abdomen of the ladybug and spins a cocoon in which it pupates into an adult wasp, the ladybug remains in place on top of the cocoon, deterring predators by twitching.

These parasitized ladybugs often recover from the invasion, repairing the external and neurological damage.
Nolwenn M. Dheilly, who specializes in studying host-parasite interactions and is interested in the role of associated microorganisms, discovered the presence of the virus in this convoluted story of parasite and host.

Dheilly showed that the virus is transmitted to the ladybug during parasitism and the virus copies itself in the nervous system of the ladybug, whose immune system is suppressed during the invasion.

Dheilly, who will join Stony Brook University as an assistant professor in August from her native France, is part of a six-person multidepartment hire in genomics led by Bassem Allam, a professor at Stony Brook in the School of Atmospheric and Oceanic Sciences (SoMAS) and Jackie Collier, an associate professor at SoMAS.

“The search committee and my colleagues at SoMAS were impressed by the quality of [Dheilly’s] work and the forward thinking of her ideas,” explained Allam. She “brings state-of-the-art research tools to answer questions pertaining to the evolution of symbiotic associations.”

Lessons in middle school and high school biology classes often include a discussion of symbiotic relationships, which come in three different types: parasitism, like the wasp and the ladybug, mutualism, where both organisms benefit, and commensalism, where one benefits and the other neither benefits nor is harmed. Dheilly said the classification of symbiosis does not account for the inherent complexity in nature, where there is much more of a continuum from mutualism to parasitism.

Dheilly’s work suggests that other organisms, like the virus for the parasitic wasp, may affect the output of the infection.

“Many other parasites may use other microorganisms, including viruses, as partners,” Dheilly said. Many protozoan parasites, including human pathogens such as Plasmodium, are associated with viruses, she said. When a parasite infects its host, it can become co-infected with the virus.

“It remains to be demonstrated if these viruses are used as biological weapons,” Dheilly said.

To be sure, in the case of the wasp, the ladybug and the virus, Dheilly cautioned that other studies are necessary before completing a relationship diagram that specifies the way the virus and wasp might work together during parasitism.

“Many complementary studies are now necessary to demonstrate who between the wasp and the virus” is responsible for the particular effect on the ladybug,” she said. “We believe that the virus alone would be eliminated by the [ladybug’s] immune system and wouldn’t be able to induce the paralysis. We have no idea if the parasitoid wasp would be able to infect the [ladybug] without its associated virus.”

When Dheilly arrives on Aug. 12, she and Allam plan to work together to study disease susceptibility in oysters. They would like to study the role of mucosal secretions in early host-symbiont interactions.

Dheilly attributes some of her interest in marine science to her upbringing in Brest, Brittany, in northwestern France, which, she said, is much like Long Island. When she was young, Dheilly competed in windsurfing competitions and, later, worked for several summers as a windsurfing instructor. In her windsurfing days, Dheilly was the only girl at most competitions. Her windsurfing experience “made sure I had the right personality to be involved in an environment surrounded by men and not feeling as if I didn’t fit in.”

Dheilly explained that understanding viruses and microorganisms extends beyond the world of invertebrates.

“The co-evolution of host and parasites with microorganisms is applicable to any biological system, including humans,” she said. Even though she will focus most of her work at Stony Brook on marine organisms, she said she “would be happy to collaborate with researchers in other fields to verify my hypotheses.”

Juergen Thieme stands near the beginning of the beamline and is pointing in the direction the light travels to the end station, where scientists conduct their experiments. Photo from BNL

He’s waited six years. He left his home country of Germany, bringing his wife and children to Long Island.

Now, months after first light and just weeks before the first experiments, Juergen Thieme is on the threshold of seeing those long-awaited returns.

A physicist at Brookhaven National Laboratory and adjunct professor at Stony Brook, Thieme is responsible for one of the seven beamlines that are transitioning into operation at the newly minted National Synchrotron Light Source II. The facility allows researchers to study matter at incredibly fine resolution through X-ray imaging and high-resolution energy analysis.

“We have invested so much time and so much energy into getting this thing going,” Thieme said. “When you open the shutter and light is coming to the place where it’s supposed to be, that is fantastic.”

The beamline is already overbooked, Thieme said. Scientists have three proposal submission deadlines throughout the year. The most recent one, which ended on June 1, generated over 20 submissions, which Thieme and the beamline team read through to check their feasibility and then send out for a peer review.

The proposals include studies in biology, energy, chemistry, geosciences, condensed matter and materials science.

One of the drivers for the construction of the $912 million facility was developing a greater understanding of how batteries work and how to store energy.

“Although batteries are working very well already, there is room for improvement,” Thieme said. The importance of energy storage suggests that “even a small improvement can have a huge impact.”

Indeed, when he returns to Germany and drives through the countryside, he sees thousands of windmills creating energy. Wind speed and energy demands are not correlated, he said. “There is a need for an intermediate storage of energy.”

The NSLS-II also has the potential to improve commercial industries. Mining rare earth elements, which have a range of application including in cell phones, is a potentially environmentally hazardous process. By using the NSLS-II, scientists can see how bacteria might change oxidation states to make the materials insoluble, making them easier to obtain.

For years, Thieme was on the other side of this process, sending proposals to beamlines to use his training in X-ray physics and X-ray optics to conduct environmental science projects, including analyzing soils.

Six years ago, Qun Shen, the Experimental Facilities Division director for the NSLS-II, asked Thieme if he would consider joining BNL. The two had met when Thieme brought students to the Argonne National Laboratory in Chicago, where Shen was the head of the X-Ray Microscopy and Imaging Group.

Thieme said he presented the opportunity to his family. His three children voted with a clear yes, while his wife Kirsten was hesitant. Eventually, they decided to go.

Following that offer, Thieme looked at the future site of the facility and saw a green lawn. “I was asking myself, ‘What do I do for the next six years?’” he recalled. “I can tell you I was extremely busy.”

He said he worked on design, planning and evaluations, which included numerous calculations to decide on what to build. “One of the big aspects of constructing a facility at NSLS-II is to reach out to the broader community and try to solicit input from them and try to develop the scientific capabilities to meet their needs,” said Shen. “He has certainly done very well.”

Thieme’s beamline will accelerate the process of collecting information for scientists, Shen said. For some projects, the existing technology would take a few days to produce an image. The beamline Thieme oversees will shorten that period enough that researchers can “test out and revise their hypothesis during the process,” Shen added.

Thieme is eager not only to help other scientists unlock secrets of matter but is also hungry to return to his environmental science interests.

Thieme and Kirsten live in Sound Beach with their 16-year-old son Nils, who is in high school. Their daughters, 23-year-old Svenja, who is studying English and history, and 21-year-old Annika, who is studying to become a journalist, have returned to Germany.

Thieme is inspired by the NSLS-II. “We are building a state of the art experimental station” he said. “To be competitive with other upcoming facilities, we have always to think about how to improve the beamline that we have right now.”

Suffolk officials discuss environmental issues facing Long Island after thousands of dead fish washed ashore in Riverhead. Photo by Alex Petroski

The estimated nearly 100,000 dead bunker fish that have washed ashore in Riverhead may seem astounding, but it wasn’t all that surprising to the panel of experts brought before the Suffolk County Health Committee on Thursday.

In late May, the thousands of dead bunker fish, formally known as Atlantic menhaden fish, began appearing in the Peconic Estuary, an area situated between the North and South Forks of Long Island. According to a June 2 press release from the Peconic Estuary Program, the bunker fish died as a result of low dissolved oxygen in the water. This shortage of oxygen is called hypoxia.

Walter Dawydiak, director of the county’s environmental quality division, who serves on the panel, which was organized by the health committee chairman, Legislator William “Doc” Spencer (D-Centerport), testified that the number of dead fish was at or approaching 100,000.

“This one is bigger and worse than any,” Dawydiak said.

According to the PEP, which is part of the National Estuary Program and seeks to conserve the estuary, bunker are filter-feeding fish and an important food source for many predatory fish, including striped bass and blue fish.

Alison Branco, the program’s director, said the fish are likely being chased into shallow waters by predators, but are dying because of low dissolved oxygen levels in the waters. In addition, an algae bloom is contributing to the low levels and is fueled by excess nitrogen loading. Much of that nitrogen comes from septic systems, sewage treatment plants and fertilizer use.

“We’ve reach a point where this kind of hypoxia was run of the mill. We expect it every summer,” Branco, who also served as a panelist, said following the hearing.

While magnitude of the fish kill was astounding, the experts said they weren’t so surprised that it happened.

“I definitely thought it could happen at any time,” Christopher Gobler, a biologist at Stony Brook University, said in a one-on-one interview after the panel hearing. “There’s been an oxygen problem there all along.”

Gobler called it largest fish kill he’d seen in 20 years.

According to panel members, the worst of the fish kill occurred between May 27 and May 30.

Branco did suggest that this shocking environmental event could be turned into a positive if the right measures are taken sooner rather than later.

“It’s always shocking to see a fish kill,” she said. “As much as we don’t want to have things like that happen I think the silver lining is that it did capture the public’s attention.”

Prevention of a fish kill this large is possible, according to Branco. While preventing the harmful algal blooms is not possible, reducing the frequency and severity can be done if the amount of nitrogen in the coastal water supply is controlled.

Adrienne Esposito, executive director of Citizens Campaign for the Environment, an environmental policy advocacy group, agreed that curtailing the amount of nitrogen in the water is the easiest and most impactful way for prevention of a fish kill of this magnitude.

“The journey of a thousand miles starts with the first step,” Esposito said in response to a question about the daunting task of fixing the Island’s sewage treatment techniques and facilities on a limited budget.

Esposito described the roughly $5 million from New York State, which was allotted to Suffolk County to deal with cleaning the coastal water supply, as seed money. Esposito and Branco both said they believe the commitment of time and money required to solve the nitrogen problem in the water supply will be vast.

“We can do this,” she said. “We have to do it. We have no choice.”

Discovering the science of wind at the Maritime Explorium. Photo by Jacqueline Grennon-Brooks

By Erin Dueñas

Calling all artisans, DIYers, amateur scientists, inventors, innovators and everyone in between: The first large-scale Makers Festival is set to debut on Long Island this Saturday from 10 a.m. to 4 p.m. at the Port Jefferson Village Center and Harborfront Park.

Presented and co-sponsored by the Maritime Explorium in Port Jefferson, the Long Island Makers Festival 2015 will feature a broad range of interactive exhibits including 3D printing, robotics, green screen technology, performance art, African drummers, roller skating, organic gardening and even geologists setting off volcanoes. The Explorium will also be open; there will be a “meet the scientist” booth and a horseshoe crab walk is scheduled. According to festival event coordinator Cindy Morris, the aim of the festival is to encourage the people who are already actively “making” as well as to show the community that innovation can happen anywhere.

“The common thread of the Maker Movement is accessible innovation,” Morris said. “The reality is that people have great ideas. We want to empower the ones who are creating. We found some amazing people.”

Morris said that financial backers and high-tech equipment is no longer necessary for anyone looking to invent and create. “This is something anyone can do. You don’t need a $5,000 piece of equipment. People are doing these things in their living rooms and garages.”

Mixing technology, coding and moving with kidOYO. Photo by Melora Loffreto
Mixing technology, coding and moving with kidOYO. Photo by Melora Loffreto

The Maker Movement is a mash up of lovers of art, science, technology, engineering, entrepreneurship and innovation who quite literally make things based on that love. “These are people who are inventors, artists and scientists who are doing incredible things. We believe it was time to showcase what is going on here on Long Island.” Morris said the festival will include a group of men who make holograms and students who created their own 3D printer. “We are taking concepts that feel big and powerful and making them accessible.”

Morris said that the festival motto is “Try it.” “The event is going to be very hands-on. No one could run an exhibit without it being interactive,” Morris said. “We are not just showing what was made, but we are focusing on what you can be doing.”

According to Lauren Hubbard, executive director of the Explorium, the festival will be an extension of what the Explorium does every day. A hands-on museum that features what Hubbard calls “open-ended exhibits,” the Explorium encourages visitors to build and create whatever they want. “You can do the same activity and get a different outcome every time,” Hubbard said. “There are just a million things that can be built.”

She said that the Makers Festival will offer visitors the same experience. “It’s all going to be hands-on and open ended,” Hubbard said. “We wanted to provide a venue for all Maker people to come together for a family friendly day. There’s going to be something for everyone.”

Melora Loffreto is the founder of the festival co-sponsor KidOYO, a program geared toward children ages 7 to 17 that teaches computer programming and coding. She said that Makers festivals and fairs have been popping up in small-scale locations such as schools and libraries across Long Island, but the Port Jefferson festival is the largest so far. “They take place in larger cities and there is a big one in Queens, but this is really the first to come out this way,” Loffreto said.

She described the Makers Movement as particularly important to Long Island. “Our youth is funneling off the Island. The festival is going to say that we have lots of Makers here, we have the skill set and we want to inspire people to keep the talent local.” She said the Makers Movement and the upcoming festival will help to keep skills in the United States. “We want to spur on inventors and to inspire local youth to go down a path of inventing and engineering.”

Olness remembered as brilliant scientist, education advocate

John Olness with his wife Margaret. Photo from Richard Olness

He did what he loved, and was loved for it.

John William Olness, a nuclear physicist and a Long Island resident since 1961, died on Feb. 15 at the age of 85.

Olness is survived by his wife Margaret, their sons Robert, Richard, Frederick and Christopher and their daughter Kristin.

“He was a creative parent,” son Richard said in a phone interview. “I wouldn’t trade him for the world.”

Olness was born in 1929, in Saskatchewan, Canada, while his father was teaching at a junior college. The family returned to their farm in northern Minnesota when John was young, and that is where he grew up.

Olness received a doctorate in nuclear physics from Duke University in 1957 where he met Margaret. He moved to Long Island from Dayton, Ohio, in 1961, then he began his career at Brookhaven National Laboratory in 1963 where he stayed until his retirement in 2000 after 37 years of service. John and Margaret married in 1958 and moved to Stony Brook in 1968.

John Olness poses for a photo with his family and family friends. Photo from Richard Olness
John Olness poses for a photo with his family and family friends. Photo from Richard Olness

“He got to do what he wanted,” Margaret said in a phone interview. “He was one of the lucky people who loved what he did for a living. You can’t beat that.”

“John worked with many of the visiting scientists who came to BNL to use the facilities, including Sir Denys Wilkinson (Oxford University), D. Allan Bromley (Yale and, later, science adviser to President George H.W. Bush) and future Space Shuttle astronaut Joseph Allen,” son Robert said of his father’s time at BNL, in an email.

Margaret identified her husband’s passions as physics first and music second.

In his leisure time Olness was a Little League baseball coach; and a founding member and trombone player with the Memories of Swing, a big band that performed around Long Island. He also served as a vice president of the Three Village school board in 1975-76. Kristin said that his desire to be on the school board was in large part to fight for the budgets of the music, sports and arts programs that are seemingly always the first to go when money gets thin.

Olness loved baseball, tennis and basketball, and often spent hours on the phone discussing the Detroit Tigers baseball team with his father, who lived in Michigan. He also played football in high school and college, Margaret said.

Olness was a supportive father and husband, according to Margaret. Their children have gone on to enjoy rewarding careers in wide-ranging walks of life, thanks in no small part to that parental support.

Frederick is a professor and physics department chair at Southern Methodist University in Dallas, Texas; Robert is a major in the Army Reserve, awaiting his next deployment; Kristin has just finished a year on Broadway in “Cabaret,” and was also a member of the cast in the show’s 1998 revival; Richard is an actuary for the Department of Defense; and Christopher is a professional trombonist on Broadway currently playing in “On the Town,” the hit musical comedy.

“Dad put emphasis on education, and he and Mom supported us in exploring the arts and recreational sports,” Richard said in an email. “And in the later years, he encouraged us each to find a career we would enjoy.”

A memorial service will be held for John Olness on Thursday, July 2, at Setauket Presbyterian Church.