Search

scientists collaborate - search results

If you're not happy with the results, please do another search

From left, Deyu Lu (sitting), Anatoly Frenkel (standing), Yuwei Lin and Janis Timoshenko. Photo from BNL

By Daniel Dunaief

What changes and how it changes from moment to moment can be the focus of curiosity — or survival. A zebra in Africa needs to detect subtle shifts in the environment, forcing it to focus on the possibility of a nearby predator like a lion.

Similarly, scientists are eager to understand, on an incredibly small scale, the way important participants in chemical processes change as they create products, remove pollutants from the air or engines or participate in reactions that make electronic equipment better or more efficient.

Throughout a process, a catalyst can alter its shape, sometimes leading to a desired product and other times resulting in an unwanted dead end. Understanding the structural forks in the road during these interactions can enable researchers to create conditions that favor specific structural configurations that facilitate particular products.

First, however, scientists need to see how catalysts involved in these reactions change.

That’s where Anatoly Frenkel, a professor at Stony Brook University’s Department of Materials Science and Chemical Engineering with a joint appointment in Brookhaven National Laboratory’s Chemistry Division, and Janis Timosheko, a postdoctoral researcher in Frenkel’s lab, come in.

Working with Deyu Lu at the Center for Functional Nanomaterials and Yuwei Lin and Shinjae Yoo, both from BNL”s Computational Science Initiative, Timoshenko leads a novel effort to use machine learning to observe subtle structural clues about catalysts.

“It will be possible in the future to monitor in real time the evolution of the catalyst in reaction conditions,” Frenkel said. “We hope to implement this concept of reaction on demand.”

According to Frenkel, beamline scientist Klaus Attenkofer at BNL and Lu are planning a project to monitor the evolution of catalysts in reaction conditions using this method.

By recognizing the specific structural changes that favor desirable reactions, Frenkel said researchers could direct the evolution of a process on demand.

“I am particularly intrigued by a new opportunity to control the selectivity (or stability) of the existing catalyst by tuning its structure or shape up to enhance formation of a desired product,” he explained in an email.

The neural network the team has created links the structure and the spectrum that characterizes the structure. On their own, researchers couldn’t find a structure through the spectrum without the help of highly trained computers.

Through machine learning, X-rays with relatively lower energies can provide information about the structure of nanoparticles under greater heat and pressure, which would typically cause distortions for X-rays that use higher energy, Timoshenko said.

The contribution and experience of Lin, Yoo and Lu was “crucial” for the development of the overall idea of the method and fine tuning its details, Timoshenko said. The teaching part was a collective effort that involved Timoshenko and Frenkel.

Frenkel credits Timoshenko for uniting the diverse fields of machine learning and nanomaterials science to make this tool a reality. For several months, when the groups got together for bi-weekly meetings, they “couldn’t find common ground.” At some point, however, Frenkel said Timoshenko “got it, implemented it and it worked.”

The scientists used hundreds of structure models. For these, they calculated hundreds of thousands of X-ray absorption spectra, as each atom had its own spectrum, which could combine in different ways, Timoshenko suggested.

They back-checked this approach by testing nanoparticles where the structure was already known through conventional analysis of X-ray absorption spectra and from electron microscopy studies, Timoshenko said.

The ultimate goal, he said, is to understand the relationship between the structure of a material and its useful properties. The new method, combined with other approaches, can provide an understanding of the structure.

Timoshenko said additional data, including information about the catalytic activity of particles with different structures and the results of theoretical modeling of chemical processes, would be necessary to take the next steps. “It is quite possible that some other machine learning methods can help us to make sense of these new pieces of information as well,” he said.

According to Frenkel, Timoshenko, who transferred from Yeshiva University to Stony Brook University in 2016 with Frenkel, has had a remarkably productive three years as a postdoctoral researcher. His time at SBU will end by the summer, when he seeks another position.

A native of Latvia, Timoshenko is married to Edite Paule, who works in a child care center. The scientist is exploring various options after his time at Stony Brook concludes, which could include a move to Europe.

A resident of Rocky Point during his postdoctoral research, Timoshenko described Long Island as “extremely beautiful” with a green landscape and the nearby ocean. He also appreciated the opportunity to travel to New York City to see Broadway shows. His favorite, which he saw last year, is “Miss Saigon.”

Timoshenko has dedicated his career to using data analysis approaches to understanding real life problems. Machine learning is “yet another approach” and he would like to see if this work “will be useful” for someone conducting additional experiments, he said.

At some point, Timoshenko would also like to delve into developing novel materials that might have an application in industry. The paper he published with Frenkel and others focused only on the studies of relatively simple monometallic particles. He is working on the development of that method to analyze more complex systems.

This work, he suggested, is one of the first applications of machine learning methods for the interpretation of experimental data, not just in the field of X-ray absorption spectroscopy. “Machine learning, data science and artificial intelligence are very hot and rapidly developing fields, whose potential in experimental research we have just started to explore.”

 

by -
0 499
From left, Ellen Li, Jennie Williams and Ping Ji, a technician (sitting). Photo by Daniel Irizarry

It’s a dream team tackling a nightmare scenario. While colorectal and pancreatic cancers are killers across different races, they are considerably worse for African Americans.

African Americans with colorectal cancer are about 40 percent more likely to die from it compared to those from other racial groups, according to recent data from the Surveillance, Epidemiology and End Results Program. The incidence of pancreatic cancer in African Americans is also 31 to 65 percent higher than in other racial groups.

A Stony Brook University research team led by Ellen Li, a professor of medicine and chief of the Division of Gastroenterology and Hepatology, is trying to understand the causes of these variations and, in the process, hopes to provide the kinds of clinical benefits that would help everyone.

“We think there are multiple factors,” Li said. Scientists at Stony Brook, Cold Spring Harbor Laboratory and SUNY Downstate Health Disparities Center are creating one of “the most comprehensive data sets” that people can analyze.

The team includes Jennie Williams, an associate professor in the Department of Family, Population and Preventive Medicine, Joel Saltz, the chair of Bioinformatics at Stony Brook, Richard McCombie, director of the Stanley Institute for Cognitive Genomics at Cold Spring Harbor Laboratory, David Tuveson, the director of the Lustgarten Foundation Pancreatic Research Laboratory at CSHL and several other researchers at  Downstate.

Williams said she began reading up on the response to cancer treatment by various groups in 2004. She understood that African Americans don’t respond to numerous chemotherapy prevention agents and some treatments for colon cancer. “They either don’t respond or they become resistant to chemotherapy,” she said.

When Williams started looking into this in 2008, she focused on microRNAs, which bind to messenger RNA and suppress translation. MicroRNAs are noncoding regulatory RNAs. The dysregulation of these important sequences result in the silencing of tumor suppressor proteins and the overexpression of oncogenes.

Her biggest finding was that the expression of tumor suppressor proteins inversely correlated with the overexpression of a microRNA called miR-182. This microRNA, she said, was significantly higher in tumor samples from African Americans.

With a molecular target and a potential mechanism, Williams thought she was well on her way to digging in. She ran into a significant stumbling block, however. “To do cancer chemotherapeutic studies, you need cell lines to work with,” she said.

Williams went to several companies to find colon cancer cell lines and asked, specifically, for those from African American patients. She found that the only cell lines labeled with race were those from Caucasians.

“To study chemoresponse, one needs a broad spectrum of cell lines,” Williams said.

She started generating cell lines in her lab, with three from African Americans and two from Hispanic patients, as well as some from Caucasians.

While Williams said she loves living in Stony Brook, she has found the lack of diversity among the patient population limiting in addressing cancer racial disparity. With Li’s help, she partnered with Downstate, where 75 percent of the patient population is African American.

She hopes to generate 10 African American, 10 Hispanic American and 10 Caucasian cell lines. Stony Brook and Downstate will collaborate to exchange ideas and personnel.

Williams said part of the challenge in gathering tissue samples from the African American population comes from a history of worrisome interactions with scientists.

Many African Americans have heard of the Tuskegee Institute study of African American men who came to the institute with syphilis between 1932 and 1972 but were not treated with penicillin, even after the drug became an effective and standard treatment in 1947. When the public became aware of the study, it ended and the government established strict informed consent rules about participating in scientific research.

Li said in their study on racial disparities in gastrointestinal cancers, selected staff certified in human research de-identifies everything so no one knows who each participant is. The data collection is a labor-intensive work, Li said, that is designed to provide greater insight into what might be causing these differences.

In terms of explaining the differences, Li and Williams believe it is both “genetic and epigenetic.”

In Africa, colon cancer is rare compared to its occurrence in the United States, Williams said, which suggests that diet and lifestyle contribute to the disease and its progression.

Raised in Savannah, Georgia, Williams said she was always interested in what made things change, from the tadpole in the pond to insects and birds that flew. While her parents didn’t attend college, that wasn’t an option for her: “It was never if” she went to college, “but when.”

Li, who is married to Stony Brook President Sam Stanley and has four children, said health insurance is one of numerous problems that affect individual populations. Numerous other factors could play a role in explaining the racial disparities in cancer outcomes.

Diabetes, which occurs at a higher rate in African Americans, increases the risk of colon cancer, Li said. It is unclear how much the incidence of diabetes in the African American population may contribute to the disparity, Li said.

Adélie penguins jump off an iceberg of one of the Danger Islands. Photo by Rachel Herman from Stony Brook University/ Louisiana State University

By Daniel Dunaief

In October of 1957 when the Soviet Union launched the satellite Sputnik, people imagined that satellites hovering over their heads could see everything and anything down below. Indeed, in the early days, some Americans rushed to close their blinds, hoping the Kremlin couldn’t see what they might be eating for dinner or watching on TV.

Satellites today collect such a wealth of information about the world below that it’s often not easy to analyze and interpret it.

That’s the case with the Danger Islands in the Antarctic. Difficult for people to approach by boat because of treacherous rocks around the islands and sea ice that might trap a ship, these islands are home to a super colony of Adélie penguins that number 1.5 million.

Nesting Adelie penguins. Photo by Michael Polito from Louisiana State University

This discovery of birds that were photographed in a reconnaissance plane in 1957 but haven’t been studied or counted since “highlights the ultimate challenge of drinking from the firehose of satellite-based information,” said Heather Lynch, an associate professor of ecology and evolution at Stony Brook University and a co-author on a Scientific Reports publication announcing the discovery of these supernumerary waterfowl.

Adélie penguins are often linked to the narrative about climate change. Lynch said finding this large colony confirms what researchers knew about Adélie biology. In West Antarctic, it is warming and the population is declining. On the eastern side, it’s colder and icier, which are conditions more suited for Adélie survival. The Danger Islands are just over the edge of those distinct regions, on the eastern side, where it is still cold and icy.

A population discovery of this size has implications for management policies. At this point, different groups are designing management strategies for both sides of the peninsula. A German delegation is leading the work for a marine protected area on the east side. An Argentinian team is leading the western delegation.

Adelie penguins on sea ice next to Comb Island. Photo by Michael Polito, Louisiana State University

This discovery supports the MPA proposal, explained Mercedes Santos, a researcher from the Instituto Antártico Argentino and a co-convener of the Domain 1 MPA Expert Group. The MPA proposal was introduced in 2017 and is under discussion in the Commission for the Conservation of Antarctic Marine Living Resources, where the United States is one of 25 members.

Said Santos in a recent email, “This publication will help us to show the importance of the area for protection, considering that decisions should be made [with the] best available information.” The location of the Danger Islands protects it from the strongest effects of climate change, as the archipelago is in a buffer zone between areas that are experiencing warming and those where the climate remains consistent over longer periods of time.

Whales and other mammals that eat krill create an unknown factor in developing fisheries plans. While penguins spend considerable time above water and are easier to monitor and count, the population of whales remains more of a mystery.

Heather Lynch with a penguin. Photo from Heather Lynch

Lynch said the more she studies penguins, the more skeptical she is that they can “stand in” as ecosystem indicators. Their populations tend to be variable. While it would be simpler to count penguins as a way to measure ecosystem dynamics, researchers also need to track populations of other key species, such as whales, she suggested. Humpback whales are “in competition with penguins for prey resources,” Lynch said.

The penguin data is “one piece of information for one species,” but MPAs are concerned with the food web for the entire region, which also includes crabeater seals. For the penguin population study, Lynch recruited members of her lab to contribute to the process of counting the penguins manually. “I figured I should do my fair share,” she said, of work she describes as “painstaking.” Indeed, Lynch and her students counted over 280,000 penguins by hand. She and her team used the hand counting effort to confirm the numbers generated by the computer algorithm.

“The counting was done to make sure the computer was doing its job well,” she said. She also wanted to characterize the errors of this process as all census counts come with errors and suggested that the future of this type of work is with computer vision.

Lynch appreciated the work of numerous collaborators to count this super colony. Even before scientists trekked out to the field to count these black and white birds, she and Matthew Schwaller from NASA studied guano stains on the Danger Islands in 2015 using existing NASA images.

The scientific team at Heroina Island in Antarctica. Photo by Alex Borowicz, Stony Brook University

This penguin team included Tom Hart from Oxford University and Michael Polito from Louisiana State University, who have collaborated in the field for years, so it was “natural that we would work together to try and execute an expedition.” Stephanie Jenouvrier, a seabird ecologist at the Woods Hole Oceanographic Institute, has considerable expertise in the modeling side, especially with the climate; and Hanumant Singh, a professor of mechanical and industrial engineering at Northeastern University has experience using drones in remote areas, Lynch said.

The penguins on the Danger Islands react to the presence of humans in a similar way to the ones elsewhere throughout the Antarctic. The birds generally don’t like creatures that are taller than they are, in part because they fear skuas, which are larger predatory birds that work together to steal an egg off a nest. Counting the penguins requires the researchers to stand, but when the scientists sit on the ground, the penguins “will approach you. You have to make sure you’re short enough.”

Lynch would like to understand the dynamics of penguin nest choices that play out over generations. She’s hoping to use a snapshot of the layout of the nests to determine how a population is changing. Ideally, she’d like to “look at a penguin colony to see whether it’s healthy and declining.” She believes she is getting close.

Above, R.C. Murphy Junior High students Gregory Garra and Gianna Raftery with Catherine Markham in Dawn Nachtigall’s seventh-grade science class last year. Photo from Three Village school district

By Daniel Dunaief

A recent study of 57 species around the world, published in the journal Science, showed that mammals moved distances two to three times shorter in human-modified landscapes.

Catherine Markham, an assistant professor in the Department of Anthropology at Stony Brook University, contributed to this research, adding information about the ranges for baboons in the Amboseli Baboon Research Project in Kenya.

Marlee Tucker, an ecologist at the Senckenberg Nature Research Society based in Frankfurt, Germany, led the effort, which involved working with 114 other scientists who are studying mammals around the world. Tucker “brought together all these research groups on a scale and scope that had not been undertaken before,” Markham said. “She evaluated in an unprecedented way what the implications of human expansion and development are for wildlife movement.”

According to Tucker, a reduction in animal movement could have ecological implications. “It is likely that ecosystem functions such as nutrients and seed dispersal will be altered,” she explained in an email. “However, whether these impacts are negative, positive or neutral requires further research.”

Tucker suggested that it is “important to maintain landscape connectivity so that animals can move freely,” which could include the creation of corridors that link natural landscapes.

While the study made it clear in a comprehensive way that mammals tend to move less when humans interact with them, it didn’t offer specific indications about the causes of that reduction. Some of that, scientists say, could come from fear, as mammals may avoid humans. Alternatively, some mammals might find a new and concentrated food source at garbage dumps and elsewhere that would reduce the need to travel.

Susan Alberts, a professor of biology at Duke University and a collaborator with Markham on baboon research, said that the “take home message” is that “this is a pervasive phenomenon and occurs on a large scale in the mammalian world.”

Markham has been studying baboons in Kenya at the Amboseli site since 2004. When Tucker reached out to her to see if she could contribute to this work, Markham saw an opportunity to collaborate using information she was already gathering.

Above, baboons with a radio collar in the Amboseli National Park in Kenya. Photo by Catherine Markham

As it turns out, baboons in the research project in Kenya live in what Markham describes as a “relatively pristine area” so they did not see “over the time period an increase in the human footprint index.”

Markham shared information about 22 baboons for about 900 days as a part of this research. Tucker’s overarching conclusion included areas where people weren’t encroaching on a mammal’s range. “When she compared the movement of animals living in relatively pristine environments — like the baboons in Amboseli — to the movement of animals living in areas of higher human encroachment, that lead to exciting conclusions,” Markham said. Tucker indicated that future research should focus on exploring the underlying mechanism of the reduction in movement.

In the meantime, Markham is continuing her studies on baboons, exploring the energetic consequences of group size. Larger groups tend to beat out smaller groups when they are competing for food and water in a particular habitat. At the same time, however, those larger groups have stress levels caused by group competition, as one baboon might find the constant proximity and rivalry with another baboon stressful. Baboon group sizes range from a low of around 20 to a high of about 100. Markham is exploring the tension within and between groups.

Over the past few years, Markham, who has been studying this competitive dynamic extensively, has used noninvasive techniques, such as gathering fecal samples, to look for levels of thyroid hormones, which can indicate an animal’s energetic condition.

Alberts explained that Markham was an important contributor to the work at Amboseli, adding that Markham “asks questions at the group level that the rest of us don’t.”

Within the community, Markham has been involved in recent efforts to inspire middle school students at R.C. Murphy Junior High school in Stony Brook to enjoy and appreciate science, working closely with science teacher Dawn Nachtigall, who has been at Murphy for 20 years.

In her second year at Murphy, Markham visits seventh-grade classes several times, discussing her work and explaining how to analyze images from camera traps set up in Kenya and at Sweetbriar Nature Center in Smithtown.

The students receive about 30 photos per pair, Nachtigall explained. Based on the pictures, the students have had to generate questions, which have included whether young deer spend more time with male or female parents, or whether hyenas come out more on full or new moons.

According to Nachtigall, Markham “has such a friendly veneer and an approachable affect” that she readily engages with the students. “She has this wonderful demeanor. She’s soft-spoken, but strong.”

Students in her class appreciate the opportunity to interact with a Stony Brook researcher. “By the end of the period, they are glad to have met her,” Nachtigall added. “Some of them want to become her.”

At the same time, Nachtigall and the other science teachers appreciate the opportunity to hear more from local scientists.

“We live vicariously through her,” Nachtigall said. “It really ignites our own passion for science. Seeing the real-world science for science teachers is just as exciting as it is for students.” Markham is working to post materials online so that teachers and parents can access the information.

A native of Rockville, Maryland, Markham, who joined Stony Brook in 2014, resides in St. James. When she was young, Markham enjoyed the opportunity to join class events in kayaks along the Potomac River. She occasionally saw beaver and bald eagles. Indeed, along the way toward working with baboons, she has also conducted research on bald eagles, monitoring their nests with remote cameras.

As for her work on the Science article, Markham said she is pleased that this kind of collaborative research can provide broad ranging insight to address questions that extend beyond the realm of any one lab or species.

Daniel Mockler in his office at Stony Brook University. Photo from SBU

By Daniel Dunaief

At first, people didn’t believe it. Now, it seems, they are eager to learn more.

Working with a talented team that included postdoctoral researchers, doctoral students and doctors, Kenneth Shroyer, the chairman of the Department of Pathology at Stony Brook University, noticed something odd about a protein that scientists thought played a supporting role, but that, as it turns out, may be much more of a villain in the cancer story.

Known as keratin 17, this protein was thought to act as a tent pole, providing structural support. That, however, isn’t the only thing it can do. The co-director of Shroyer’s lab, Luisa Escobar-Hoyos, found that this protein was prevalent in some types of cancers. What’s more, the protein seemed to be in higher concentration in a more aggressive form of the disease.

Now, working with Long Island native Daniel Mockler, a clinical assistant professor in the Department of Pathology, Shroyer and his team discovered that the presence of this particular protein has prognostic value for endocervical glandular neoplasia, suggesting the likely course of the disease.

Published in the American Journal of Clinical Pathology, the article by Mockler and his team in the Sept. 1, 2017, issue attracted the attention of pathologists around the world. It ranked as the third highest read article in the final month of 2017, according to Medscape. It was behind two other papers that were review articles, which made it the most read primary research report in pathology in December.

The response “did exceed my expectations,” Mockler stated in an email. “I would have thought [Shroyer’s earlier] paper showing that k17 can function in gene regulation would have been more popular. But I guess this [new paper] illustrates that topics that have a possible direct impact on practicing surgical pathologists will draw a lot of attention.”

To be sure, while the recent study is an early indication of the potential predictive value of this protein, there may be some mitigating factors that could affect its clinical applicability.

“It’s premature to know what the clinical utility of this marker will be,” Shroyer said. “To determine that would require a large-scale prospective clinical trial” that would involve other patient populations and other laboratories.

Still, depending on the outcome of research currently underway in Shroyer’s lab, the protein may offer a way of determining the necessary therapy for patients with the same diagnosis.

Doctors don’t want to give patients with milder version of the disease high levels of chemotherapy, which would cause uncomfortable side effects. At the same time, they want to be as aggressive as possible in treating patients whose cancers are likely a more significant threat.

“The goal of having an excellent prognostic biomarker … is to avoid over and under treatment of patients,” suggested Mockler, who is also an attending pathologist at SBU and Stony Brook Southampton.

Shroyer was delighted with the efforts of the team that put together this well-read research. “As is true of all our clinical faculty, I want to give them every opportunity to take advantage of their ability to collaborate with research faculty in our department and throughout the cancer center and the school of medicine to advance their scholarly careers and academic productivity,” he said.

Mockler’s success and the visibility of this paper is “an excellent example of how someone with a busy clinical practice can also have a major impact on translational research,” Shroyer added.

Mockler appreciated the support and work of Escobar-Hoyos, who had conducted her doctoral research in Shroyer’s lab. She has “been the main driving force, along with [Shroyer] in the initial discovery of k17 including its prognostic implications as well as its possible function in regulating gene expression,” he said.

Mockler said he spends about 80 percent of his time on patient care, with the remaining efforts divided between research and academic pursuits. His first priority is providing “excellent patient care.”

Working with Shroyer and Escobar-Hoyos, Mockler explained that they have started looking at k17 in organ systems including the esophagus, pancreas and bladder. “We are currently looking at k17 from a diagnostic point of view in regards to bladder cancer,” he said. “Discoveries that impact the daily signout of surgical pathologists by allowing us to make better and more consistent diagnoses interests me very much.”

A resident of Kings Park, Mockler, who grew up in Hicksville, lives with his fiancée Danielle Kurkowski, who is a medical technologist of flow cytometry research and development at ICON Central Laboratories in Farmingdale.

Daniel Mockler on a recent snowboarding trip to Aspen. Photo from Daniel Mockler

Outside of his work in medicine, Mockler is an avid snowboard enthusiast. He tries to get in as many trips as possible during the winter, including a vacation a few weeks ago to the Austrian Alps. A more typical trip, however, is to western mountains or to Vermont, including Killington, Okemo and Stratton.

“To blow off steam and relax, nothing is better than being on a snow-covered mountain,” he said.

Mockler is pleased with the developments in the department. He has seen the “research goals of the department change quite significantly,” adding that Shroyer has “done a tremendous amount of recruiting.”

Mockler suggests to residents that it’s “good to get involved. I always tell them that [Shroyer] has a pretty active research lab and he likes it when residents get involved.”

As for his work on k17, Mockler is pleased that he’s been able to contribute to the ongoing efforts. Shroyer “has been doing this a while and I have seen the excitement and energy he has put into k17,” he explained, “so I know that we are onto something big.”

And so, apparently, do readers of pathology journals.

Joel Saltz. Photo from SBU

By Daniel Dunaief

In the battle against cancer, doctors and scientists use targeted drugs to treat the disease. They also employ radiation, starve it of the nutrients it might need to grow, block key metabolic pathways in its development and encourage the immune system to attack these genetically misdirected cells that grow out of control. A developing field in this battle includes the use of computers, artificial intelligence and math.

Joel Saltz, the Cherith Chair of Biomedical Informatics at Stony Brook University, recently teamed up with researchers from Emory University and the University of Arkansas and won an $8 million grant from the National Cancer Institute to coordinate radiology and pathology information in the battle against cancer.

“By gathering more information, researchers can understand better what’s happening, what might happen and how best to treat cancer,” Saltz said. The grant will be divided equally among the three institutions over the course of five years. Saltz will be collaborating with Ashish Sharma at Emory and Fred Prior at the University of Arkansas.

Saltz has been working with Sharma for several years, when the two were at Ohio State and then moved together to Emory. This is Saltz’s first major grant with Prior, although the two have also known each other for years and have been working in the same NCI program.

Prior has considerable expertise in radiology, while Saltz is adding his pathology background to the mix. Radiology has used digital imaging for a long time and, until recently, pathology data was collected on glass slides. Saltz is helping bring digital pathology to this effort.

“We had been on panels for many years with NCI saying we need to do this sort of” collaboration, Saltz added, and now the trio is putting that idea to work.

Yusuf Hannun, the director of the Cancer Center at Stony Brook, sees the potential for this type of collaboration. “This is a very important effort that builds on several areas of outstanding strength” at the Cancer Center, the director explained in an email.

Exploring information from digitized radiology and pathology samples will “allow us to understand individual cancers at a much higher level. It should improve accuracy in diagnosis [and offer an] ability to provide better informed prognosis” and individual therapy, Hannun continued.

Researchers on the current grant, which is part of the Information Technology for Cancer Research, plan to expand resources for integrative imaging studies, build on the capacity to acquire high-quality data collections, dedicate resources to support reproducible research and increase community engagement.

Saltz will use the portion of the Stony Brook funds to develop new software integration tools and curation and work with researchers to analyze and understand their patient data. Over time, he will also hire additional staff to build out this expertise. He has collaborated with Kenneth Shroyer, chair of the Department of Pathology at Stony Brook, on pancreatic and ovarian cancer and on breast cancer with pathology professor Patricia Thompson, who is also director of basic science at the Cancer Center. Shroyer “plays an important role” in all his research, Saltz said.

“Digital pathology will supplement that art of surgical pathology with quantitative data, to improve diagnostic accuracy,” Shroyer wrote in an email, which will “inform decisions on how to optimize therapeutic intervention for the treatment of cancer and many other diseases.”

Shroyer interviewed Saltz before Stony Brook hired its first bioinformatics chair. “Based on his research focus, including his pioneering efforts in digital pathology, he clearly stood out as my top choice.”

Saltz and Shroyer have generated maps of patterns for immune cells in tumors. “We and others have shown that these are related to how patients respond to treatment,” Saltz said. He described his work with these scientists as “basic clinical cancer research,” in which he develops and enhances technology to understand various types of cancer.

This particular grant is “more about technology and curation,” Saltz said. “People are developing new algorithms, in artificial intelligence and machine learning.” By making this information available, scientists from around the world who have insights into the specific types of cancer can use it to predict responses to treatment and develop and refine the algorithms that underlie the computer analysis.

Using specific cancers from radiology and pathology studies is akin to sitting in a football stadium and examining a blade of grass from the bleachers, Saltz suggested, borrowing from a phrase he’d heard at a recent panel discussion with Liron Pantanowitz from the Department of Pathology at the University of Pittsburgh Medical Center.

“What we do is we create catalogs of every blade of grass and every worm and weed,” Saltz added. “It’s a huge database problem” in which he is integrating software development.

Hannun, who has been working to help Stony Brook University earn a National Cancer Institute designation, suggested that this bioinformatics work is “a critical component of our plans” and represents an area of exceptional strength.”

Cancer bioinformatics is “one of the main pillars of our research program and it integrates well with our efforts in imaging, metabolomics, improved diagnostics and improved therapeutics,” Hannun explained.

As for his department, Saltz said Stony Brook will have its first biomedical informatics Ph.D. graduate at the end of 2017. Yanhui Liang joined Stony Brook when Assistant Professor Fusheng Wang came to Long Island from Emory. Xin Chen will graduate in May of 2018.

The doctoral program, which launched last year, has five current students and “we’re hoping to get a bigger class this year,” Saltz said. “Informatics involves making techniques for better health care,” Saltz said. People with medical degrees can do fellowship training in clinical informatics.

A resident of Manhasset, Saltz lives with his wife Mary, who is an assistant clinical professor of radiology at Stony Brook University. Over the course of the next five years, Saltz said he believes this grant will continue to allow him and his collaborators to develop tools that will help provide insights into cancer research and, down the road, into personalized cancer treatment.

Richard Moffitt, who joined Stony Brook University’s Biomedical Informatics and Pathology departments at the end of July, recently contributed to an extensive study of pancreatic cancer. Photo by Valerie Peterson

By Daniel Dunaief

It may take a village and then some to conquer pancreatic cancer, which is pretty close to what The Cancer Genome Atlas project assembled.

Pulling together over 200 researchers from facilities across the United States, the TCGA recently published an article in the journal Cancer Cell in which the scientists explored genetic, proteomic and clinical information from 150 pancreatic cancer patients.

Richard Moffitt, an assistant professor in the Departments of Biomedical Informatics and Pathology at Stony Brook University who joined the institution at the end of July, was the analysis coordinator for this extensive effort.

The results of this research, which worked with pancreatic ductal adenocarcinoma, the most common form of this cancer, offered a look at specific genetic changes involved in pancreatic cancer, which is the third leading cause of death from cancer.

“The study has several immediate clinical implications for patients facing the diagnosis of pancreatic cancer,” Ralph Hruban, one of the corresponding authors on the article and the director of the Sol Goldman Pancreatic Cancer Research Center at Johns Hopkins University School of Medicine, wrote in an email.

The work “provides hope for future clinical trials in that 42 percent of patients within this cohort had cancers with at least one genetic alteration that could potentially be therapeutically targetable, and 25 percent of the patients had cancers with two or more such events.”

These genetic findings suggest a potential basis for genetic change-driven therapy trials down the road, Hruban suggested. As the analysis coordinator, Moffitt “played a critical role” Hruban continued. “He brought hard work, amazing creativity and great scientific knowledge to the project.”

Moffitt joined this effort about four years ago, after the collaboration began. The assistant professor said he pulled together the various data sets and analysis results from different teams and helped turn that into a “coherent overall story.”

Moffitt was also in charge of the messenger RNA analysis. He had been at the University of North Carolina as a postdoctoral researcher in Vice Chair of Research Jen Jen Yeh’s lab for the last five years until his recent move to Stony Brook.

Benjamin Raphael, another corresponding author on the article and a professor in the Department of Computer Science at Princeton University, suggested Moffitt played a critical part in the recent work. “In any large-scale collaboration such as this one, there tend to be a smaller number of researchers who play an outsized role in the project,” Raphael explained in an email. Moffitt “played such an outsized role. Without his dedication to the project over the past few years, it is doubtful that our analysis” would have been as comprehensive.

Members of TCGA contacted Moffitt and Yeh because the tandem were working on a new approach to studying gene expression that would eventually be published in a 2015 Nature Genetics article.

Working with Yeh, Moffitt helped tease apart the genetic signature of pancreatic cancer cells from the different types of cells around it, which also includes healthy cells and a cluster of dense cells around the tumor called the stroma.

“The proportion of cancer cells in pancreatic cancer is low so if you imagine a mix of marbles of the same color on the outside but different on the inside and only having 10 in a bag of 100, figuring out what 10 [are] ‘tumor’ colors on the inside was very challenging,” Yeh explained in an email.

The TCGA study explains subtypes of cancer Moffitt didn’t know existed just a few years ago, while exploring the possible role that micro RNA and DNA methylation — the process of adding or taking away a methyl group from a genetic sequence to turn on and off genes — has in describing those subtypes.

Researchers “need projects like TCGA that are a really well-controlled way to study almost every molecule you want to study systematically for 150 cases to reveal these networks,” Moffitt said.

Moffitt has coupled his appreciation for algorithms and math with an interest in biology and engineering. His Ph.D. was done in a dry lab, which didn’t even have a sink. When he moved to UNC to conduct his postdoctoral work, he took a different approach and worked with surgical oncologists on tissue samples.

Moffitt plans to continue working with TCGA data and also to see how the subtypes can be used to predict responses to therapies. Some time in the future, researchers hope patients can get a diagnostic biopsy that will direct them to the specific therapy they receive, he said.

Moffitt grew up in Florida and earned his bachelor’s and doctoral degrees at Georgia Tech before completing his postdoctoral research at UNC. He has been gradually drifting north. Moffitt and his wife Andrea, who just started her postdoctoral work with Michael Wigler and Dan Levy at Cold Spring Harbor Laboratory, live in Stony Brook.

A competitive water skier during his youth in Florida, Richard Moffitt, dons two skis when he’s out with friends on Lake Oconee, Georgia in 2013. Photo by Andrea Moffitt

The water on Long Island is colder than it is in Florida, where Moffitt spent considerable time on a show skiing team. This was his version of a varsity sport, where he spent about six hours a day on Saturday and Sunday during the spring and about three hours a night before tournaments performing moving pyramids, among other tricks. When he was in high school, Moffitt wrote a computer program that automates the show skiing scoring process.

Moffitt processes the world through probabilities, which figured into the way he chose stocks in high school as a part of a stock picking competition and the way he approached his picks for March Madness. His basketball bracket won a competition for bragging rights among about a dozen entrants in 2016 and he was one game away from repeating in 2017 until UNC beat Gonzaga.

As for his Stony Brook effort, Moffitt plans to collaborate with members of the Cancer Center as well. “Being in demand is a good thing.”

Above, Ken Dill shows how molecules fold and bind together. Photo from SBU

By Daniel Dunaief

The raw materials were here. Somehow, billions of years ago, these materials followed patterns and repeated and revised the process, turning the parts into something more than a primordial soup.

Ken Dill, who is a distinguished professor and the director of the Laufer Center for Physical and Quantitative Biology at Stony Brook University, took a methodical approach to this fundamental development. He wanted to understand the early statistical mechanics that would allow molecules to form long chains, called polymers, which contained information worthy of being passed along. The process of forming these chains had to be self-sustaining.

After all, Dill said, many activities reach an end point. Putting salt in water, for example, creates a mixture, until it stops. Dill, however, was looking for a way to understand auto-catalytic or runaway events. Lighting a forest fire, for example, is much more self sustaining, although even it eventually stops. Life has continued for over four billion years.

On Aug. 22, Dill, Elizaveta Guseva and Ronald Zuckermann, the facility director in biological nanostructures at the Lawrence Berkeley National Laboratory, published a paper in the journal Proceedings of the National Academy of Sciences (PNAS).

The researchers developed a fold and catalyze computational model that would explain how these long chains developed in a self-sustaining way, in which hydrophilic and hydrophobic polymers fold and bind together.

Random sequence chains of each type can collapse and fold into structures that expose their hydrophobic parts. Like a conga line at a wedding reception, the parts can then couple together to form longer chains.

These random chemical processes could lead to pre-proteins. Today’s proteins, Dill said, mostly fold into a very particular shape. Pre-proteins would have been looser, with more shape shifting.

The workhorses of the body, proteins perform thousands of biochemical reactions. Dill suggested that this model “rates high on the list” in terms of the findings he’s made over the course of his career.

Zuckermann described this work as significant because it lays out predictions that can be tested. It highlights the importance of chemical sequence information in polymer chains and “how certain sequences are more likely to fold into enzyme-like shapes and act as catalysts than others,” he explained in an email.

Zuckermann works with substances he figured out how to make in a lab that are called peptoids, which are non-natural polymers. These peptoids are a “good system to test the universality of [Dill’s] predictions,” he said.

The “beauty” of Dill’s work, Zuckermann suggested, is that “it should apply to most any kind of polymer system” where researchers control the monomer sequence and include hydrophobic and hydrophilic monomers in a particular order, putting Dill’s predictions to the test.

For her part, Guseva worked in Dill’s lab for her PhD thesis. She had started her research on something that was “more standard physical biology” Dill said, but it “was not turning out to be particularly interesting.”

The scientists had a discussion about trying to develop a chemical model related to the origins of life. While exciting for the scope of the question, the research could have come up empty.

“There was so much potential to fail,” Dill said. “I feel pretty uncomfortable in general about asking a graduate student to go in that direction, but she was fearless.”

Dill and Zuckermann, who have collaborated for over 25 years, are trying to move forward to the next set of questions.

Zuckermann’s efforts will focus on finding catalytic peptoid sequences, which are nonbiological polymers. He will synthesize tens of thousands of peptoid sequences and rank them on how enzyme-like they are. This, he explained, will lead to a better understanding of which monomer sequences encode for protein-like structure and function.

Zuckermann suggested that the process in this research could have the effect of transforming a soup of monomers into a soup of functional polymers. This, he said, might set the stage for the evolution of DNA and RNA.

Proteins could have been a first step towards a genetic code, although life, as currently defined, would not have blossomed until a genetic code occurred, too, Dill suggested.

The origins of DNA, however, remains an unanswered question. “We’re trying to think about where the genetic code comes from,” Dill said. “It’s not built into our model per se. Why would biology want to do a two polymer solution, which is messy and complicated and why are proteins the functional molecules? This paper doesn’t answer that question.”

Dill and Zuckermann are in the early stage of exploring that question and Dill is hopeful he can get to a new model, although he doesn’t have it yet.

Dill moved from the University of California at San Francisco to join the Laufer Center about seven years ago. He appreciates the freedom to ask “blue sky questions” that he couldn’t address as much in his previous work.

Wearing a hat from his native Oklahoma, Dill, in a photo from around 1997, tinkers with a toy boat he made with sons Tyler and Ryan. Photo by Jolanda Schreurs

A resident of Port Jefferson, Dill lives with his wife Jolanda Schreurs, who has a PhD in pharmacology. The couple has two sons, Tyler and Ryan.

Tyler graduated with a PhD from the University of California at San Diego and now works for Illumina, a company which which makes DNA sequencers. Ryan, meanwhile, is earning his PhD in chemistry from the University of Colorado and is working on lasers.

“We didn’t try to drag our sons into science,” Dill said. “With both kids, however, we had a workshop in the basement” where they often took anything that was within arm’s reach and nailed it to a board. One of the finished products was a remote-controlled and motorized boat.

As for his lab work, Dill is thrilled to have this model that he, Guseva and Zuckermann provided, while he recognizes the questions ahead. Scientists “see something puzzling and, rather than saying, ‘I need to avoid this, I don’t have an answer,’ we find it intriguing and these things lead from one step to the next. There tends to remain a huge number of super fascinating problems.”

Alex Orlov on the campus of the University of Cambridge. Photo by Nathan Pitt, University of Cambridge

By Daniel Dunaief

The Ukranian-born Alex Orlov, who is an associate professor of materials science and chemical engineering at Stony Brook University, helps officials in a delicate balancing act.

Orlov, who is a member of the US-EU working group on Risk Assessment of Nanomaterials, helps measure, monitor and understand the hazards associated with nanoparticles, which regulatory bodies then compare to the benefit these particles have in consumer products.

“My research, which is highlighted by the European Union Commission, demonstrated that under certain conditions, [specific] nanoparticles might not be safe,” Orlov said via Skype from Cambridge, England, where he has been a visiting professor for the past four summers. For carbon nanotubes, which are used in products ranging from sports equipment to vehicles and batteries, those conditions include exposure to humidity and sunlight.

“Instead of banning and restricting their production” they can be reformulated to make them safer, he said.

Orlov described how chemical companies are conducting research to enhance the safety of their products. Globally, nanotechnology has become a growing industry, as electronics and drug companies search for ways to benefit from different physical properties that exist on a small scale. Long Island has become a focal point for research in this arena, particularly at the Center for Functional Nanomaterials and the National Synchrotron Light Source II at Brookhaven National Laboratory.

Alex Orlov on the campus of the University of Cambridge. Photo by Nathan Pitt, University of Cambridge

Indeed, Orlov is working at the University of Cambridge to facilitate partnerships between researchers in the chemistry departments of the two universities, while benefiting from the facilities at BNL. “We exchange some new materials between Cambridge and Stony Brook,” he said. “We use BNL to test those materials.”

BNL is an “essential facility,” Orlov said, and is where the postdoctoral student in his lab and the five graduate students spend 30 to 60 percent of their time. The data he and his team collect can help reduce risks related to the release of nanomaterials and create safer products, he suggested.

“Most hazardous materials on Earth can be handled in a safe way,” Orlov said. “Most scientific progress and environmental protection can be merged together. Understanding the environmental impact of new technologies and reducing their risks to the environment should be at the core of scientific and technological progress.”

According to Orlov, the European Union spends more money on technological safety than the United States. European regulations, however, affect American companies, especially those that export products to companies in the European Union.

Orlov has studied how quickly toxic materials might be released in the environment under different conditions.

“What we do in our lab is put numbers” on the amount of a substance released, he said, which informs a more quantitative understanding of the risks posed by a product. Regulators seek a balance between scientific progress and industrial development in the face of uncertainty related to new technologies.

As policy makers consider the economics of regulations, they weigh the estimated cost against that value. For example, if the cost of implementing a water treatment measure is $3 million and the cost of a human life is $7 million, it’s more economical to create a water treatment plan.

Orlov teaches a course in environmental engineering. “These are the types of things I discuss with students,” he said. “For them, it’s eye opening. They are engineers. They don’t deal with economics.”

In his own research, Orlov recently published an article in which he analyzed the potential use of concrete to remove pollutants like sulfur dioxide from the air. While concrete is the biggest material people produce by weight and volume, most of it is wasted when a building gets demolished. “What we discovered,” said Orlov, who published his work in the Journal of Chemical Engineering, “is that if you take this concrete and expose new surfaces, it takes in pollutants again.”

Fotis Sotiropoulos, the dean of the College of Engineering and Applied Sciences at SBU, said Orlov has added to the understanding of the potential benefits of using concrete to remove pollutants.

Other researchers have worked only with carbon dioxide, and there is “incomplete and/or even nonexistent data for other pollutants,” Sotiropoulos explained in an email. Orlov’s research could be helpful for city planners especially for end-of-life building demolition, Sotiropoulous continued. Manufacturers could take concrete from an old, crushed building and pass waste through this concrete in smokestacks.

To be sure, the production of concrete itself is energy intensive and generates pollutants like carbon dioxide and nitrogen dioxide. “It’s not the case that concrete would take as much [pollutants] out of the air as was emitted during production,” Orlov said. On balance, however, recycled concrete could prove useful not only in reducing waste but also in removing pollutants from the air.

Orlov urged an increase in the recycling of concrete, which varies in the amount that’s recycled. He has collaborated on other projects, such as using small amounts of gold to separate water, producing hydrogen that could be used in fuel cells.

“The research showed a promising way to produce clean hydrogen from water,” Sotiropoulos said.

As for his work at Cambridge, Orlov appreciates the value the scientists in the United Kingdom place on their collaboration with their Long Island partners.

“Cambridge faculty from disciplines ranging from archeology to chemistry are aware of the SBU/BNL faculty members and their research,” Orlov said. A resident of Smithtown, Orlov has been on Long Island for eight years. In his spare time, he enjoys hiking and exploring new areas. As for his work, Orlov hopes his work helps regulators make informed decisions that protect consumers while making scientific and technological advances possible.

Gabor Balazsi in his lab. Photo by Aleksandrs Nasonovs

By Daniel Dunaief

It started with a bang. When he was young and living with his parents, Gabor Balazsi’s curiosity sometimes got the better of him, at the expense of his parents’ house.

The future Henry Laufer associate professor of physical and quantitative biology at Stony Brook University was holding bare wires in his native home in Transylvania when he plugged in an appliance. The current surged through his body, preventing him from releasing the wires. Fortunately, his mother came in and “unplugged me.”

These days, Balazsi, is much more focused on the kinds of behavior that turns the instructions for a cell into something more dangerous, like cancer or a drug-resistant strain of a disease.

Balazsi recently received a $1.8 million, five-year grant from the National Institutes of Health to study how gene networks change, often to the detriment of human health, as is the case when they are active in cancer or when they are resisting treatment. The grant is called Maximizing Investigators’ Research Award.

“Cancer cells often don’t look the same in a matter of months and drug-resistant microbes may look the same in a matter of days,” Balazsi said. He would like to know “what causes them to change and how can we prevent them from changing to their advantage and our disadvantage?”

In a way, Balazsi is trying to figure out a code that is akin to the popular 1970s game Simon in which a player has to repeat a growing number of flashing lights and sounds. With each turn, the game increases the number of flashing lights and sounds, going from a single red, to red, green, yellow and green until the player can no longer recall the entire code.

He is looking for a similar key to a sequence of events that transforms a cell, except that in the cancer, there are millions of interacting lights, many of which are invisible. The cancer biologist tries to reconstruct the sequence in which some of these lights turned on by observing visible lights that are currently on.

He is exploring the “pattern that leads to the outcome” through changes of networks in yeast cells, he said. He is also hoping to explore pathogenic fungi. The pattern, he said, will change depending on the circumstances, which include the environment and initial mutations.

Scientists who have collaborated with Balazsi suggested his understanding of several scientific disciplines enables him to conduct innovative research.

“He bridges two fields, biology and biophysics, allowing him not only to describe biological processes but also to model them and make predictions that can then be tested,” Marsha Rosner, the Charles B. Huggins professor at the University of Chicago, wrote in an email.

While Balazsi doesn’t treat patients, he is focused on understanding and controlling the processes that lead a cell or group of cells to change from a uniform function and task to a heterogeneous one, where the cells may follow a different path using a previously inactive network of genes.

By understanding what causes these changes, he hopes to find ways to slow their progress or prevent the kind of deviations that lead to combinations that are destructive to humans, such as when the cellular machinery copies itself uncontrollably.

Balazsi and Rosner collaborated on one paper and are continuing to work together. “Our work demonstrates one mechanism by which cells move from a homogeneous population to a more complex population that contains cells that promote cancer,” Rosner explained. “This mechanism is not based on mutations in genes, but rather on changes in the way that genes interact with each other in cells.”

On a fundamental level, Balazsi explained that researchers have developed considerable understanding, but still not enough, of what happens in normal conditions. He is seeking to discover the logic cells use to survive under stressful conditions.

Balazsi would like to determine if there is “anything we can do to decrease the tendency of cells to deviate from normality,” he said.

Balazsi welcomes this new funding, which will give him the freedom to pursue research questions at a basic level. Instead of supporting a single project, this financial support contributes to multiple projects.

The next step in funding his lab will be to approach the National Cancer Institute. Without much experience in applying for cancer grants, Balazsi plans to attend a think tank workshop in June in Seattle. Attendance at this meeting, which is hosted by Sage Bionetworks and the NCI, required an application and selection of participants.

To some degree, Balazsi may be able to relate to the heterogeneity that he hopes to study in cells. A physicist by training, Balazsi explained that he “wandered into biology.” He would like to steer away from major trends that mobilize many researchers. If many people are working on something, he does not want to be enriching big crowds but would prefer to try new things and test new ideas.

A resident of East Setauket, Balazsi lives with his wife Erika and their daughter Julianna, who is 6. Julianna is already doing some experiments at home and is exploring the yard.

When Balazsi was young, his parents tried to encourage him to become a doctor, which didn’t work because he didn’t like blood or hospitals as a child. In addition to his unexpected electric shock, Balazsi also explored how ethanol burns while flowing, which caused some additional damage to his house. “My parents,” he recalled, “weren’t happy.”

As for his work, Balazsi would like his work with these first steps, in understanding cellular processes, will have a translational element for people some time down the road.

“Whatever we do, hopefully, they can be implemented in actual cancer cells that are coming from patients one day,” he said, or they could have some relevance for people who are attempting to fight off “pathogenic microbes.”

Social

9,189FansLike
0FollowersFollow
1,101FollowersFollow
33SubscribersSubscribe