Search

scientists collaborate - search results

If you're not happy with the results, please do another search

From left, Deyu Lu (sitting), Anatoly Frenkel (standing), Yuwei Lin and Janis Timoshenko. Photo from BNL

By Daniel Dunaief

What changes and how it changes from moment to moment can be the focus of curiosity — or survival. A zebra in Africa needs to detect subtle shifts in the environment, forcing it to focus on the possibility of a nearby predator like a lion.

Similarly, scientists are eager to understand, on an incredibly small scale, the way important participants in chemical processes change as they create products, remove pollutants from the air or engines or participate in reactions that make electronic equipment better or more efficient.

Throughout a process, a catalyst can alter its shape, sometimes leading to a desired product and other times resulting in an unwanted dead end. Understanding the structural forks in the road during these interactions can enable researchers to create conditions that favor specific structural configurations that facilitate particular products.

First, however, scientists need to see how catalysts involved in these reactions change.

That’s where Anatoly Frenkel, a professor at Stony Brook University’s Department of Materials Science and Chemical Engineering with a joint appointment in Brookhaven National Laboratory’s Chemistry Division, and Janis Timosheko, a postdoctoral researcher in Frenkel’s lab, come in.

Working with Deyu Lu at the Center for Functional Nanomaterials and Yuwei Lin and Shinjae Yoo, both from BNL”s Computational Science Initiative, Timoshenko leads a novel effort to use machine learning to observe subtle structural clues about catalysts.

“It will be possible in the future to monitor in real time the evolution of the catalyst in reaction conditions,” Frenkel said. “We hope to implement this concept of reaction on demand.”

According to Frenkel, beamline scientist Klaus Attenkofer at BNL and Lu are planning a project to monitor the evolution of catalysts in reaction conditions using this method.

By recognizing the specific structural changes that favor desirable reactions, Frenkel said researchers could direct the evolution of a process on demand.

“I am particularly intrigued by a new opportunity to control the selectivity (or stability) of the existing catalyst by tuning its structure or shape up to enhance formation of a desired product,” he explained in an email.

The neural network the team has created links the structure and the spectrum that characterizes the structure. On their own, researchers couldn’t find a structure through the spectrum without the help of highly trained computers.

Through machine learning, X-rays with relatively lower energies can provide information about the structure of nanoparticles under greater heat and pressure, which would typically cause distortions for X-rays that use higher energy, Timoshenko said.

The contribution and experience of Lin, Yoo and Lu was “crucial” for the development of the overall idea of the method and fine tuning its details, Timoshenko said. The teaching part was a collective effort that involved Timoshenko and Frenkel.

Frenkel credits Timoshenko for uniting the diverse fields of machine learning and nanomaterials science to make this tool a reality. For several months, when the groups got together for bi-weekly meetings, they “couldn’t find common ground.” At some point, however, Frenkel said Timoshenko “got it, implemented it and it worked.”

The scientists used hundreds of structure models. For these, they calculated hundreds of thousands of X-ray absorption spectra, as each atom had its own spectrum, which could combine in different ways, Timoshenko suggested.

They back-checked this approach by testing nanoparticles where the structure was already known through conventional analysis of X-ray absorption spectra and from electron microscopy studies, Timoshenko said.

The ultimate goal, he said, is to understand the relationship between the structure of a material and its useful properties. The new method, combined with other approaches, can provide an understanding of the structure.

Timoshenko said additional data, including information about the catalytic activity of particles with different structures and the results of theoretical modeling of chemical processes, would be necessary to take the next steps. “It is quite possible that some other machine learning methods can help us to make sense of these new pieces of information as well,” he said.

According to Frenkel, Timoshenko, who transferred from Yeshiva University to Stony Brook University in 2016 with Frenkel, has had a remarkably productive three years as a postdoctoral researcher. His time at SBU will end by the summer, when he seeks another position.

A native of Latvia, Timoshenko is married to Edite Paule, who works in a child care center. The scientist is exploring various options after his time at Stony Brook concludes, which could include a move to Europe.

A resident of Rocky Point during his postdoctoral research, Timoshenko described Long Island as “extremely beautiful” with a green landscape and the nearby ocean. He also appreciated the opportunity to travel to New York City to see Broadway shows. His favorite, which he saw last year, is “Miss Saigon.”

Timoshenko has dedicated his career to using data analysis approaches to understanding real life problems. Machine learning is “yet another approach” and he would like to see if this work “will be useful” for someone conducting additional experiments, he said.

At some point, Timoshenko would also like to delve into developing novel materials that might have an application in industry. The paper he published with Frenkel and others focused only on the studies of relatively simple monometallic particles. He is working on the development of that method to analyze more complex systems.

This work, he suggested, is one of the first applications of machine learning methods for the interpretation of experimental data, not just in the field of X-ray absorption spectroscopy. “Machine learning, data science and artificial intelligence are very hot and rapidly developing fields, whose potential in experimental research we have just started to explore.”

 

The free event will be held on Oct. 30 at 4 p.m. at Stony Brook University’s Staller Center for the Arts, Theater Two, 100 Nicolls Road, Stony Brook.

By Daniel Dunaief

Want to hear characters from Mary Shelley’s Frankenstein discussing artificial intelligence? Or, perhaps, get an inside look at an interaction between a scientist studying penguins and a potential donor? Maybe you’d like something more abstract, like a thought piece on aspects of memory?

You can get all three at an upcoming Science on Stage performance of three one-act plays written by award-winning playwrights that feature the themes of cutting edge research from Stony Brook University.

Ken Weitzman Photo courtesy of SBU

On October 30th at 4 p.m. at Staller Center for the Arts’ Theater Two, which holds up to 130 people, professional actors will read three 10-minute scripts. Directed by Jackson Gay, topics will include research about artificial intelligence, climate change in Antarctica and collective memory. Audience members can then listen to a discussion hosted by Program Founder and Associate Professor of Theater Ken Weitzman that includes the scientists and the playwrights. The event is free and open to the public.

Funded by a grant from the Office of the Provost at Stony Brook University and supported by the College of Arts and Sciences and the Alan Alda Center for Communicating Science, the performances are an “amuse-bouche,” or an appetizer, about some of the diverse and compelling science that occurs at Stony Brook University, said Weitzman. 

“The hope is that [the plays] generate interest and get people to want to ask the next question or that [the plays] stick with audience members emotionally or intellectually and makes them want to discover more.”

The upcoming performance features the writing of two-time Tony Award winning playwright Greg Kotis, who wrote Urinetown; Michele Lowe, whose first play made it to Broadway and around the world; and Rogelio Martinez, whose plays have been produced around the U.S. and internationally.

The short plays will feature the scientific work of Nilanjan Chakraborty, Associate Professor of Mechanical Engineering; Heather Lynch, Professor of Ecology and Evolution, and Suparna Rajaram, Distinguished Professor of Cognitive Science in the Psychology Department.

“It’s a good example of what we are doing and the opportunities for us as we continue to put funding in the arts and the humanities and also in the intersection of that from an interdisciplinary perspective,” said Carl Lejuez, Stony Brook Provost, in an interview. This kind of collaborative effort works best “when it’s truly bi-directional. Both sides benefit.”

Lejuez credits President Maurie McInnis with setting the tone about the importance of learning the humanities and the sciences. Lejuez said McInnis talks during her convocation speech about how she had intended to become a physician when she attended college, but took an art history course that was part of a general education curriculum that changed her life. The sixth president of Stony Brook, McInnis earned her PhD in the History of Art from Yale University.

Lejuez highlighted a number of interdisciplinary efforts at Stony Brook University. Stephanie Dinkins, Professor in the Department of Art, bridges visual art and Artificial Intelligence. She has focused her work on addressing the shortcomings of AI in understanding and depicting black women.

The Simons Center for Geometry and Physics has an arts and culture program, while the Collaborative for the Earth has faculty from numerous disciplines. They are starting a new Tiger Teams to develop key areas of study and will offer seed funding for interdisciplinary work to tackle climate change.

Lejuez plans to attend Science on Stage on October 30th.

“I feel an almost desperation to learn as much as I can about all the aspects of the university,” he said. Not only is he there to “show respect for the work and give it gravitas, but it’s the only way [he and others] can do [their job] of representing and supporting faculty and staff” in science and the humanities.

An enjoyable experience

The participants in Science on Stage appreciate the opportunity to collaborate outside their typical working world.

Heather Lynch, who conducts research on penguins in Antarctica and worked with Lowe, described the experience as “immensely enjoyable” and suggested that the “arts can help scientists step out of their own comfort zone to think about where their own work fits into society at large.”

Lynch explained that while the specific conversation in the play is fictionalized, the story reflects “my aggregate angst about our Antarctic field work and, in that sense, is probably more literally true than any conversation or interaction with any real life traveling guest.”

Lynch believes the play on her work is thought provoking. “Science is a tool, what matters is what you do” with that science, she said.

Lynch was thrilled to work with someone new and believes Lowe probably learned about Antarctica and the challenges it faces.

Bringing talent together

The first iteration of Science on Stage occurred in 2020 and was available remotely in the midst of the pandemic. Weitzman had reached out to scientists at Stony Brook to see who might be willing to partner up with playwrights.

He  is eager to share the diverse combination of topics in a live setting from this year’s trio of scientists. “I did some nudging to make sure there were a variety” of grand challenge topics, he said.

Weitzman explained that bringing the humanities and arts together in such an effort generated considerable enthusiasm. “There’s such incredible research being done here,” he said. “I want to engage for this community.”

He hopes such a performance can intrigue people at Stony Brook or in the broader community about science, theater writing or science communication.

While the plays are each 10 minutes long and include actors reading scripts, Weitzman said the experience would feel like it’s being performed and not read, particularly because professional actors are participating. 

He also hopes one or more of the playwrights sees this interaction as an opportunity to create a longer piece.

“I would love it if [this experience] encourages a playwright to think it justifies a full length” script, Weitzman said.

Lynch wrote a pilot screenplay herself called “Forecast Horizon” that she describes as an intellectual exercise. If Netflix calls, however, she’s “definitely interested in having it live on,” she said. Writing the screenplay gave her a “better appreciation for how much more similar science is to the arts than I would have thought. Both involve solving puzzles.”

As for future funding, Lejuez suggested that the University was still figuring out how to allocate available funds for next year and in future years.

He would like to see how this first time in person goes. Depending on the interest and enthusiasm, he could envision a regular source of funds to support such future similar collaborations.

——————————————————————-

Some of the ways SBU combines arts and humanities with science

By Daniel Dunaief

The southern flagship State University of New York facility, Stony Brook University seeks ways to bring the best from the arts and humanities together with science, technology, engineering and mathematics.

Provost Carl Lejuez. Photo from SBU

Indeed, the school provides a home for the Alan Alda Center for Communicating Science, where researchers tap into famed actor Alda’s improvisational acting skills, among other techniques, to connect with their audiences and share their cutting-edge work and discoveries.

In addition to the October 30th Science on Stage production at Staller Theater 2, Provost Carl Lejuez recently highlighted numerous additional interdisciplinary efforts.

This past spring, the Simons Center for Geometry and Physics presented artwork by Professor of Mathematics Moira Chas. Chas created artwork that combines yarn and wire, clot and zippers to illustrate mathematical objects, questions or theorems.

The Office of the Provost has also provided several grants to support interdisciplinary work. This includes two $25,000 grants that promote the development of new research teams to explore interdisciplinary areas of scholarly work and address challenges such as Digital Futures/ Ethical Artificial Intelligence, Sustainability, Critical health Studies/ Health Disparities, Global Migration, and other areas.

Additionally, the Collaborative for the Earth brings together faculty from the arts, humanities and social sciences with behavioral science and STEM faculty. The university is starting a new Tiger Teams that will develop key areas of study and offer seed funding to tackle climate change. The funding will explore ways to create solutions that policy makers and the public can adopt, as well as ways to address disparities in the impact of climate change and ways to support people who are disproportionately affected by this threat.

SBU added interdisciplinary faculty. Susannah Glickman, Assistant Professor in the Department of History, has interests such as computing, political economy, 20th century US and world history and the history of science.

Matthew Salzano, IDEA Fellow in Ethical AI, Information Systems and Data Science and Literacy, meanwhile, has a joint appointment with the College of Arts and Sciences and the School of Communication. He studies rhetoric and digital culture, emphasizing how digital technology, including artificial intelligence, impacts and interacts with social justice.

Through course work, members of the university community can also address interdisciplinary questions. Associate Professor in the Department of Art Karen Lloyd teaches an Art and Medicine course, while  Adjunct Lecturer Patricia Maudies, also in the Art Department, teaches Art + The Brain. Both of these courses bring in guest lecturers from STEM and medicine.

Stony Brook also hosts centers aimed at interdisciplinary research, such as the Institute for Advanced Computational Science (IACS).

One of the current goals and objectives of the IACS strategic plan is to advance the intellectual foundations of computation and data, with high-impact applications in engineering, in the physical, environmental, life, health and social sciences, and in the arts and humanities.

by -
0 1246
From left, Ellen Li, Jennie Williams and Ping Ji, a technician (sitting). Photo by Daniel Irizarry

It’s a dream team tackling a nightmare scenario. While colorectal and pancreatic cancers are killers across different races, they are considerably worse for African Americans.

African Americans with colorectal cancer are about 40 percent more likely to die from it compared to those from other racial groups, according to recent data from the Surveillance, Epidemiology and End Results Program. The incidence of pancreatic cancer in African Americans is also 31 to 65 percent higher than in other racial groups.

A Stony Brook University research team led by Ellen Li, a professor of medicine and chief of the Division of Gastroenterology and Hepatology, is trying to understand the causes of these variations and, in the process, hopes to provide the kinds of clinical benefits that would help everyone.

“We think there are multiple factors,” Li said. Scientists at Stony Brook, Cold Spring Harbor Laboratory and SUNY Downstate Health Disparities Center are creating one of “the most comprehensive data sets” that people can analyze.

The team includes Jennie Williams, an associate professor in the Department of Family, Population and Preventive Medicine, Joel Saltz, the chair of Bioinformatics at Stony Brook, Richard McCombie, director of the Stanley Institute for Cognitive Genomics at Cold Spring Harbor Laboratory, David Tuveson, the director of the Lustgarten Foundation Pancreatic Research Laboratory at CSHL and several other researchers at  Downstate.

Williams said she began reading up on the response to cancer treatment by various groups in 2004. She understood that African Americans don’t respond to numerous chemotherapy prevention agents and some treatments for colon cancer. “They either don’t respond or they become resistant to chemotherapy,” she said.

When Williams started looking into this in 2008, she focused on microRNAs, which bind to messenger RNA and suppress translation. MicroRNAs are noncoding regulatory RNAs. The dysregulation of these important sequences result in the silencing of tumor suppressor proteins and the overexpression of oncogenes.

Her biggest finding was that the expression of tumor suppressor proteins inversely correlated with the overexpression of a microRNA called miR-182. This microRNA, she said, was significantly higher in tumor samples from African Americans.

With a molecular target and a potential mechanism, Williams thought she was well on her way to digging in. She ran into a significant stumbling block, however. “To do cancer chemotherapeutic studies, you need cell lines to work with,” she said.

Williams went to several companies to find colon cancer cell lines and asked, specifically, for those from African American patients. She found that the only cell lines labeled with race were those from Caucasians.

“To study chemoresponse, one needs a broad spectrum of cell lines,” Williams said.

She started generating cell lines in her lab, with three from African Americans and two from Hispanic patients, as well as some from Caucasians.

While Williams said she loves living in Stony Brook, she has found the lack of diversity among the patient population limiting in addressing cancer racial disparity. With Li’s help, she partnered with Downstate, where 75 percent of the patient population is African American.

She hopes to generate 10 African American, 10 Hispanic American and 10 Caucasian cell lines. Stony Brook and Downstate will collaborate to exchange ideas and personnel.

Williams said part of the challenge in gathering tissue samples from the African American population comes from a history of worrisome interactions with scientists.

Many African Americans have heard of the Tuskegee Institute study of African American men who came to the institute with syphilis between 1932 and 1972 but were not treated with penicillin, even after the drug became an effective and standard treatment in 1947. When the public became aware of the study, it ended and the government established strict informed consent rules about participating in scientific research.

Li said in their study on racial disparities in gastrointestinal cancers, selected staff certified in human research de-identifies everything so no one knows who each participant is. The data collection is a labor-intensive work, Li said, that is designed to provide greater insight into what might be causing these differences.

In terms of explaining the differences, Li and Williams believe it is both “genetic and epigenetic.”

In Africa, colon cancer is rare compared to its occurrence in the United States, Williams said, which suggests that diet and lifestyle contribute to the disease and its progression.

Raised in Savannah, Georgia, Williams said she was always interested in what made things change, from the tadpole in the pond to insects and birds that flew. While her parents didn’t attend college, that wasn’t an option for her: “It was never if” she went to college, “but when.”

Li, who is married to Stony Brook President Sam Stanley and has four children, said health insurance is one of numerous problems that affect individual populations. Numerous other factors could play a role in explaining the racial disparities in cancer outcomes.

Diabetes, which occurs at a higher rate in African Americans, increases the risk of colon cancer, Li said. It is unclear how much the incidence of diabetes in the African American population may contribute to the disparity, Li said.

From left, Juan Jimenez and Sanjaya Senanayake in front of CO2 and Methane Conversion Reactor Units in the Chemistry Division at Brookhaven National Laboratory. Photo by Kevin Coughlin/BNL

By Daniel Dunaief

If we had carbon dioxide glasses, we would see the gas everywhere, from the air we, our pets, and our farm animals exhale to the plumes propelled through the smokestacks of factories and the tail pipes of gas-powered cars.

Juan Jimenez. Photo by Kevin Coughlin/BNL

A waste product that scientists are trying to reduce and remove, carbon dioxide is not only a part of the photosynthesis that allows plants to convert light to energy, but it also can be a raw material to create usable and useful products.

Juan Jimenez, a postdoctoral researcher and Goldhaber Fellow at Brookhaven National Laboratory, has been working with carbon dioxide for the last 10 years, in his undergraduate work at CUNY City College of New York, for his PhD at the University of South Carolina and since he arrived at BNL in 2020. 

Jimenez contributed to a team led by engineers at the University of Cincinnati to create a way to improve the electrochemical conversion of this greenhouse gas into ethylene, which is an important ingredient in making plastics as well as in manufacturing textiles and other products.

University of Cincinnati Associate Professor Jingjie Wu recently published work in the journal Nature Chemical Engineering in which they used a modified copper catalyst to improve the electrochemical conversion of carbon dioxide into ethylene.

“I’m always looking out to collaborate with groups doing cutting edge research,” explained Jimenez, who spearheaded the research at the National Synchrotron Lightsource II. “Since the work on CO2 is a global concern we require a global team” to approach solutions.

Jimenez is fascinated with carbon dioxide in part because it is such a stable molecule, which makes reacting it with other elements to transform it into something useful energy intensive.

A modified copper catalyst helped convert more carbon dioxide, which breaks down into two primary carbon-based products through electrocatalysis, into ethylene, which has been called the “world’s most important chemical.”

“Our research offers essential insights into the divergence between ethylene and ethanol during electrochemical CO2 reduction and proposes a viable approach to directing selectivity toward ethylene,” UC graduate student Zhengyuan Li and lead author on the paper, said in a statement.

A previous graduate student of Wu, Li helped conduct some of the experiments at BNL.

This modified process increases the selective production of ethylene by 50 percent, Wu added.

The process of producing ethylene not only increases the production of ethylene, but it also provides a way to recycle carbon dioxide.

In a statement, Wu suggested this process could one day produce ethylene through green energy instead of fossil fuels.

Jimenez’s role

Scientists who want to use the high-tech equipment at the NSLS-II need to apply for time through a highly competitive process before experimental runs.

Jimenez led the proposal to conduct the research on site at the QAS and ISS beamlines.

Several of the elements involved in this reaction are expensive, including platinum, iridium, silver and gold, which makes them prohibitively expensive if they are used inefficiently. By using single atoms of the metal as the sites, these scientists achieved record high rates of reaction using the least possible amount of material.

The scientists at BNL were able to see the chemistry happening in real time, which validated the prediction for the state of the copper.

Jimenez’s first reaction to this discovery was excitement and the second was that “you can actually take a nap. Once you get the data you’re looking for, you can relax and you could shut your eyes.”

Working at NSLS-II, which is one of only three or four similar such facilities in the United States and one of only about a dozen in the world, inspires Jimenez, where he appreciates the opportunity to do “cutting edge” research.

“These experiments are only done a few times in the career of the average scientist,” Jimenez explained. “Having continuous access to cutting edge techniques inspires us to tackle bigger, more complicated problems.”

In the carbon dioxide research, the scientists drilled down on the subject, combining the scope of what could have been two or three publications into a single paper.

Indeed, Nature Chemical Engineering, which is an online only publication in the Nature family of scientific journals, just started providing scientific papers in the beginning of this year.

“Being part of the inaugural editions is exciting, specifically coming from a Chemical Engineering background” as this work was published along with some of the “leading scientists in the field,” said Jimenez.

New York state of mind

Born in Manhattan, Jimenez lived in Queens near Jamaica until he was 11. His family moved into Nassau County near the current site of the UBS Arena.

During his PhD at the University of South Carolina, Jimenez spent almost a year in Japan as a visiting doctoral student, where he learned x-ray absorption spectroscopy from one of the leading scientists in the field, Professor Kiyotaka Asakura. Based in Hokkaido University in Sapporo, Japan, Jimenez enjoyed touring much of the country.

A resident of Middle Island, Jimenez likes to run and swim. He enjoys cooking food from all over the world, including Spanish, Indian and Japanese cuisines.

As a scientist, he has the “unique luxury” of working with an international audience, he said. “If you are having lunch and you see someone eating amazing Indian food, you can talk to them, learn a bit about their culture, how they make their food, and then you can make it.”

As for his work, Jimenez explains that he is drawn to study carbon dioxide not just for the sake of science, but also because it creates a “pressing environmental need.”

He has also been looking more at methane, which is another potent greenhouse gas that is challenging to activate.

Ideally, at some point, he’d like to contribute to work that leads to processes that produce negative carbon dioxide use.

Jacob L Houghton, PhD, in his Stony Brook Cancer Center laboratory. Photo by John Griffin

Stony Brook University signs licensing agreement with Perspective Therapeutics

Image-guided radionuclide therapy uses radioactive molecules designed to specifically target and kill cancer cells while sparing non-cancerous tissues. This form of targeted therapy can be effective against cancer, but traditional methods for applying this therapy can also result in significant adverse effects related to off-target radiation toxicity. A team of Stony Brook University researchers developed a new method for image-guided radionuclide therapy that uses a two-step process with specially-modified antibodies to target the cancerous tumors, followed by a radioligand designed to bind specifically to the modified antibody.

Preliminary studies have shown that the approach can drastically reduce adverse effects while remaining extremely effective at targeting and killing the cancer cells. The promise of this technology has led to an exclusive licensing agreement with Perspective Therapeutics, Inc., headquartered in Seattle, WA.

The licensing agreement with Perspective Therapeutics is through the Research Foundation for State University of New York’s (SUNY), a private, non-profit,  education corporation that manages research administration and intellectual property for and on behalf of SUNY.

Nuclear imaging and targeted radionuclide therapy with biological molecules are a rapidly growing approach for the diagnosis, staging, and treatment of cancer and other pathologies such as inflammation and infection. Traditionally, the therapy has primarily been used in specific diseases such as thyroid cancer, bone cancer metastases, and neuroendocrine cancer. However, a major potential drawback of existing technologies is a resulting high radiation dose to healthy tissues from the combination of long-lived radionuclides and long biological half-life of the targeting molecules.

Stony Brook University radiology researchers Jacob L. Houghton, PhD, and Vilma I.J. Jallinoja, PhD, developed a new technology that overcomes these hurdles to more widespread use of radionuclide therapy. The platform involves using a small molecule that is labeled with a therapeutic radionuclide known as a radioligand, along with a modified monoclonal antibody – such as those used in immunotherapies to target cancer cells – in a two-step process. The platform enabled them to use the specificity of monoclonal antibodies to target cancer  and take advantage of a small molecule radioligand in a manner that retains the efficacy of the therapy while substantially improving the safety through a reduction in radiation toxicity.

Houghton, an Assistant Professor in the Department Radiology in the Renaissance School of Medicine (RSOM), and researcher in the Stony Brook Cancer Center, conducts research on targeted radionuclide therapy for diagnosing and treating cancer. He will continue to collaborate with scientists at Perspective Therapeutics as they further develop the technology. Jallinoja is no longer at Stony Brook.

“Our technology allows the use of such molecules for imaging and therapy while abrogating the concerns of radiation toxicity by using a pre-targeting technique which enables us to ‘label’ the biological molecule after it has been delivered to the target tissue and cleared from peripheral tissues,” explains Houghton.

Specifically, the pre-targeting radionuclide approach involves these steps: an antibody that has been modified to include an artificial binding group is administered to target to the tumor; then the radioligand carries the radionuclide to the tumor which binds specifically to the artificial binding group on the antibody. The radioligand rapidly accumulates in the tumor via this highly-specific interaction, and the unbound radioligand clears the body quickly. This process allows for optimal delivery of the radioactivity to the tumor, with little interaction with healthy tissue and organs.

This method differs from traditional approaches to targeted radionuclide therapy that directly attaches the radioactive payload to the targeting antibody, which can take days to accumulate in the tumor, leading to increased exposure to healthy tissues.

“By embracing a strategy that leverages the precision of monoclonal antibodies and the versatility of small molecules, Perspective is poised to redefine the landscape of radiation therapy,” says Thijs Spoor, Chief Executive Officer at Perspective Therapeutics. “One of our core missions as a company is to deliver safe and effective radiotherapies to patients.”

The team at Stony Brook University’s Intellectual Property Partners (IPP) worked to create the license with Perspective and develop a partnership to bridge new radiopharmaceutical technologies into eventual diagnostics and treatments.

“We are excited to partner with Perspective Therapeutics to advance this novel CB7-Adma pre-targeting platform toward clinical use. The combination of Perspective’s propriety radionuclide chelators and our pre-targeting platform has the potential to significantly improve clinical outcomes in a variety of cancer indications,” says Sean Boykevisch, PhD, Director of the IPP. “This partnership is a great example of how IPP works with Stony Brook inventors, helping them bridge their innovations with societal benefit in collaboration with industry partners.”

Perspective Therapeutics is a radiopharmaceutical development company that is pioneering the delivery of powerful radiation specifically to cancer cells via specialized targeting peptides. The Company is also developing complementary imaging diagnostics that incorporate the same targeting peptides. This “theranostic” approach  is designed to see the specific tumor and then treat it to potentially improve efficacy and minimize toxicity associated with cancer treatments.

 

Caption: Jacob L Houghton, PhD, in his Stony Brook Cancer Center laboratory.

Credit: John Griffin

From left, Mikala Egeblad and Xue-Yan He. Photo from Constance Brukin

By Daniel Dunaief

They both have left Cold Spring Harbor Laboratory, but the innovative research they did on Long Island and that they continue to do, is leaving its mark.

From left, Mikala Egeblad and Xue-Yan He at the American Association for Cancer Research (AACR) annual meeting in New Orleans, Louisiana in 2022. Photo from Xue-Yan He

When Xue-Yan He was a postdoctoral researcher in the lab of Mikala Egeblad, who was Associate Professor at CSHL, the tandem, along with collaborators, performed innovative research on mice to examine how stress affected the recurrence and spread of cancer in a mouse model.

In a paper published in late February in the journal Cancer Cell, He, who is currently Assistant Professor of Cell Biology & Physiology at Washington University School of Medicine in St. Louis, discovered that stress-induced neutrophil extracellular traps (NETs), which typically trap and kill bacteria, trigger the spread of cancer.

“The purpose of our study is to find out what stress does to the body” of an animal model of cancer, said He.

The data in mice demonstrated that targeting NETs in stressed animals significantly reduced the risk for metastases, He explained, suggesting that reducing stress should help cancer treatment and prevention. The researchers speculate that drugs preventing NET formation can be developed and used as new treatments to slow or stop cancer’s spread.

To be sure, this finding, which is encouraging and has generated interest among cancer scientists and neurobiologists, involved a mouse model. Any potential application of this research to the diagnosis and treatment of people will take considerably more effort.

“I want to stress that the evidence for the link between stress, NETs, and cancer is from mouse studies,” Egeblad explained. “We will need to design human studies to know for sure whether the link also exists for humans.”

Still, Egeblad hopes that eventually reducing stress or targeting NETs could be options to prevent metastatic recurrence in cancer survivors. “One major challenge is that a cancer diagnosis by itself is incredibly stressful,” she explained. The results of these experiments have attracted considerable attention in the scientific community, where “there is a lot more to learn!” 

Three part confirmation

When she was a postdoctoral researcher, He removed neutrophils from the mice using antibodies. Neutrophils, which are cells in the immune system, produce the NETs when they are triggered by the glucocorticoid stress hormone.

She also injected an enzyme called DNAse to destroy NETs in the test mice. The former CSHL postdoctoral researcher also used genetically engineered mice that didn’t respond to glucocorticoids.

With these approaches, the test mice developed metastasis at a much lower rate than those that had intact NETs. In addition, chronically stressed mice who didn’t have cancer had NETs that modified their lung tissue.

“Stress is doing something to prepare the organs for metastasis,” said He.

Linda Van Aelst, CSHL Professor and a collaborator on the study, suggested that this work validates efforts to approach mental health in the context of cancer.

“Reducing stress should be a component of cancer treatment and prevention,” Van Aelst said in a statement.

After He removed the primary tumor in the mouse models, the stressed mice developed metastatic cancer at a four-fold higher rate than the mice who weren’t stressed but who also previously had cancer.

The CSHL scientists primarily studied breast cancer for this work.

He appreciated the help and support from her colleagues at CSHL. “To really understand the mechanism” involved in the connection between stress and cancer, “you need a mouse model in the lab, an expert in neuroscience and an expert in the cancer field,” she said.

As a neuroscientist, Van Aelst offered suggestions and comments and helped He conduct behavioral tests to determine a mouse’s stress level. The work for this project formed the focus ofHe’s postdoctoral research, which started in 2016 and ended in 2023.

The link between stress and cancer is receiving increasing attention in the scientific community and has attracted attention on social media, He said.

CSHL “provided a great environment to perform all these experiments,” said He. The numerous meetings CSHL hosts and the willingness of principal investigators across departments made the lab “one of the best places” for a postdoctoral scientist.

“If you need anything from a neural perspective or a technical perspective, you can always find a collaborator” at CSHL, He added.

Born and raised in Nanjing, China, He enjoyed living on Long Island, visiting vineyards and trying to explore every state park. In the harbor, He caught blue crabs while her husband Chen Chen, who was a postdoctoral researcher at CSHL in the lab of Camila dos Santos, went fly fishing at Jones Beach.

In her current research, where she manages a lab that includes a senior scientist, a postdoctoral researcher and an undergraduate, He is extending the work she did at CSHL to colorectal cancer, where she is also analyzing how stress affects the spread of cancer.

“When you’re stressed, you can develop gastrointestinal problems, which is why I wanted to switch from breast cancer to colorectal cancer,” she said.

Extensions of the work

As for context for the research at CSHL, Egeblad wrote that doctors treating patients where the known risk of recurrence is high might use NETs in the blood as a biomarker.

The scientists think cancers that tend to metastasize to the liver, lung or spleen are the strongest candidates to determine the effect of NETs and stress on cancer.

“We have not seen any effects of targeting NETs for metastasis to the bone or the brain in our mouse model and similarly, the studies that have linked NETs to metastasis in human patients have mostly been cancer that has spread to the liver or the lung,” Egeblad said.

Egeblad appreciated the “fantastic job” He did on the work and described her former researcher as being “fearless.”

“She found that stress increased metastasis early in her project but it was a lot of work to discover it was the NETs that were responsible and to conduct studies to ensure that the results were applicable to different types of cancer,” Egeblad explained.

While the two researchers have gone to different institutions and are leading other lab efforts, Egeblad said she’d be happy to collaborate with her former student, who shares the same sense of humor.

Egeblad recalled how He ended her talks by telling the audience that her results showed that Egeblad should give her a “long vacation.”

“I think indeed that she has deserved one after all this work!” Egeblad offered.

Tadanori Koga is the third from the right, Maya Endoh is the fourth from the right (all in the front row). Photo courtesy Elena Stephanie.

By Daniel Dunaief

Hoping to take a page out of nature’s playbook, a married couple in the Department of Materials Science and Chemical Engineering at Stony Brook University is studying a structure that could prevent the spread of pathogens on the surface.

Before the pandemic started, Research Professor Maya Endoh and Associate Professor Tadanori Koga were exploring how anti microbial coatings controlled pathogens on the molecular scale. With the pandemic, they became more focused on ways to prevent pathogens from causing infections after people came into contact with contaminated surfaces.

Working with researchers from Oak Ridge National Laboratory, North Carolina Agricultural and Technical State University and the University of Tennessee Health Science Center, the team received $12 million over three years as a part of the Department of Energy’s Biopreparedness Research Virtual Experiment initiative, which supports multidisciplinary research efforts designed to strengthen precautionary measures against infectious disease outbreaks. Koga and Endoh received a subcontract of $1.2 million from the Oak Ridge National Laboratory which runs until December 2026.

This kind of study, along with other funded research on the spread of pathogens, could be “important to prevent the next pandemic,” said Endoh. She added that this kind of work could not only help reduce the danger from another potential pandemic, but could also help cut down infections from other common health threats.

The research plans to explore the physical and chemical interactions that occur when bacteria come in contact with a material surface.

To develop surface coatings that might resist the spread of disease-carrying pathogens, Koga and Endoh are turning to an insect that will be even more abundant than usual this year. For the first time since 1803, the 13-year and 17-year cicadas will emerge at the same time.

Koga and Endoh, however, are less focused on their prevalence or their loud noises than they are on their wings, which resist bacteria and may also provide protection against viruses and fungi, as something about their nanostructure disables these pathogens.

“We want to learn from nature,” said Endoh. “As material scientists, we want to mimic this structure.”

Their method of killing bacteria is to facilitate bacterial attachment to nanopattern surfaces. They are targeting surfaces that are constantly and directly exposed to pathogens, such as medical devices, tools and sensors.

Their computational results suggest that a nanopatterned surface can puncture a bacterial outer membrane. These scientists can not specify the time range clearly, which is something they are pursuing with the awarded project.

“We are targeting the surfaces which are constantly and directly exposed to pathogens, such as medical devices, tools and sensors,” Koga and Endoh explained in an email.

Structural defense

The structure of the cicada wings have nanopillars that are about 100 nanometers tall and that are separated by about 100 nanometers from each other. The nanopillars they plan to use have a height of 10 nanometers, a diameter of 50 nanometers and a space between adjacent cylinders of 70 nanometers.

By creating a similar structure with polymers, the Stony Brook scientists will attempt to manufacture materials that provide the same resistance.

They will optimize the geometric parameters of the nanostructure, especially its height and interpillar spacing, to create different nano topographies, including nanopillars, nanowalls, nanospikes and nanodomes.

They are starting their work with the bacteria E. coli and will use computational approaches to optimize surface geometric parameters, bacteria-substrate interactions and bacterial wall stiffness to create a robust structure-guided antimicrobial surface.

They will use polystyrene block polymers and are planning to use different ingredients such as biopolymers. They believe the ingredients can be varied.

According to their recent molecular dynamics simulations mimicking experimental conditions, attractive interactions promote additional membrane attachment, pulling the membrane taut against the pillars and creating tension that ruptures the cell wall. The rupture occurs at the high curvature regions near the edge of the pillars.

Surfaces coated by polymers would likely require periodic coating applications. The scientists treat those polymers with a three-dimensional link to improve the mechanical property. They also apply atomic-thin scale metal layers to make the surface more durable.

In collaboration with Brookhaven National Laboratory, they are trying to determine how to make this kind of pattern with different substances.

“We don’t know what shape is the best [for various pathogens], what size is the best and what spacing is the best,” said Koga.

Benefits of collaboration

Koga and Endoh appreciate the opportunity to collaborate with a range of talented scientists at other institutions.

“Luckily, we have a lot of collaborators,” Endoh said.

Koga and Endoh became a part of a bigger collaboration when they worked with Jan-Michael Carrillo and Bobby Sumpter at Oak Ridge National Laboratory, who started this project.

“This is a nice step, but it’s not the end,” said Koga. The next step is to “create a real material.”

Lifelong collaboration

Koga and Endoh met in their native Japan. Koga is from Kyushu, while Endoh grew up in Sendai, which was the epicenter of the Tōhoku earthquake in 2011, which created the tsunami at the Fukushima nuclear power plant.

They came to the United States when Koga wanted to become a postdoctoral researcher for a two year assignment at Stony Brook. Over 27 years, and four children later, they are still at Stony Brook.

Over the years, Endoh juggled motherhood and a postponed PhD, which she eventually received from Kyoto University.

Koga enjoys watching Japanese players in Major League Baseball and is a fan of Dodgers superstar Shohei Ohtani. A “soccer mom,” Endoh enjoys cooking and playing the violin. The couple hikes in the summer and skis in the winter.

As for their own protective measures during the pandemic, Koga and Endoh regularly washed their hands, although they didn’t use Purell or other special wipes to clean any surfaces. 

Jin Koda and Amanda Lee at the recent 243rd annual meeting of the American Astronomical Society in New Orleans. Photo by Jenny Zhang

By Daniel Dunaief

Hollywood is not the only place fascinated with the birth of stars. Indeed, researchers at Stony Brook University, among many other academic institutions, have focused considerable time, energy and effort into understanding the processes that lead to the creation of stars.

Astronomers had tried, unsuccessfully, to detect molecular clouds in the galaxy outskirts, which is how stars form in the inner part of galaxies.

About 18 years ago, a NASA satellite called GALEX discovered numerous newly formed stars at the edges of a spiral galaxy M83, which is 15 million light years from Earth. 

Leading an international team of scientists, Jin Koda, Professor in the Department of Physics and Astronomy at Stony Brook University, together with his former undergraduate student Amanda Lee, put together data and information from a host of sources to describe how these stars on the outer edge of the galaxy formed.

Their work demonstrated star-forming molecular clouds in this outer area for the first time.

“These molecular clouds at the galaxy edge are forming stars as much as the molecular clouds in normal parts of galaxies” such as molecular clouds around the sun, Koda explained.

Before their discovery, Koda said astronomers had considered that new-born stars at galaxy edges could have formed without molecular clouds.

Koda recently presented this work at the 243rd annual meeting of the American Astronomical Society in New Orleans.

Indeed, partnering with scientists from the United States, Japan, France and Chile, Koda, who is the Principal Investigator on the study, and Lee found evidence of 23 of these molecular clouds on the outskirts of the M83 galaxy.

Combining data from a host of telescopes for this research, Koda and Lee found “higher resolution than before,” Lee said. “We could see a peak of atomic hydrogen in that region, which we didn’t know before.”

While helium also exists in the molecular clouds in the galaxy edges as well as in the atomic gas and in stars, it does not emit light when it’s cold, which makes its signature harder to detect.

Scientists are interested in “why we weren’t able to detect these molecular clouds for such a long time,” Lee said. “We ended up using a different tracer than what is normally used.”

The group came up with a hypothesis for why the molecular clouds were difficult to find. Carbon monoxide, which typically helps in the search for such clouds, is dissociated in the large envelopes at the galaxy edges. Only the cores maintain and emit this gas.

A collaboration begins

When Lee, who grew up in Queens, started at Stony Brook University, she intended to major in physics. In her sophomore year, she took an astronomy class that Koda taught.

“I was very interested in studying galaxies and the evolution of galaxies,” Lee said.

After the course ended, she started working in Koda’s lab.

“Her tireless efforts made her stand out,” Koda explained in an email. Koda appreciates how speaking with students like Lee helps him think about his research results.

Lee is “particularly good at identifying and asking very fundamental questions,” he added.

At one point about two years before she graduated in 2022, Lee recalled how Koda shared a picture of M83 and described the mystery of star formation at the outskirts of galaxies.

Two years later, by delving into the data under Koda’s supervision, she helped solve that mystery.

“I didn’t know my work would end up contributing to this project,” Lee said. “It’s really exciting that I was able to contribute to the big picture of star formation” in distant galaxies.

Since graduating from Stony Brook, Lee has been a PhD student for the last year and a half at the University of Massachusetts at Amherst.

At this point, Lee is still working towards publishing a paper on some of the work she did in Koda’s lab that explores the formation of stars in the inner disk of M83.

“Broadly,” she said, the two research efforts are “all related to the same picture.”

For her part, Lee was pleased with the opportunity to work with such a geographically diverse team who are all contributing to the goal of understanding star formation.

Future focus

The area they observed is relatively small and they would like to see more regions in M83 and other galaxies, Koda explained.

Finding so many molecular clouds at once in the small region “encourages us to hypothesize that the process is universal,” although scientists need to verify this, Koda said.

The researchers also discovered more atomic gas than they would expect for the amount of molecular clouds. A compelling discovery, this observation raised questions about why this abundant atomic gas wasn’t becoming molecular clouds efficiently.

“We need to solve this mystery in future research,” Koda explained. He is pleased with the level of collaboration among the scientists. “It’s very interesting and stimulating to collaborate with the excellent people of the world,” he said.

A resident of Huntington, Koda grew up in Tokyo, where he earned his bachelor’s, master’s and PhD degrees. When he moved to the United States, Koda conducted post doctoral studies for six years at Cal Tech. 

About 15 years ago, he moved to Stony Brook, where he replaced Professor Phil Solomon, who was one of the pioneers of molecular cloud studies in the Milky Way galaxy.

Science appeals to Koda because he is “interested in how things work, especially how nature works,” he said.

In this work, Koda suggested that the molecular clouds have the same mass distribution as molecular clouds in the Milky Way, indicating that star formation is the same, or at least similar, between the Milky Way and galaxy edges.

Koda made the discovery of the molecular clouds and the hypothesis about the carbon monoxide deficient cloud envelope in 2022. Since then, he and his team have obtained new observations that confirmed that what they found were the “hearts of molecular clouds,” he said.

Photo courtesy of SBU

By Daniel Dunaief

Predicting extreme heat events is at least as important as tracking the strength and duration of approaching hurricanes.

Ping Liu

Extreme heat waves, which have become increasingly common and prevalent in the western continental United States and in Europe, can have devastating impacts through wildfires, crop failures and human casualties.

Indeed, in 2003, extreme heat in Europe caused over 70,000 deaths, which was the largest number of deaths from heat in recent years.

Recently, a trio of scientists at Stony Brook University’s School of Marine and Atmospheric Sciences (SoMAS) received $500,000 from the National Oceanographic and Atmospheric Administration to study heat events by using and analyzing NOAA’s Seamless System for Prediction and EArth System Research, or SPEAR, to understand heat waves and predict future such events.

The first objective is to evaluate simulations in the SPEAR model, by looking at how effectively this program predicts the frequency and duration of heat events from previous decades, said Ping Liu, who is the Principal Investigator on the project and is an Associate Professor at SoMAS.

Liu was particularly pleased to receive this funding because of the “urgent need” for this research, he explained in an email.

The team will explore the impact of three scenarios for increases in overall average temperature from pre-Industrial Revolution levels, including increases of 1.5 degrees Celsius, 2 degrees Celsius and four degrees Celsius, which are the increases the IPCC Assessment Reports has adopted.

Answering questions related to predicting future heat waves requires high-resolution modeling products, preferably in a large ensemble of simulations from multiple models, for robustness and the estimation of uncertainties, the researchers explained in their proposal.

“Our evaluations and research will provide recommendations for improving the SPEAR to simulate the Earth system, supporting NOAA’s mission of ‘Science, Service and Stewardship,’” they explained.

Kevin Reed, Professor, and Levi Silvers, research scientist, are joining Liu in this effort.

Liu and Reed recently published a paper in the Journal of Climate and have conducted unfunded research on two other projects. Liu brought Silvers into the group after Reed recommended Silvers for his background in climate modeling and dynamics.

Reed, who is Interim Director of Academic, Research and Commercialization Programs for The New York Climate Exchange, suggested that the research the heat wave team does will help understand the limitations of the SPEAR system “so that we can better interpret how the modeling system will project [how] blocking events and heat will be impacted by climate change.”

An expert in hurricanes, Reed added that blocking events, which can cause high pressure systems to stall and lead to prolonged heat waves, can also lead to unique hurricane tracks, such as Hurricane Sandy in 2012.

“A longer term goal of many of my colleagues at Stony Brook University is to better understand these connections,” said Reed, who is Associate Provost for Climate and Sustainability Programming and was also recently appointed to the National Academies’ Board on Atmospheric Sciences and Climate.

Liu will use some of the NOAA funds to recruit and train a graduate student, who will work in his lab and will collaborate with Reed and Silvers.In the bigger picture, the Stony Brook researchers secured the NOAA backing in the same year that the university won the bidding to develop a climate solutions center on Governors Island.

Reed suggested that the “results of the work can be shared with our partners and can help to inform future societally relevant climate research projects.”

Focus on two regions

The systems that have caused an increase in heat waves in the United States and Europe are part of a trend that will continue amid an uneven distribution of extreme weather, Liu added.

Heat waves are becoming more frequent and severe, though the magnitude and impact area vary by year, Liu explained.

The high pressure systems look like ridges on weather maps, which travel from west to east.

Any slowing of the system, which can also occur over Long Island, can cause sustained and uncomfortable conditions.

Over the past several years, Liu developed computer algorithms to detect high pressure systems when they become stationary. He published those algorithms in two journal papers, which he will use in this project.

Personal history

Born and raised in Sichuan, China, Liu moved to Stony Brook from Hawaii, where he was a scientific computer programmer, in November of 2009.

He and his wife Suqiong Li live in East Setauket with their 16-year old daughter Mia, who is a student at Ward Melville High School and  a pianist who has received classical training at the Manhattan School of Music. Mia has been trained by award-winning teacher Miyoko Lotto.

Outside of the lab, Liu, who is five-feet, seven-inches tall, enjoys playing basketball on Thursday nights with a senior basketball team.

Growing up in China, Liu was always interested in weather phenomenon. When he was earning his PhD in China at the Institute for Atmospheric Physics at the Chinese Academy of Sciences in Beijing, he had limited computer resources, working in groups with IBM and, at times, Dell computer. He built several servers out of PC parts.

With air trapped inside the basin surrounded by tall mountains, Sichuan is particularly hot in the summer, which motivated him to pursue the study of heat waves.

Liu appreciated how Stony Brook and Brookhaven National Laboratory had created BlueGene, which he used when he arrived.

As for the future of his work, Liu believes predicting extreme heat waves is increasingly important “to help planners from local to federal levels cope with a climate that is changing rapidly and fostering more frequent and more severe heat events,” he explained.

Alexander Zamolodchikov Photo by John Griffin/SBU

By Daniel Dunaief

Alexander Zamolodchikov Photo by John Griffin/SBU

Stony Brook University might need to rename a wing of the C.N. Yang Institute for Theoretical Physics the Breakthrough Prize alley. That’s because theoretical physicist Alexander Zamolodchikov recently shared a $3 million prize in fundamental physics, matching a similar honor his neighbor on the floor and in the department, Peter van Nieuwenhuizen, earned in 2019.

Zamolodchikov shared this year’s award with University of Oxford Professor John Cardy for their contributions to quantum field theories which describe particle physics as well as magnetism, superconducting materials and the information content of black holes.

“I’m not working for prizes, but it’s kind of encouraging that other people think that my contribution is significant,” said the Russian-born Zamolodchikov, who joined Stony Brook in 2016 and had previously worked at Rutgers for 26 years, where he co-founded the High Energy Theory Center.

While Zamolodchikov was pleased to win the award and was understated in his response, his colleagues sang his praises.

Zamolodchikov is “one of the most accomplished theoretical physicists worldwide,” George Sterman, Director of the C.N. Yang Institute for Theoretical Physics and Distinguished Professor at Stony Brook University’s Department of Physics and Astronomy, said in a statement. “He has made groundbreaking advances, with enormous impact in many physics fields, such as condensed matter physics, quantum statistical physics and high energy physics, including our understanding of fundamental matter and forces.”

Sterman added that Zamolodchikov’s insights have influenced the way theoretical physicists think about foundational concepts.

“Having such a giant in your institute is always great,” said van Nieuwenhuizen, who said the two Breakthrough Prize winners sometimes discuss physics problems together, although their fields differ.

Founded by Sergey Brin, Priscilla Chan and Mark Zuckerberg, Julia and Yuri Milner and Anne Wojcicki, the Breakthrough Prizes are referred to as the “Oscars of science.”

A scientific throwback

Zamolodchikov has a “very pleasant personality” and couldn’t be a better neighbor in a corridor in which five of the offices house distinguished professors, van Nieuwenhuizen said.

Van Nieuwenhuizen, who was a deputy for C.N. Yang for six years, said the two of them often discussed whether to continue to build a theoretical physics department or to branch out into applied physics.

The direction for the department “wasn’t so obvious at the time” but the institute members decided to continue to build a fundamental physics group, which attracted the “right people. In hindsight, it was the right decision,” van Nieuwenhuizen added.

In some of his lectures and discussions, Zamolodchikov, who often pushes his glasses up on his forehead, works with equations he writes on a blackboard with chalk.

He suggested that many in the audience prefer the slow pace of the blackboard and he uses it when appropriate, including in class lectures. Having grown up in pre-computer times, he considers the blackboard his “friend.” 

“He’s a throwback,” said van Nieuwenhuizen. “I happen to think that is the best way of teaching.”

Thinking about eating bread

Zamolodchikov said he often gives his work considerable thought, which he believes many scientists do consciously and subconsciously, wherever they are and what they are doing.

When his daughter Dasha was about four years old, she asked him what he was thinking about all the time. He joked that he was contemplating “how to consume more white bread.”

Even today, Dasha, who conducts biological research, asks if he is “still thinking about white bread.”

Family commitment to physics

When Zamolodchikov’s father Boris returned from World War II, the Soviet Union built a physics institute in his town of Dubna.

His father had an “exceptional understanding” of some parts of physics, such as electromagnetic theory and he would talk in their house about science. Boris Zamolodchikov was chief engineer of a laboratory that was working on the first cyclotron.

“He convinced us that physics was something to devote the life to,” Zamolodchikov explained.

Zamolodchikov (who goes by the name “Sasha”) and his late twin brother Alexei (who was known as Alyosha) looked strikingly similar, but were never sure whether they were fraternal or identical twins. The twins collaborated on research in physics until Alexei died in 2007.

Zamolodchikov and his brother understood each other incredibly well. One of them would share a thought in a few words and the other would understand the idea and concept quickly.

“It was some sort of magic,” said Zamolodchikov. “I miss him greatly.”

Indeed, even recently, Zamolodchikov has been working to solve a problem. He recalls that his brother told him he knew how to solve it, but the Stony Brook Distinguished Professor forgot to ask him about the details.

When Zamolodchikov, who thinks of his twin brother every day, learned he had won the prize, he said he feels “like I share this honor with him.”

Description of his work

In explaining his work, Zamalodchikov suggests that quantum field theory, which was questioned for some time before the mid-1970’s, has been used to describe subatomic physics.

On a general level, quantum field theory helps explain nature in terms of degrees of freedom.

“I was trying to solve simplified versions of these field theories,” said Zamolodchikov. He provided insights into what quantum field theory can describe and what kind of physical behavior would never come from quantum field theory.

His work shed light on phase transitions, from liquids to gases. He was able to find a solution through quantum field theory that had a direct application in explaining phase transition.

Experimentalists did the experiment and found the signature he expected.

“When I make a prediction about the behavior in phase transition and they do the experiment and find it exactly as my prediction, it’s remarkable,” he said. “My prediction involves an exceptionally complicated but beautiful mathematical structure.”